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REPRESENTATION THEORY IN COMPLEX RANK, I

PAVEL ETINGOF

Dedicated to E. B. Dynkin on his 90th birthday

1. Introduction

The subject of representation theory in complex rank goes back to
the papers [DM, De1]. Namely, these papers introduce Karoubian
tensor categories Rep(GLt) ([DM, De1]), Rep(Ot), Rep(Sp2t), t ∈ C

([De1]), which are interpolations of the tensor categories of algebraic
representations of classical complex algebraic groups GLn, On, Sp2n
to non-integral rank1. This means that when t = n is a nonnegative
integer, these categories project onto the corresponding classical repre-
sentation categories Rep(GLn), Rep(On), Rep(Sp2n), i.e., they have
tensor ideals, the quotients by which are the classical representation
categories. Later, in [De2], P. Deligne introduced Karoubian tensor
categories Rep(St), t ∈ C, which are similar interpolations for the rep-
resentation category of the symmetric group Rep(Sn) (and project
onto it for t = n).
In [Kn1, Kn2], F. Knop proposed a broad generalization of Deligne’s

construction. In particular, he generalized his construction for Sn to
the case of wreath product groups Sn⋉Γn, where Γ is any finite group,
constructing Karoubian tensor categories Rep(St ⋉ Γt) for complex t,
projecting for t = n onto Rep(Sn ⋉ Γn).
Since these categories are semisimple for non-integer t, one may think

of these results as ”compact” representation theory in complex rank.
The goal of this paper is to start developing the ”noncompact” counter-
part of this theory. Namely, in this paper we will introduce a method
that allows one to define interpolations to complex rank of various cat-
egories of representations of classical type, in particular the following
ones:
1) wreath products;
2) degenerate affine Hecke algebras;
3) rational and trigonometric Cherednik algebras, symplectic reflec-

tion algebras;
4) real groups (i.e., symmetric pairs);

1In fact, Rep(Ot) = Rep(Sp−t) with a modified symmetric structure.
1
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2 PAVEL ETINGOF

5) Lie superalgebras;
6) affine Lie algebras;
7) Yangians;
8) (Parabolic) category O for reductive Lie algebras.
Namely, we will define representations of a ”noncompact algebra” of

complex rank as representations of its ”maximal compact subalgebra”
(i.e. an (ind)-object of the corresponding tensor category) together
with some additional structure (morphisms satisfying some relations).
These morphisms and relations are obtained by writing down a “cat-
egorically friendly” definition of the corresponding classical structure,
and then interpolating this definition to complex values of the rank
parameter(s). We will discuss the explicit form of such morphisms
and relations in the above special cases 1-3, based on Rep(St). Cases
4-8 based on Rep(GLt), Rep(Ot), Rep(Sp2t) and many other similar
situations will be considered in future papers. 2

This approach leads to a multitude of new interesting representation
categories, which, in a sense, capture the phenomenon of ”stabilization
with respect to rank” in representation theory of classical groups and
algebras. In subsequent works, we plan to study the structure of these
categories in detail. We expect to discover interesting degeneration
phenomena not only at integer t, but also at rational (non-integer) val-
ues of t. Specifically, if the ”classical” theory already has a continuous
parameter k (or several such parameters), then we expect interesting
degeneration phenomena when both k and t are rational but not neces-
sarily integer. Such phenomena cannot be understood by interpolation
arguments, and their study will likely require new ideas. For instance,
for rational Cherednik algebras, such degeneration phenomena were
discovered in [EA1]. Also, one might hope that these new categories
will be interesting for the theory of categorification.
For simplicity, we consider only the case t /∈ Z+, when the Deligne

categories Rep(St) are semisimple, although many of the results admit
generalizations to the case t ∈ Z+.
The organization of the paper is as follows.
In Section 2 we recall basic facts about the Deligne category Rep(St).

In particular, we define the group algebra C[St] of St and discuss its
center, and its action on simple objects of Rep(St).
In Section 3, we discuss the Schur-Weyl dualty for Rep(St), using the

notion of a complex tensor power of a vector space with a distinguished
nonzero vector.

2The ideas explored in this paper were outlined in the talk [E] in March 2009.
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In Section 4, we apply the Schur-Weyl duality from Section 3 to
define and study wreath products of complex rank.
Finally, in Section 5 we discuss interpolations of degenerate affine

Hecke algebras and of wreath product symplectic reflection algebras,
in particular rational Cherednik algebras.

Remark 1.1. The world of representation categories of complex rank is
vast and almost unexplored, and there are a multitude of projects that
immediately spring to mind, to interpolate various settings in classical
representation theory. Many of them seem interesting, and it is not yet
clear which ones are most worthy of exploration.
It seems that a good strategy of choosing problems in this field at

initial stages would be to keep closer to applications to ”classical” rep-
resentation theory. One of the pathways for such applications is to
consider the algebra A = End(X), where X is an (ind-)object of some
complex rank category C. This is an ordinary algebra that belongs to
the world of ”classical” representation theory, but its construction as
End(X) is sometimes more insightful than ”classical” constructions, if
they exist at all. In particular, through such a construction, A comes
equipped with a large family of modules, namely Hom(X, Y ), where Y
is another object of C.
Another principle that might be useful is to focus on extracting con-

crete numerical information (such as characters, multiplicities, etc.), as
this has been a fundamental principle of representation theory since its
creation. To this end, it may be useful to relate complex rank categories
to ”classical” representation categories through various functorial con-
structions, such as Schur-Weyl duality and its generalizations.

Acknowledgments. The author is grateful to I. Entova-Aizenbud
and V. Ostrik for many useful discussions. The work of the author
was partially supported by the NSF grants DMS-0504847 and DMS-
1000113.

2. Deligne categories Rep(St)

2.1. Categorical preliminaries. All categories we consider will be
additive and linear over C.
Recall that a Karoubian category is an additive category closed under

taking direct summands.
By a tensor category, unless otherwise specified, we will mean a

Karoubian rigid monoidal category with additive tensor product.
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For a category C denote by IndC the ind-completion of C. If C is
semisimple, objects of Ind(C) are possibly infinite direct sums of inde-
composable objects of C. By an ind-object in C we will mean an object
of IndC.
If C, D are semisimple categories, by C⊠D we denote their external

tensor product, – a semisimple category whose simple objects have the
form X ⊗ Y , where X runs over simple objects of C and Y over simple
objects of D. It is clear that if C,D are tensor categories then the
category C ⊠D is also a tensor category.

2.2. Definition of the Deligne category Rep(St) and its ba-

sic properties. Let us recall basic facts about the Deligne category
Rep(St) ([De1]). 3 This is a Karoubian rigid tensor category over C
defined for any complex number t. Indecomposable objects Xλ of the
category Rep(St) are labeled by all Young diagrams λ.
If t is not a nonnegative integer, then Rep(St) is semisimple abelian,

and its simple objects Xλ are labeled by all Young diagrams (or parti-
tions) λ. In particular, the empty diagram corresponds to the neutral
object 1, the one-box diagram to the “reflection representation” h0,
the column of length k to ∧kh0, etc. The object Xλ interpolates the
representations of Sn corresponding to the partition

λ̃(n) := (n− |λ|, λ1, ..., λm, ...)
of n, for large n.
On the other hand, if t is a nonnegative integer n, then Rep(St)

projects onto the category of representations of the symmetric group
Rep(Sn), whose simple objects are the irreducible representations πµ of
Sn attached to Young diagrams (or partitions) µ with |µ| = n. Namely,
Rep(St) contains a tensor ideal In, such that Rep(St)/In = Rep(Sn).
The partitions λ for which Xλ have a nonzero image in the quotient
are those for which λ1+ |λ| ≤ n, and for such λ the object Xλ maps to
πλ̃(n) ∈ Rep(Sn).

Deligne also defined the abelian category Repab(St), which is “the
abelian envelope” of Rep(St) (it differs from Rep(St) only for nonneg-
ative integer t).
The categorical dimensions of indecomposable objects in the cate-

gory Rep(St) for t /∈ Z+ are given by the following formula. For each
partition λ with |λ| = N , let λ∗ be the conjugate partition, and define
the set Bλ to be the set of all nonnegative integers not contained in the

3A good source of materials on Deligne categories is the webpage of the MIT sem-
inar on Deligne categories, http://math.mit.edu/˜innaento/DeligneCatSeminar/

http://math.mit.edu/~innaento/DeligneCatSeminar/
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sequence N − 1 + k − λ∗k, k ≥ 1 (since this sequence is increasing, it is
clear that |Bλ| = N). Then we have

Proposition 2.1. (see [De2], [CO]) If t /∈ Z+, then

dimXλ = dim πλ

∏
k∈Bλ

(t− k)

N !
=

∏
k∈Bλ

(t− k)∏
(i,j)∈λ hλ(i, j)

,

where hλ(i, j) are the hooklengths in λ.

This formula is obtained by interpolating the hooklength formula for
the dimensions of πλ̃(n).

Example 2.2. 1. Let λ = (1k) (k times). Then dimXλ = (t−1)...(t−k)
k!

=(
t−1
k

)
.

2. Let λ = (k). Then dimXλ =
(t−2k+1)

∏k−2

j=0
(t−j)

k!
=
(
t
k

)
−
(

t
k−1

)
.

Remark 2.3. Formula (2.1) is not always true for nonnegative integer
t. For instance, as we see from Example 2.2(2), the polynomial giving
dimX(k) for generic t is negative for t = k−1, ..., 2k−2. This means that
dimX(k) cannot be given by this formula for these values of k (as then
it will have nothing to be mapped to in the category of representations
of the symmetric group, as the functor from Rep(St) to this category is
a symmetric tensor functor and hence preserves dimensions). In fact,
one can show (see [CO]) that Xλ for positive integers t is not always a
specialization of a simple object for generic t; its lift to generic t may
be reducible.

It is also useful to recall the rule of multiplication by h0.

Proposition 2.4. (see [De2],[CO]) One has

h0 ⊗Xλ = ⊕µ∈P+

λ
∪P−

λ
∪P 0

λ
Xµ + cc(λ)Xλ,

where P+
λ , P

−
λ , P

0
λ are the sets of Young diagrams obtained from λ by

adding, deleting, and moving a corner cell, respectively, and cc(λ) is
the number of corner cells of λ.

This formula is obtained by interpolating the Pieri rule.

2.3. The universal property, induction, and restriction. For t /∈
Z+, the category Rep(St) is known (see [De1], Section 8) to be the
universal symmetric tensor category with a commutative Frobenius
algebra h of dimension t. This means that for any symmetric tensor
category C, tensor functors Rep(St) → C correspond of commutative
Frobenius algebras in C of dimension t.
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Now let t1, ..., tm ∈ C be such that
∑m

i=1 ti = t. Consider the category
⊠

m
i=1Rep(Sti). In this category we have the commutative Frobenius

algebra h1 ⊕ ...⊕ hm, where

hi := 1⊠i−1
⊠ hRep(Sti

) ⊠ 1⊠m−i.

The dimension of this algebra is t. So by virtue of the universal prop-
erty, we have a symmetric tensor functor

Rest1,...,tn : Rep(St) → ⊠
m
i=1Rep(Sti),

such that Rest1,...,tn(h) = h1 ⊕ ... ⊕ hm. The left (respectively, right)
adjoint of this functor is called the induction (respectively, coinduction)
functor, and denoted by (Co)Indt1,...,tm

(it lands in the ind-completion

of Rep(St)). In the special case m = 2 and t2 ∈ Z+ (with Rep(St2)
instead of Rep(St2)), these functors are considered in [De1].

2.4. The Jucys-Murphy central element. Recall that the Jucys-
Murphy central element is the central element Ω =

∑
1≤i<j≤n sij in

C[Sn], where sij is the transposition of i and j. It is well known that Ω
acts on an irreducible representation πµ by the scalar ct(µ) (the content
of µ), which is the sum of i−j over all cells (i, j) of the Young diagram
µ.
The interpolation of the Jucys-Murphy central element to complex

values of t (as an endomorphism of the identity functor of the category
Rep(St)) is constructed in the paper [CO] (as a special case of one-cycle
central elements, see below). When t /∈ Z+, t is easy to describe this
endomorphism explicitly. Indeed, it is easy to see that

ct(λ̃(n)) = ct(λ)− |λ|+ (n− |λ|)(n− |λ| − 1)

2
.

So we define the endomorphism Ω by the formula

Ω|Xλ
:= ct(λ)− |λ|+ (t− |λ|)(t− |λ| − 1)

2
.

2.5. Higher central elements. In a similar way one can interpolate
other central elements of the group algebra C[Sn], corresponding to
various cycle types. Namely, let m = (m1, m2, ...) be a sequence of
nonnegative integers with

∑
mi(i + 1) ≤ n. Let m =

∑
mi(i + 1).

Then in the group algebra C[Sn] we have the central element Ω
m
, which

is the sum of all permutations with mi cycles of length i + 1 for each
i ≥ 1. The eigenvalue of Ω

m
on πλ equals

Ω
m
|πλ

=
|C

m
| · tr|πλ

(g)

dim πλ
,
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where C
m

is the conjugacy class of permutations with mi cycles of
length i+ 1 for each i ≥ 1, and g ∈ C

m
. We have

|C
m
| = n(n− 1)...(n−m+ 1)∏

imi!(i+ 1)mi
.

This implies that the interpolation of Ω
m

to Rep(St) is given by the
formula

Ω
m
|Xλ

=

∏
(i,j)∈λ hλ(i, j) ·

∏m−1
j=0 (t− j)

∏
imi!(i+ 1)mi ·∏k∈Bλ

(t− k)
cλ,m(t),

where cλ,m(t) is the coefficient of xλ :=
∏

i x
λi

i in the series

Ft,m(x) := (1 + p1(x))
t−m

∏

i≥1

(1 + pi+1(x))
mi

∏

i≥1

(1− xi)
∏

i>j

(1− xi
xj

),

where pi(x) =
∑

r x
i
r (it is clear that cλ,m(t) is a polynomial, by set-

ting xi = u1...ui and writing the expansion in terms of the ui). This
interpolation is obtained from the Frobenius character formula and the
hooklength formula for Sn-representations, and for the case of one cy-
cle it is given in [CO]. In particular, Ω1,0,0... = Ω (the Jucys-Murphy
element).4

Note that Ω
m
|Xλ

, as well as dimXλ, is an integer-valued polyno-
mial of t (i.e., an integer linear combination of binomial coefficients).
Indeed, this function takes integer values at large positive integers t
(by representation theory of symmetric groups), and such a rational
function is well known to be an integer-valued polynomial.

2.6. The group algebra C[St] of St. The representation category
of the symmetric group Sn may be defined as the tensor category of
representations of the Hopf algebra C[Sn]. In the setting of Deligne
categories, such an algebra can also be defined, as a Hopf algebra in
Rep(St) (which interpolates the group algebra of Sn with the conju-
gation action of Sn). The only caveat is that since |Sn| = n! is not
a polynomial in n, this algebra will be infinite dimensional (i.e., an
ind-object of Rep(St)).
Namely, let us fix a cycle type m as above. Then we have the

conjugacy class C
m

in Sn, and the span of this conjugacy class in

4Note that the element Ωm is a polynomial of the elements Z1, Z2, ..., where
Zi := Ωei

are the one-cycle central elements discussed in [CO] ((ei)j = δij). For
this reason, the one-cycle elements suffice for the study of blocks of Rep(St), done
in [CO]; more general central elements don’t carry additional information.
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C[Sn] is a representation of Sn (with the conjugation action). This
representation is the induced representation

IndSn

Sn−m×
∏

Smi
⋉(Z/(i+1)Z)mi

C.

(where Smi
⋉ (Z/(i + 1) is viewed as a subgroup of Sn) This induced

representation has a natural analog in Rep(St), namely the invariants
E

m
of the group

∏
i Smi

⋉(Z/(i+1)Z)mi in the object ∆m,t = IndSt

St−m
(1)

(where IndSt

St−m
is the induction functor Rep(St−m) → Rep(St)). We

also have a natural multiplication map

mult
m,m′,m′′ : E

m
⊗E

m
′ → E

m
′′ ,

which interpolates the multiplication in C[Sn] (i.e., in the classical
setting for s ∈ C

m
, s′ ∈ C

m
′ one has mult

m,m′,m′′(s, s′) = ss′ if
ss′ ∈ C

m
′′, and zero otherwise, and we need to interpret this in terms

of the diagrams of the partition algebra). Moreover, it is clear that for
fixed m and m′ this map is zero for almost all m′′. This shows that
C[St] := ⊕

m
E

m
is an associative algebra in IndRep(St). Note that this

algebra is Z/2Z-graded by “parity of the permutation”, deg(E
m
) =∑

i imi mod 2.
Moreover, C[St] is a cocommutative Hopf algebra, in which the co-

product ∆ : E
m

→ E
m

⊗ E
m

and counit ε : E
m

→ 1 come from
the natural commutative algebra structure on E∗

m
(note that E∗

m
in-

terpolates the space of functions on C
m
). It is also easy to construct

the antipode S : E
m

→ E
m
, interpolating the inversion map on Sn.

Namely, this is the antiautomorphism which is the identity on E1,0,....
Thus, the category C[St]-mod of C[St]-modules in IndRep(St) is a sym-
metric tensor category.
Note that we have a canonical tensor functor Rep(St) → C[St]-mod;

in particular, any object of Rep(St) carries a canonical action of C[St].
Indeed, to prescribe such a functor, it suffices to specify a Frobenius
algebra in C[St]-mod of dimension t. For this, it suffices to define
a Hopf action of C[St] on the Frobenius algebra h, which is done in
a straightforward way by interpolating from integer n the standard
action of C[Sn] on Fun({1, ..., n}).
Remark 2.5. Let B be an algebra in IndRep(St). Then, since B is
an object of IndRep(St), there is a standard action of C[St] on B. It
is easy to check that this is a Hopf algebra action of the Hopf algebra
H := C[St] on the algebra B inside IndRep(St), ρ : H⊗B → B. Thus,
we can form the semidirect product C[St]⋉ B, as we do in the theory
of Hopf algebra actions on rings. Namely, as an object, this semidirect
product is B⊗H , with multiplication mapm : B⊗H⊗B⊗H → B⊗H
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is defined by the formula

m = (mH ⊗mB) ◦ (1⊗ ρ⊗ 1⊗ 1) ◦ σ34 ◦ (1⊗∆H ⊗ 1⊗ 1),

where mB, mH are the products in B,H , ∆H is the coproduct in H ,
and σ34 is the permutation of the 3d and 4th components. Now, the
category of B-modules in IndRep(St) is tautologically equivalent to
the category of C[St]⋉B-modules, in which C[St] acts via the standard
action. 5 Moreover, if B is a Hopf algebra then so is C[St] ⋉ B, and
the above equivalence of categories is a tensor equivalence.

Remark 2.6. It is easy to see that for each m, E
m
has a unique invari-

ant up to scaling, which we denote by Ω
m
. This notation is justified by

the fact that the aforementioned canonical action of this invariant on
Xλ coincides with the endomorphism Ω

m
defined in the previous sub-

section. Thus, Hom(1,C[St]) = Span({Ω
m
}) is a commutative algebra

with basis Ω
m
. It is easy to show that this algebra is the polynomial

algebra C[Z1, Z2, ...] on the generators Zj = Ωj,0,0,..., a fact exploited in
[CO].

2.7. A presentation of C[St] by generators and relations. It is
well known that the group algebra C[Sn] with generators being simple
reflections sij is a quadratic algebra. Namely, the defining relations
are:

(1) s2ij = 1, sijsjk = siksij, sijskl = sklsij,

where different subscripts denote different indices. It is easy to interpo-
late this presentation to the case of complex rank, which would yield an
inhomogeneous quadratic presentation of the algebra C[St], generated
by E = E1,0,0,... = ∆S2

2,t, valid at least for transcendental t.
One may consider the filtration on C[St] defined by the condition

that deg(E) = 1, and the associated graded algebra gr(C[St]). Simi-
larly to the case of Sn for integer n, this algebra is generated by the
same generators with defining relations being the homogenization of
the relations of C[St]. Indeed, for Sn the homogenized relations look
like

s2ij = 0, sijsjk = siksij, sijskl = sklsij,

and modulo these relations, any nonzero monomial in sij may be rewrit-
ten as si1j1...simjm, so that the function max(il, jl) strictly increases
from left to right, and there are exactly n! such ordered monomials.
This also shows that the ordered monomials are linearly independent,

5Note that the latter requirement is needed, as there are many C[St]-modules
in which the action of C[St] is different from the standard action of C[St] on the
underlying object of IndRep(St), see Subsection 2.8 below.
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and that the quadratic algebra gr(C[Sn]) is Koszul 6 (the quadratic
Gröbner basis is formed by the unordered quadratic monomials, i.e.
sijspq with max(i, j) ≥ max(p, q)). By interpolation, the same state-
ments are true for C[St], at least for transcendental t.
Also, one can show that the Hilbert series of the algebra gr(C[St]) is

h(t, x) = xt
Γ(x−1 + t)

Γ(x−1)
,

where the function on the right should be replaced by its asymptotic
expansion at x → +∞. Note that formal substitution of x = 1 on the
RHS (“order of St”) gives ht(1) = Γ(1 + t), which is t! for integer t,
but this is illegitimate, as the series on the right side has zero radius of
convergence, even though the algebra gr(C[St]) is ”finitely generated”
(i.e. generated by an honest object, not just an ind-object, of Rep(St),
namely the object E). 7

2.8. Modules over C[St]. If G is a finite group then the category of
finite dimensional C[G]-modules in Rep(G) is equivalent the category
Rep(G×G) = Rep(G)⊠Rep(G). Indeed, given X, Y ∈ Rep(G), we
can take X ⊗ Y ∈ Rep(G) and introduce the action of C[G] on it by
acting on the first tensor factor, which gives the desired equivalence.
However, the category C[St]-fmod of finite dimensional C[St]-modules
is not equivalent to Rep(St)⊠ Rep(St). Indeed, C[St]-fmod contains a
nontrivial invertible object s (of order 2), which we may call the sign
representation, and which is 1 as an object of Rep(St), with the action
of E

m
defined by the map (−1)

∑
i imiε.

However, we have the following proposition.

Proposition 2.7. If t is transcendental, then the category C[St]-fmod
is equivalent to Rep(St)⊠Rep(St)⊕Rep(St)⊠Rep(St)⊗ s as a tensor
category.

Proof. Let N(λ) be a Z+-valued function on the set of all partitions
which takes finitely many nonzero values. Let X(N) = ⊕λN(λ)Xλ

be the corresponding object of Rep(St). Our job is to show that for
transcendental t, any action of C[St] on X(N) comes from an object
of Rep(St) ⊠ Rep(St) ⊕ Rep(St) ⊠ Rep(St) ⊗ s. To this end, let us
use the presentation of C[St] as a quotient of the tensor algebra TE

6I am grateful to Eric Rains for this remark.
7Note that such a thing clearly cannot happen for ordinary finitely generated

graded algebras. Indeed, if A is a graded algebra with generators x1, ..., xn of degrees
d1, ..., dn then the radius of convergence of the Hilbert series hA(x) is bounded below
by the real root of the equation

∑n

i=1
xdi = 1 (since for the free algebra with such

generators hA(t) = (1−∑n
i=1

xdi)−1.
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by the appropriate relations, introduced above. This presentation im-
plies that an action of C[St] on X(N) is determined by a morphism
ρ ∈ HomSt

(E ⊗ X(N), X(N)) satisfying certain quadratic relations.
Now observe that the space W := HomSt

(E ⊗ X(N), X(N)) is inde-
pendent of t (it has a basis given by certain diagrams in the partition
algebra). Moreover, the quadratic relations for ρ ∈ W depend poly-
nomially on t. These relations define a family of closed subvarieties Yt
in W , t ∈ C (”representation varieties”), with an action of the group
GLN = GLN (C) :=

∏
λGLN(λ)(C) by change of basis. This family is

not necessarily flat; however, since the equations of Yt are polynomial
in t with rational coeffiicients, the set of t for which Yt has a given
finite number of GLN -orbits is clearly semialgebraic, defined over Q.
So if we show that |Yt/GLN | is a certain fixed number m(N) for suf-
ficiently large integer t, it will follow that |Yt/GLN | = m(N) for any
transcendental t.
To see that |Yt/GLN | = m(N) for large integer t = n, note that, as

explained above, Yt is the variety of representations of Sn × Sn which
restrict to Xn(N) := ⊕λN(λ)πλ̃(n) (whose interpolation is X(N)) on

the diagonal subgroup (Sn)diag ⊂ Sn × Sn. This variety clearly has
finitely many orbits of GLN , which implies the statement.
It remains to show that m(N) equals the number of objects of

Rep(St) ⊠ Rep(St) ⊕ Rep(St) ⊠ Rep(St) ⊗ s which map to X(N) un-
der the forgetful functor. To this end, we will use the following (well
known) combinatorial lemma, whose proof is given in the appendix at
the end of the paper.

Lemma 2.8. For each C > 0 and k ∈ Z+ there exists N = N(C, k) ∈
Z+ such that for each n ≥ N , if V = πµ is an irreducible representation
of Sn such that dim V ≤ Cnk, then either the first row or the first
column of µ has length ≥ n− k.

Now let n be large. Our job is to classify all ways to write Xn(N)
as ⊕p

i=1Yi ⊗ Y ′
i , where Yi, Y

′
i are representations of Sn. Clearly, p ≤∑

λN(λ). Also, since dimXn(N) is a polynomial of n of some degree
k, by Lemma 2.8, for large n there are only finitely many possibilities
for Yi and Y ′

i , and there are two options: either both have ≥ n − k
boxes in the first row, or both have ≥ n− k boxes in the first column.
This implies the required statement, and completes the proof of the
proposition. �

Remark 2.9. We expect that this proposition holds for all t /∈ Z+,
but proving this would require a more refined approach.
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On the other hand, there are many infinite dimensional C[St]-modules
(i.e. based on an ind-object of Rep(St)) which are not ind-objects of
Rep(St) ⊠ Rep(St). Indeed, there are only a countable collection of
possible eigenvalues of the center of C[St] on ind-objects of Rep(St)⊠
Rep(St).
The category C[St]-mod of (possibly infinite dimensional) C[St]-modules

may be viewed as the category of “Harish-Chandra bimodules” for St

(as it is analogous to the category of Harish-Chandra bimodules for a
semisimple Lie algebra). It would be interesting to study this category
in more detail.

3. Schur-Weyl duality for Rep(St)

In this section we discuss a Schur-Weyl duality for Rep(St), which
generalizes the classical Schur-Weyl duality, and is based on the notion
of a complex power of a vector space with a distinguished vector, in
the case t /∈ Z+. Under this duality, objects of Rep(St) correspond to
objects of a parabolic category O for gln. This is discussed in much
more detail and for general t (including t ∈ Z+) in the forthcoming
paper [EA2].

3.1. Unital vector spaces.

Definition 3.1. A unital vector space is a vector space V which has
a distinguished nonzero vector 1.

It is clear that unital vector spaces form a symmetric monoidal cat-
egory under tensor product.
Let (V,1) be a unital vector space, and let V̄ := V/C1. Fix a splitting

V̄ → V , and denote its image by U ; thus, we have V = C1⊕ U . This
gives an isomorphism Aut(V,1) ∼= GL(U)⋉ U∗.
For a partition λ, let S

λ be the corresponding Schur functor on
the category of vector spaces. Define the induced representation of
Aut(V,1) given by the formula

Eλ := Ind
GL(U)⋉U∗

GL(U) S
λU,

i.e., Eλ = SU⊗S
λU , with the obvious action of GL(U), and the action

of U∗ given by differentiation in the first component. Note that the
action of the Lie algebra Lie(Aut(V,1)) = gl(U)⋉ U∗ on Eλ naturally
extends to an action of the Lie algebra gl(V ); indeed, we can write Eλ

as
Eλ = Homres

gl(U)⋉U (U(gl(V )),SλU),

where U acts on SλU by zero, and the superscript ”res” means that we
are taking the restricted space of homomorphisms with respect to the
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grading in which deg(1) = 0, deg(U) = 1 (i.e., the space spanned by
homogeneous homomorphisms). Thus, Eλ is a module for the Harish-
Chandra pair (gl(V ),Aut(V,1)).

Proposition 3.2. (i) The module Eλ is the contragredient module
M(t−|λ|, λ)∨ to the the parabolic Verma moduleM(t−|λ|, λ) over gl(V )
with highest weight (t− |λ|, λ) (integrating to the subgroup Aut(V,1)).
(ii) If t /∈ Z+, the module Eλ is irreducible, and hence is isomorphic

to the Verma module M(t− |λ|, λ).
Proof. Let u be a highest weight vector of SλU as a gl(U)-module
(clearly, it has weight λ). Then u is a highest weight vector for gl(V )
of weight (t − |λ|, λ), since Id ◦ u = tu. So we have a natural homo-
morphism M(t − |λ|, λ) → Eλ sending the highest weight vector of
M(t− |λ|, λ) to u, which implies (i).
The characters of the two modules are the same, so to prove (ii), it

suffices to show that for t /∈ Z+, the moduleM(t−|λ|, λ) is irreducible.
Assume that M(t − |λ|, λ) is reducible. Then it must contain a

singular vector of weight (t− |λ|, λ)−mα, where α is a positive root,
and m a positive integer (this follows, for instance, from the Jantzen
determinant formula for parabolic Verma modules). Then, setting N =
dimV and ρ = (N,N − 1, ..., 1), we must have

(t− |λ|, λ) + ρ−mα = sα((t− |λ|, λ) + ρ).

Since the submodule generated by the singular vector integrates to
Aut(V,1), this implies that all the coordinates of the vector

sα((t− |λ|, λ) + ρ)

except the first one form a strictly decreasing sequence. Thus, α =
e1 − ei for some i.
Now let λ be a partition with at most dimV−1 parts and n ≥ λ1+|λ|.

If the Verma moduleM(t−|λ|, λ) has a submodule with highest weight
vector of weight (t− |λ|, λ)−m(e1 − ei), then we must have

t− |λ| −m+N = λi +N − i,

i.e.,

t = |λ|+ λi +m− i.

Thus, t is an integer. Moreover, λi−1 ≥ λi +m ≥ m, so |λ| ≥ (i− 1)m,
so

t ≥ (i− 1)m+m− i = i(m− 1) ≥ 0.

So t ∈ Z+, as desired. �
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Proposition 3.3. There is a unique, up to scaling, nonzero Aut(V,1)-

homomorphism fλ,n : Sλ̃(n)V → Eλ, and this homomorphism is injec-
tive.

Proof. By Frobenius reciprocity

HomAut(V,1)(S
λ̃(n)V,Eλ) = HomGL(U)(S

λ̃(n)(U ⊕ C),SλU).

According to the branching rules for general linear groups, this space
is 1-dimensional. Thus, there is a unique, up to scaling, nonzero

Aut(V,1)-homomorphism fλ,n : Sλ̃(n)V → Eλ.
Let us show that fλ,n are injective. Assume the contrary, and let

0 6= y ∈ S
λ̃(n)V be a vector such that fλ,n(y) = 0. It is easy to show

that by applying elements of gl(U) ⋉ U∗ to y, we can map y to a

nonzero vector y′ ∈ S
λU ⊂ S

λ̃(n)V such that fλ,n(y
′) = 0. But this is a

contradiction, since fλ,n|SλU is clearly injective. �

We will normalize fλ,n so that it corresponds to the canonical element

in HomGL(U)(S
λ̃(n)(U ⊕ C),SλU).

Now consider the natural homomorphism φλ,n : Sλ̃(n)V →֒ S
λ̃(n+1)V ,

defined by setting the second argument of the natural projection

S
λ̃(n)V ⊗ V → S

λ̃(n+1)V

to be 1. It is easy to show that this homomorphism is nonzero.

Proposition 3.4. The homomorphism φλ,n is injective.

Proof. By Proposition 3.3, the homomorphisms fλ,n are compatible

with the homomorphisms φλ,n : Sλ̃(n)V →֒ Sλ̃(n+1)V , i.e. fn+1,λ◦φλ,n =
fλ,n. This implies that φλ,n are injective, as desired. �

Now let Sλ,∞V be the direct limit of Sλ̃(n)V with respect to the

inclusions φλ,n: S
λ,∞V = limn→∞ S

λ̃(n)V .

Proposition 3.5. Let V = C1 ⊕ U be a splitting. Then there is a
canonical isomorphism of the representation S

λ,∞V with the induced
representation Eλ.

This proposition shows that the representation Eλ in fact does not
depend on the splitting of V , and is functorially attached to (V,1).

Proof. By Propositions 3.3,3.4, we have an embedding fλ,∞ = limn→∞ fλ,n :
S
λ,∞V → SU ⊗ S

λU . Comparing the restrictions of both modules to
GL(U) using branching rules, we see that this embedding must be an
isomorphism. Indeed, both GL(U)-modules are multiplicity free, and
are direct sums of the irreducible modules SµU , where µ runs over
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partitions with at most dim V − 1 parts such that µi ≥ λi ≥ µi+1 for
i ≥ 1. �

3.2. Complex powers of a unital vector space. Let x be a vari-
able. If t is an arbitrary complex number, then the function xt does not
have an algebraic meaning. On the other hand, the function (1 + x)t

does: it is just the formal power series

(1 + x)t =

∞∑

m=0

t(t− 1)...(t− n + 1)

n!
xn.

Similarly, if V is a vector space, then we cannot naturally define V ⊗t

for arbitrary complex t, but we can do so if V is a unital vector space.

Definition 3.6. Let (V,1) be a unital vector space. For t /∈ Z+ define
V ⊗t to be the ind-object of the category Rep(St) given by the formula

V ⊗t = ⊕λS
λ,∞V ⊗Xλ.

This is clearly an interpolation of V ⊗n = ⊕λS
λ̃(n)V ⊗πλ̃(n) to complex

rank.
Thus we have a complex rank analog of the Schur-Weyl functor,

SWt : Rep(St)
op → IndRep(Aut(V,1)), which is given by the formula

SWt(π) = Hom(π, V ⊗t),

and SWt(Xλ) = Eλ for all partitions λ (note that this is zero if λ has
more than dimV − 1 parts).

Proposition 3.7. Assume that (V,1) is a nonnegatively graded (or
filtered) unital vector space with V [0] spanned by 1. Let the Hilbert
series of V be hV (x) = 1 + O(x). Then the Hilbert series of V ⊗t is
h(x)t.

Proof. The proof is by interpolation from integer n. �

Let grV := C1⊕ V̄ be the associated graded of the space V with
respect to its natural 2-step filtration. The object V ⊗t has a natural
ascending Z+-filtration such that gr(V ⊗t) = (grV )⊗t. Namely, for each
Young diagram µ we have an ascending filtration on S

µV , which is
induced by the filtration on V ; this filtration is compatible with the

inclusions φn,λ : Sλ̃(n)V →֒ S
λ̃(n+1)V and thus defines a filtration on

S
λ,∞V . This gives rise to a filtration on V ⊗t by taking direct sum.

Proposition 3.8. One has

grV ⊗t ∼= SV̄ ⊗ (⊕λS
λV̄ ⊗Xλ).

Proof. This follows immediately from Proposition 3.5. �
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Proposition 3.9. One has

F0V
⊗t = 1, F1V

⊗t = (V ⊗ h)/h0 = V ⊗ 1⊕ V̄ ⊗ h0.

Proof. The first statement is obvious. To prove the second statement,
note that λ = ∅ and λ = (1) are the only partitions contributing to F1

(this is easily seen by looking at the associated graded object). Now,
the contribution of λ = ∅ is V , and the contribution of h0 = X(1) is
V̄ ⊗ h0, as desired. �

Proposition 3.10. The assignment V 7→ V ⊗t is a (non-additive) sym-
metric monoidal functor from the category of unital vector spaces to
IndRep(St).

Proof. Let V,W be two unital vector spaces. For every nonnegative
integer n we have morphisms

Jn : V ⊗n ⊗W⊗n → (V ⊗W )⊗n.

and J ′
n = J−1

n . These morphisms are polynomial in n in an appropriate
sense, hence they interpolate to morphisms J : V ⊗t⊗W⊗t → (V ⊗W )⊗t

and J ′ : (V ⊗W )⊗t → V ⊗t ⊗W⊗t, such that J ◦ J ′ = 1, J ′ ◦ J = 1.
Also, J is a symmetric monoidal structure, since it is one for integer
t. �

Let ResSt

St−1
: Rep(St) → Rep(St−1) be the restriction functor.

Proposition 3.11. We have a natural isomorphism ψt : V
⊗t−1⊗V →

ResSt

St−1
V ⊗t, which commutes with the action of gl(V ).

Proof. The morphism ψt is constructed by interpolation from integer
t, and it is easy to see that it is an isomorphism (this follows from the
decomposition of V ⊗M(t−1−|λ|,λ) into irreducible gl(V )-modules). �

4. Wreath products

In this section we use the notion of a complex power of a unital
vector space to construct wreath products of complex rank (for any
associative algebra A). In the case when A is a group algebra, this was
done in a different way by Knop, [Kn1, Kn2].

4.1. Complex powers of a unital algebra. Now assume that V = A
is a unital associative algebra with unit 1. Then, by Proposition 3.10,
A⊗t is also an algebra (in IndRep(St)). This algebra interpolates the
algebra A⊗n in IndRep(Sn), whose category of modules in IndRep(Sn)
is naturally equivalent to the category of modules over the wreath prod-
uct C[Sn] ⋉ A⊗n. Thus we can think of the category of modules over
A⊗t in IndRep(St) as an interpolation to complex rank of the category
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of modules over the wreath product CSn⋉A
⊗n; it will thus be denoted

by R̂ep(St ⋉ A⊗t) (the hat is used to emphasize that the modules are
allowed to be infinite dimensional, i.e. ind-objects of Rep(St)).
Similarly to the case A = C considered above, we can define the

wreath product algebra C[St]⋉A
⊗t in IndRep(St). Namely, the Hopf al-

gebra C[St] acts naturally onA
⊗t (since A⊗t is an algebra in IndRep(St)),

so C[St]⋉A⊗t is defined just as the usual smash product from the the-
ory of Hopf actions, formed inside IndRep(St). Moreover, A⊗t-modules
is the same thing as C[St]⋉A

⊗t-modules, in which the subalgebra C[St]
acts via its canonical action (see Remark 2.5).
Note also that if A is a Hopf algebra, then so are A⊗t and C[St]⋉A

⊗t.
Hence, in this case, the category of A⊗t-modules is a tensor category
(see Remark 2.5). 8

Let us study the structure of A⊗t in more detail. Define the ordinary
algebra StA := Hom(1, A⊗t) (in the category of vector spaces).

Proposition 4.1. For t /∈ Z+ the algebra StA := Hom(1, A⊗t) is
naturally isomorphic to U(A)/(1 = t), where U(A) is the universal
enveloping algebra of A regarded as a Lie algebra.

Proof. We have a natural linear map A → StA →֒ A⊗t given as the
composition A → A ⊗ h → F1A

⊗t, where the first map is 1 ⊗ ι, ι
being the unit map of the algebra h, and the second map is the map
of Proposition 3.9. It is easy to check that this map is a Lie algebra
homomorphism, such that 1 → t, so it gives rise to a homomorphism
of associative algebras ζt : U(A)/(1− t) → StA. This homomorphism
interpolates the natural homomorphism ζn : U(A)/(1 = n) → SnA for
nonnegative integer n, given by

a→ a1 + ... + an, a ∈ A,

where ai = 1⊗i−1 ⊗ a⊗ 1n−i ∈ A⊗n.
To check that ζt is an isomorphism for t /∈ Z+, consider the filtration

inn A defined by F0A = C1, F1(A) = A. Then gr(A) is the commu-
tative algebra C1⊕ U , where U = A/C1, and the product of any two
elements of U is zero. The filtration F extends naturally to U(A) and to
StA, and is preserved by the map ζt. Thus, it suffices to check that grζt
is an isomorphism. We have gr(U(A)/(1− t)) ∼= Sgr(A)/(1− t) ∼= SU ,
and by the results of the previous section, gr(StA) ∼= Stgr(A) ∼= SU .

8Note that this is slight abuse of terminology, since in this category, only finite
dimensional objects (i.e., those which are honest objects of Rep(St), rather than
ind-objects) are rigid.
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After these identifications, it is easy to see that gr(ζt) becomes the
identity map. This implies the statement.9 �

Corollary 4.2. Let M be a left A⊗t-module in IndRep(St). Let π ∈
Rep(St). Then Hom(π,M) is naturally a representation of the Lie
algebra A with 1 acting by multiplicaton by t.

Proof. This follows immediately from Proposition 4.1, since Hom(1, A⊗t)
acts on Hom(π,M) for any π. �

Now we would like to describe the algebra A⊗t by generators and
relations. In the classical case, the tensor power algebra A⊗n can
be presented as follows. The generators are A ⊗ C

n (spanned by
a1, ..., an, a ∈ A), and the defining relations are:

(2) 1i = 1j, i 6= j; aibi = (ab)i; aibj = bjai, i 6= j, for a, b ∈ A.

By analogy, in the complex rank case, as generators we will take F1A
⊗t,

which, by Proposition 3.9, is A⊗h/h0. More precisely, we will use A⊗h

as generators, and include h0 = C·1⊗h0 ⊂ A⊗h in the ideal of relations,
which incorporates the first relation in (2).
There are two other relations among the generators in A⊗ h, which

interpolate the second and the third relation in (2), respectively. To
write them, let m : h⊗h → h be the natural commutative product, and
m∗ : h → h⊗h be the dual map to m. Also let µA be the multiplication
in A, and [, ]A the commutator in A. The first relation is the image of
the morphism ξ : A⊗A⊗ h → (A⊗ h)⊕ (A⊗ h)⊗2 given by

ξ = µA ⊗ Id− Id⊗ Id⊗m∗.

The second relation is the image of the morphism η : A⊗ h⊗A⊗ h →
(A⊗ h)⊕ (A⊗ h)⊗2 given by the formula

η = Id− σ13σ24 − ([, ]A ⊗m) ◦ σ23,
where σij denotes the permutation of the i-th and the j-th factor.

Proposition 4.3. The algebra A⊗t is the quotient of T (A⊗ h) by the
ideal I generated by h0 ⊂ A⊗ h, Imξ, and Imη.

Proof. It is easy to see that we have a natural homomorphism

θA : T (A⊗ h)/I → A⊗t

(interpolating the case of integer t). This homomorphism preserves
natural filtrations, and gr(θA) = θgrA, where grA = C1⊕A, A := A/C1,

9The fact that ζt is an isomorphism for generic t also follows from the fact that
ζn is surjective for each n, and asymptotically injective when n → ∞ (i.e., injective
in any fixed filtration degree for sufficiently large n).
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with multiplication on A being zero. It is easy to check that θgrA is an
isomorphism, which implies that so is θA. �

Remark 4.4. In a similar way, one can define the algebra C[St]⋉A⊗t

inside IndRep(St) by generators and relations. Namely, in the classical
setting, combining relations (1) and (2), we see that the algebra C[Sn]⋉
A⊗n is generated by ai, a ∈ A, and sij , with the relations

s2ij = 1, sijsjk = siksij, sijskl = sklsij,

1i = 1j , i 6= j; aibi = (ab)i; aibj = bjai, i 6= j, for a, b ∈ A,

sijai = ajsij,

where different subscripts represent different indices. These relations
are easy to interpolate to complex rank, similarly to how one does it
for (1) and (2) separately, and one defines the algebra C[St] ⋉ A⊗t as
the quotient of T (E ⊕ A⊗ h) by the interpolation of these relations.

Remark 4.5. Proposition 4.3 provides a construction of the complex
tensor power V ⊗t for V = C1⊕ U , which does not use representation
theory of gl(V ). Namely, define a unital algebra structure on V by
declaring 1 a unit and setting u1u2 = 0 for u1, u2 ∈ U . Then we can
define V ⊗t to be the algebra defined by the presentation of Proposition
4.3.

Remark 4.6. It is easy to see that if V is an A-module then V ⊗t is
naturally an A⊗t-module (even if C1 ⊂ V is not fixed by A). Namely,
the action of the generators A⊗ h on V ⊗t is obtained by interpolating
from integer t. Thus for every A-module V we get a moduleMt(V, v) :=
V ⊗t (with distinguished vector v) over A⊗t for any choice of a nonzero
vector 1 = v ∈ V (clearly, this vector matters only up to scaling). In
particular, by taking invariants, it defines a module Hom(1,Mt(V, v)) =
StV over the Lie algebra A with 1 acting by multiplication by t. For
example, as explained in the previous section, if A = EndV and V
is finite dimensional, then Hom(1,Mt(V, v)) is the parabolic Verma
module over EndV = gl(V ) with highest weight (t, 0, 0, ...) integrable
to Aut(V, v). Note that this module depends in an essential way on the
choice of the line in V generated by v (and hence so does Mt(V, v)).

4.2. Knop’s category Rep(St ⋉ Γt). Let Γ be a finite group. Recall
that the irreducible representations of the wreath product Sn ⋉ Γn are
labeled by maps

λ : IrrepΓ → Partitions,
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V → λV , such that
∑

V |λV | = n. Namely, the representation corre-
sponding to λ is

πλ = IndSn⋉Γn
∏

V S|λV |⋉Γn

⊗

V

(πλV
⊗ V ⊗|λV |).

By analogy with Deligne’s construction, F. Knop constructed a Karoubian
tensor category Rep(St⋉Γt) for complex t, interpolating the categories
Rep(Sn⋉Γn) ([Kn2]). More precisely, if t is a nonnegative integer, then
the category Rep(St ⋉ Γt) projects onto the category Rep(Sn ⋉ Γn).
The indecomposable objects Xλ of Rep(St ⋉ Γt) are labeled by all

maps

λ : IrrepΓ → Partitions,

V → λV . Similarly the case of Γ = 1, the objects Xλ interpolate

the representations πλ̃(n), where
∑

V λ̃(n)V = n, and λ̃(n)V = λV for

V 6= C, while

λ̃(n)C = (n− |λ|, (λC)1, (λC)2, ...).
It is easy to check that the tensor category Rep(St ⋉ Γt) is a full

subcategory of the category of modules over the Hopf algebra C[Γ]⊗t.

Remark 4.7. For any tensor category C, M. Mori in [Mo] defined a
new tensor category St(C) , such that if C = Rep(Γ) then St(C) =
Rep(St ⋉Γt). If C = H-fmod (finite dimensional modules), where H is
a Hopf algebra then St(C) is a full subcategory of H⊗t-mod.

4.3. The central elements for wreath products. Every conjugacy
class of the wreath product Sn ⋉ Γn gives rise to a central element in
its group algebra (the sum of all elements in the conjugacy class). For
the class of transpositions, we will denote this central element just by
Ω. For the class defined by a nontrivial conjugacy class C ⊂ Γ, we’ll
denote the central element by ΩC .
Similarly to the case of Sn, the elements Ω and ΩC can be interpo-

lated to complex t (to define endomorphisms of the identity functor of
Rep(St ⋉ Γt)). If t /∈ Z+, this can be done directly by interpolation
from large integer n. Namely, it is easy to check that Ω and ΩC act on
πλ̃(n) by scalars which are polynomials in n, so we can define them for

t /∈ Z+ on Xλ by substituting t instead of n into these polynomials.

5. Interpolation of degenerate affine Hecke algebras

and symplectic reflection algebras

5.1. Interpolation of degenerate affine Hecke algebras of type

A. Let h = h0⊕C be the permutation representation of the symmetric
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group Sn, n ≥ 1. Let Σ be the set of reflections (i.e., transpositions) in
Sn.
Recall ([Dr]) that the degenerate affine Hecke algebra (dAHA)Hk(n)

of type A (for k ∈ C) is the quotient of C[Sn]⋉ Th by the relations

[y, y′] = k
∑

s,s′∈Σ

(sy, s′y′)h[s, s
′], y, y′ ∈ h.

where (, )h is the natural inner product on h.
This implies that modules over Hk(n) can be described categorically

as follows.

Proposition 5.1. An Hk(n)-module is the same thing as an Sn-module
M equipped with an Sn-morphism

y : h⊗M →M,

such that the morphism

y ◦ (1⊗ y) ◦ ((1− σ)⊗ 1) : h⊗ h⊗M →M,

(where σ is the permutation of components) equals

k((, )h ⊗ 1) ◦ [Ω13,Ω23],

where Ωij is the Jucys-Murphy morphism Ω acting in the tensor product
of the i-th and the j-th factor.

The object h (the permutation representation) is defined in the cat-
egory Rep(St) for any t, and has a natural symmetric pairing (, )h :
h⊗ h → 1. Therefore, Proposition 5.1 allows us to define the interpo-
lation of the category of modules over Hk(n). Namely, we make the
following

Definition 5.2. Let t ∈ C. An object of the category R̂ep(Hk(t)) is
an ind-object of Deligne’s category Rep(St) equipped with a morphism

y : h⊗M →M,

such that the morphism

y ◦ (1⊗ y) ◦ ((1− σ)⊗ 1) : h⊗ h⊗M →M,

equals
k((, )h ⊗ 1) ◦ [Ω13,Ω23].

Morphisms in R̂ep(Hk(t)) are morphisms in IndRep(St) which respect
y.

Remark 5.3. Note that similarly to the classical case, k can be rescaled
without changing the category (so it can be made 0 or 1).
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Remark 5.4. Alternatively, we can define the algebraHk(t) in Rep(St)
to be the quotient of C[St] ⋉ Th by the interpolation of the defining

relation of Hk(n). Then the category R̂ep(Hk(t)) may be defined as
the category of modules over Hk(t) in Rep(St) in which C[St] acts by
the canonical action. A similar remark applies to the examples below
(degenerate AHA of type B and wreath product symplectic reflection
algebras, in particular, rational Cherednik algebras).

Remark 5.5. The category Rep(Hk(t)) has been studied in more detail
in the paper [M].

5.2. Interpolation of degenerate affine Hecke algebras of type

B. Let h be the reflection representation of the Weyl group Sn ⋉ Z
n
2

of type Bn. Let Σ be the set of reflections in this group conjugate
to a transposition in Sn, and Σ−1 the set of reflections conjugate to
(−1, 1, ..., 1). Recall (see e.g. [RS]) that the dAHA Hk1,k2(n) of type
Bn is the quotient of C[Sn ⋉ Z

n
2 ]⋉ Th by the relations

[y, y′] = k1
∑

s,s′∈Σ

(sy, s′y′)h[s, s
′] + k2

∑

s∈Σ,s′∈Σ−1

(sy, s′y′)h[s, s
′],

where (, )h is the natural inner product on h.
The object h is defined in the category Rep(St ⋉ Z

t
2) for any t, and

has a natural symmetric pairing (, )h : h⊗ h → 1. Therefore, similarly
to the type A case, we can define the interpolation of the category of
modules over Hk1,k2(n). Namely, we make the following

Definition 5.6. Let t ∈ C. An object of the category R̂ep(Hk1,k2(t))
is an ind-object of Knop’s category Rep(St⋉Z

t
2) equipped with a mor-

phism

y : h⊗M →M,

such that the morphism

y ◦ (1⊗ y) ◦ ((1− σ)⊗ 1) : h⊗ h⊗M →M,

equals

((, )h ⊗ 1) ◦ (k1[Ω13,Ω23] + k2[Ω
13,Ω23

−1]).

Morphisms in R̂ep(Hk1,k2(t)) are morphisms in IndRep(St ⋉ Z
t
2) which

respect y.

Remark 5.7. Note that similarly to the classical case, (k1, k2) can be
rescaled without changing the category.
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5.3. Interpolation of symplectic reflection algebras for wreath

products. Let Γ ⊂ SL2(C) be a finite subgroup. Let ~, k ∈ C, and
fix complex numbers cC , for nontrivial conjugacy classes C ⊂ Γ. Also
denote by TC the half-trace of an element γ ∈ C in the tautological
representation: TC = 1

2
Tr|C2γ.

Let V = (C2)n be the tautological representation of the wreath prod-
uct Sn⋉Γn. This representation has a natural symplectic pairing ω(, ).
Let Σ be the set of elements conjugate in Sn ⋉ Γn to transpositions,
and ΣC the set of elements of Sn ⋉ Γn conjugate to elements of the
form (γ, 1, 1, ..., 1), γ ∈ C where C is a nontrivial conjugacy class in Γ.
Recall ([EG, EGG]) that the symplectic reflection algebraH~,k,c(Γ, n)

is the quotient of C[Sn ⋉ Γn]⋉ TV by the relations

[y, y′] = ~ω(y, y′)−k
∑

s∈Σ

ω(y, (1−s)y′)s−
∑

C

cC
1− TC

∑

s∈ΣC

ω((1−s)y, (1−s)y′)s.

The object V is defined in the category Rep(St ⋉ Γt) for any t, and
has a natural symplectic pairing ω : V ⊗ V → 1. Therefore, we can
define the interpolation of the category of modules over H~,k,c(Γ, n).
Namely, we make the following

Definition 5.8. Let t ∈ C. An object of the category R̂ep(H~,k,c(Γ, t))
is an ind-object of Knop’s category Rep(St⋉Γt) equipped with a mor-
phism

y : V ⊗M → M,

such that the morphism

y ◦ (1⊗ y) ◦ ((1− σ)⊗ 1) : V ⊗ V ⊗M → M,

equals

(ω ⊗ 1) ◦ (~− k(Ω3 − Ω23)−
∑

C

cC
1− TC

(Ω3
C − Ω13

C − Ω23
C + Ω123

C )).

Morphisms in R̂ep(H~,k,c(Γ, n)) are morphisms in IndRep(St⋉Γt) which
respect y.

Remark 5.9. Note that similarly to the classical case, (~, k, c) can be
rescaled without changing the category.

5.4. Interpolation of rational Cherednik algebras of type A. It
is instructive to consider separately the simplest special case Γ = 1, i.e.,
that of the rational Cherednik algebra of type A. In this case, there is
no classes C, V = h⊕ h∗ and the definition is simplified.10 Namely, we
have

10To avoid confusion, we do not identify h and h∗ here.
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Definition 5.10. An object of the category R̂ep(H~,c(t)) is an ind-
object of Deligne’s category Rep(St) equipped with two morphisms

x : h∗ ⊗M →M, y : h⊗M →M,

satisfying the following conditions:
(i) The morphism

x ◦ (1⊗ x) ◦ ((1− σ)⊗ 1) : h∗ ⊗ h∗ ⊗M →M

is zero;
(ii) The morphism

y ◦ (1⊗ y) ◦ ((1− σ)⊗ 1) : h⊗ h⊗M → M

is zero;
(iii) The morphism

y ◦ (1⊗ x)− x ◦ (1⊗ y) ◦ (σ ⊗ 1) : h⊗ h∗ ⊗M →M,

when regarded as an endomorphism of h∗ ⊗M , equals

~− c(Ω2 − Ω12).

Morphisms in this category are morphisms of the underlying ind-objects
of Rep(St) respecting x, y.

Remark 5.11. The category R̂ep(H1,c(t)) is studied in much more
detail in the paper [EA1].

6. Appendix: Proof of Lemma 2.8

Let µ be a Young diagram with |µ| = n, such that dim πµ ≤ Cnk,
and d be the length of its first row. For 1 ≤ i ≤ d, let ci be the length
of the d− i+ 1-th column of µ. Let µ′ be obtained from µ by deleting
the first row. Then by the hooklength formula,

dim πµ = dim πµ′

(
n

d

) d∏

i=1

(
1 +

ci − 1

i

)−1

.

Since
∑
ci = n, by the arithmetic and geometric mean inequality (as

in the proof of Claim 1 in Section 3.2.1 of [EFP]), we have

d∏

i=1

(
1 +

ci − 1

i

)
≤

d∏

i=1

ci ≤
(∑d

i=1 ci
d

)d

=
(n
d

)d
,

so we get

dim πµ ≥
(
n

d

)(n
d

)−d

.
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The same bound holds if d is the length of the first column. Hence, it
holds if d is the maximum of the lengths of the first row and the first
column of µ, which we assume from now on.
Our job is to show that for large enough n, one must have n−d ≤ K

for some fixed K. Then it will follow from the hooklength formula that
we actually have d ≥ n− k for large n.
Since dim πµ ≤ Cnk, taking logs, we get the inequality

log

(
n

d

)
− d log

(n
d

)
≤ k logn + logC.

Let us divide this inequality by n, and use Stirling’s formula. Setting
x = 1− d/n, after a short calculation we obtain

(3) x log
1

x
= O

(
(k + 1/2) logn

n

)
.

But we know that d ≥ √
n (as µ fits in the d by d square). Hence,

x ≤ 1 − n−1/2. Formula (3) therefore implies that for large n, x must
actually be close to 0. But then we must have x = O(1/n), i.e. n−d =
xn is bounded, as desired.
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