
Array Operators Using Multiple Dispatch

Array Operators Using Multiple Dispatch
A design methodology for array implementations in dynamic languages

Jeff Bezanson Jiahao Chen Stefan Karpinski Viral Shah Alan Edelman
MIT Computer Science and Artificial Intelligence Laboratory

bezanson@mit.edu, jiahao@mit.edu, stefan@karpinski.org, viral@mayin.org, edelman@mit.edu

Abstract
Arrays are such a rich and fundamental data type that they tend to
be built into a language, either in the compiler or in a large low-
level library. Defining this functionality at the user level instead
provides greater flexibility for application domains not envisioned
by the language designer. Only a few languages, such as C++ and
Haskell, provide the necessary power to define n-dimensional ar-
rays, but these systems rely on compile-time abstraction, sacrificing
some flexibility. In contrast, dynamic languages make it straightfor-
ward for the user to define any behavior they might want, but at the
possible expense of performance.

As part of the Julia language project, we have developed an ap-
proach that yields a novel trade-off between flexibility and compile-
time analysis. The core abstraction we use is multiple dispatch. We
have come to believe that while multiple dispatch has not been es-
pecially popular in most kinds of programming, technical comput-
ing is its killer application. By expressing key functions such as
array indexing using multi-method signatures, a surprising range
of behaviors can be obtained, in a way that is both relatively easy
to write and amenable to compiler analysis. The compact factoring
of concerns provided by these methods makes it easier for user-
defined types to behave consistently with types in the standard li-
brary.

Keywords Julia, multiple dispatch, type inference, array indexing,
static analysis, dynamic dispatch

1. Array libraries
“Unfortunately, it is very difficult for a designer to se-

lect in advance all the abstractions which the users of his
language might need. If a language is to be used at all, it is
likely to be used to solve problems which its designer did
not envision, and for which abstractions embedded in the
language are not sufficient.” - Ref. [22]

n-arrays (arrays of rank n, or simply arrays) are an essential
data structure for technical computing, but are challenging to im-
plement efficiently [24, 26, 27]. There is a long history of special-
purpose compiler optimizations to make operations over arrays ef-

[Copyright notice will appear here once ’preprint’ option is removed.]

ficient, such as loop fusion for array traversals and common subex-
pression elimination for indexing operations [3, 24]. Many lan-
guage implementations therefore choose to build array semantics
into compilers.

Only a few of the languages that support n-arrays, however,
have sufficient power to express the semantics of n-arrays for
general rank n without resorting to hard-coding array behav-
ior into a compiler. Single Assignment C [10] is a notable lan-
guage with built-in n-array support. Other languages have well-
established array libraries, like the C++ libraries Blitz++ [30]
and Boost.MultiArray [9] and Haskell’s Repa (Regular Parallel
Arrays) [15, 20, 21]. These libraries leverage the static semantics
of their host languages to define n-arrays inductively as the outer
product of a 1-array with an (n−1)-array [1]. Array libraries typi-
cally handle dimensions recursively, one at a time; knowing array
ranks at compile-time allows the compiler to infer the amount of
storage needed for the shape information, and unroll index compu-
tations fully.

1.1 Static tradeoffs
Array libraries built using compile-time abstraction have good per-
formance, but also some limitations. First, language features like
C++ templates are not available at run-time, so these libraries do
not support n-arrays where n is known only at run-time. Second,
code using these features is notoriously difficult to read and write;
it is effectively written in a separate sublanguage. Third, the re-
cursive strategy for defining n-arrays naturally favors only certain
indexing behaviors. For example, Repa’s reductions like sum are
only defined naturally over the last index [15]; reducing over a dif-
ferent index requires permutations. However, it is worth noting that
Haskell’s type system encourages elegant factoring of abstractions.
While the syntax may be unfamiliar, we feel that Repa ought to
hold much interest for the technical computing community.

Some applications call for semantics that are not amenable to
static analysis. Some may require arrays whose ranks are known
only at run-time, e.g. when reading in arrays from disk or from a
data stream where the rank is specified as part of the input data. In
these programs, the data structures cannot be guaranteed to fit in
a constant amount of memory. Others may wish to dynamically
dispatch on the rank of an array, a need which a library must
anticipate by providing appropriate virtual methods.

1.2 Dynamic language approaches
Applications requiring run-time flexibility are better expressed
in dynamic languages such as Mathematica, MATLAB, R, and
Python/NumPy, where all operations are dynamically dispatched
(at least semantically, if not in actual implementation). Such flexi-
bility, however, has traditionally come at the price of slower execu-
tion. To improve performance, dynamic languages typically resort
to static analysis at some level. One strategy is to implement ar-

Array Operators Using Multiple Dispatch 1 2014/7/16

ar
X

iv
:1

40
7.

38
45

v1
 [

cs
.P

L
]

 1
4

Ju
l 2

01
4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78058182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

language design analysis design

language design analysis design

Figure 1. Above: most dynamic languages are designed without
consideration for program analysis, leaving it to future compiler
writers if the language becomes sufficiently popular. Below: Julia is
designed with analysis in mind, with a single community responsi-
ble for both language design and performant implementation. This
approach is natural for statically typed languages, but dynamic lan-
guages need static analysis too.

rays in an external library written in a static language. The Python
NumPy package is a prominent example, implementing array op-
erations as well as its own type system and internal abstraction
mechanisms within a large C code base [29]. As a result, NumPy
ndarrays are superficially Python objects, but implementation-
wise are disjoint from the rest of the Python object system, since
little of Python’s native object semantics is used to define their
behavior.

Another approach is to implement static analyses de novo for
dynamic languages. However, the flexibility of these languages’
programs limits the extent of analysis in practice. For example,
MATLAB’s array semantics allow an array to be enlarged auto-
matically whenever a write occurs to an out-of-bounds index, and
also for certain operations to automatically promote the element
type of an array from real to complex numbers. This poses imple-
mentation challenges for static MATLAB compilers like FALCON,
which have to implement a complete type system with multiple
compiler passes and interprocedural flow analyses to check for such
drastic changes to arrays [18, 25]. In fact, MATLAB’s (and APL’s)
semantics are so flexible that shape inference on arrays is impos-
sible to compute using ordinary dataflow analysis on bounded lat-
tices [13]. Additionally, type checking is essential to disambiguate
MATLAB expressions like A*B, which, depending on the dimen-
sions of A and B, could represent a scaling, inner product, outer
product, matrix-matrix multiplication, or matrix-vector multiplica-
tion [25]. Similar work has been done for other dynamic languages,
as in Hack, a PHP implementation with a full static type system
[31].

The conflicting requirements of performance and flexibility
pose a dilemma for language designers and implementers. Most
current languages choose either to support only programs that are
amenable to static analysis for the sake of performance, like C++
and Haskell, or choose to support more general classes of pro-
grams, like MATLAB, Mathematica, and Python/NumPy. While
dynamic languages nominally give up static analysis in the process,
many implementations of these languages still resort to static anal-
ysis in practice, either by hard-coding array semantics post hoc in a
compiler, or by implementing arrays in an external library written
in a static language.

2. Julia arrays
Julia[2] is dynamically typed and is based on dynamic multiple dis-
patch. However, the language and its standard library have been
designed to take advantage of the possibility of static analysis (Fig-

ure 1), especially dataflow type inference [5, 14]. Such type in-
ference, when combined with multiple dispatch, allows users and
library writers to produce a rich array of specialized methods to
handle different cases performantly. In this section we describe
how this language feature is used to implement indexing for Julia’s
Array data type. The Array type is parameterized by an element
type and a rank (an integer). For purposes of this paper, its repre-
sentation can be considered a tuple of a contiguous memory region
and a shape (a tuple of integers giving the size of the array in each
dimension). This simple representation is already enough to require
nontrivial design decisions.

2.1 Array indexing rules
Rules must be defined for how various operators act on array
dimensions. Here we will focus on indexing, since selecting parts of
arrays has particularly rich behavior with respect to dimensionality.
For example, if a single row or column of a matrix is selected,
does the result have one or two dimensions? Array implementations
prefer to invoke general rules to answer such questions. Such a
rule might say “dimensions indexed with scalars are dropped”, or
“trailing dimensions of size one are dropped”, or “the rank of the
result is the sum of the ranks of the indexes” (as in APL [7]).

The recursive, one-dimension-at-a-time approach favored in
static languages limits which indexing behaviors can be chosen.
For example, an indexing expression of a 3-array in C++ might
be written as A[i][j][k]. Here there are three applications of
operator[], each of which will decide whether to drop a dimen-
sion based on the type of a single index. The second rule described
above, and others like it, cannot be implemented in such a scheme.

Julia’s dispatch mechanism permits a novel approach that en-
compasses more rules, and does not require array rank to be known
statically, yet benefits when it is. This solution is still a compro-
mise among the factors outlined in the introduction, but it is a new
compromise that we find compelling.

2.2 The need for flexibility
Our goal here is a bit unusual: we are not concerned with which
rules might work best, but merely with how they can be specified,
so that domain experts can experiment.

In fact, different applications may desire different indexing be-
haviors. For example, applications employing arrays with units
or other semantic meaning associated with each dimension may
not want to have the dimensions dropped or rearranged. For ex-
ample, tomographic imaging applications may want arrays repre-
senting stacks of images as the imaging plane moves through a
three- dimensional object. The resulting array would have associ-
ated space/time dimensions on top of the dimensions indexing into
color planes. In other applications, the dimensions are not seman-
tically distinguishable and it may be desirable to drop singleton
dimensions. For example, a statistical computation may find it con-
venient to represent an n-point correlation function in an n-array,
and integrate over k points to generate the lower order (n−k)-
correlation functions; the indistinguishability of the points means
that the result is most conveniently expressed with rank (n−k)
rather than an n-array with k singleton dimensions.

In practice we may have to reach a consensus on what rules to
use, but this should not be forced by technical limitations.

2.3 Multiple dispatch in Julia
Multiple dispatch (also known as generic functions, or multi-
methods) is an object-oriented paradigm where methods are de-
fined on combinations of data types (classes), instead of encapsu-
lating methods inside classes (Figure 2). Methods are grouped into
generic functions. A generic function can be applied to several ar-

Array Operators Using Multiple Dispatch 2 2014/7/16

object

method method method method method

object

object

method method method method method

objectobject

generic function generic function

Figure 2. Class-based method dispatch (above) vs. multiple dis-
patch (below).

guments, and the method with the most specific signature matching
the arguments is invoked.

One can invent examples where multiple dispatch is useful in
classic object-oriented domains such as GUI programming. For
example, a method for drawing a label onto a button might look
like this in Julia syntax:

function draw(target::Button, obj::Label)
...

end

In numerical computing, binary operators are ubiquitous and we
can easily imagine defining special behavior for some combination
of two arguments:

+(x::Real, z::Complex) = complex(x+real(z), imag(z))

But how much more is there? Would we ever need to define
a method on three different types at once? Indeed, most language
designers and programmers seem to have concluded that multiple
dispatch might be nice, but is not essential, and the feature is not
often used [23]. Perhaps the few cases that seem to need it can be
handled using tricks like Python’s add and radd methods.

However, in technical computing the need for polymorphic,
multi-argument operators goes further. In fact we have found a need
for additional dispatch features that are not always found in multi-
method implementations. For array semantics, support for variadic
methods is perhaps the most important such feature. Combining
multiple dispatch and variadic methods seems straightforward, yet
permits surprisingly powerful definitions, and entails a surprising
amount of complexity. For example, consider a variadic sum func-
tion that adds up its arguments. We could write the following two
methods for it (note that in Julia, Real is the abstract supertype of
all real number types, and Integer is the abstract supertype of all
integer types):

sum(xs::Integer...)
sum(xs::Real...)

The syntax ... allows an argument slot to match any number
of trailing arguments (currently, Julia only allows this at the end of
a method signature). In the first case, all arguments are integers and
so we can use a naive summation algorithm. In the second case,
we know that at least one argument is not an integer (otherwise the
first method would be used), so we might want to use some form of
compensated summation instead. Notice that these modest method
signatures capture a subtle property (at least one argument is non-
integral) declaratively, without needing to explicitly loop over the
arguments to examine their types. The signatures also provide use-
ful type information: at the very least, a compiler could know that
all argument values inside the first method are of type Integer. Yet

the type annotations are not redundant, but are necessary to specify
the desired behavior. There is also no loss of flexibility, since sum
can be called with any combination of number types, as users of
dynamic technical computing languages would expect.

While the author of these definitions does not write a loop to
examine argument types, such a loop of course still must take place
somewhere inside the dispatch system. Such a complex dispatch
system is naturally at risk of performing badly. However, Julia
pervasively applies dataflow type inference, so that argument types
are often known in advance, in turn allowing method lookup to be
done at compile-time. Technically this is just an optimization, but
in practice it has a profound impact on how code is written.

2.4 Argument tuple transformations for indexing
Multiple dispatch appears at first to be about operator overloading:
defining the behavior of functions on new, user-defined types. But
the fact that the compiler “knows” the types of function arguments
leads to a surprising, different application: performing elaborate,
declarative transformations of argument tuples.

Determining the result shape of an indexing operation is just
such a transformation. In Julia’s standard library, we have a func-
tion index shape that accepts index arguments (which, for present
purposes, may be scalars or arrays of any rank), and returns the
shape (a tuple of integers) of the result. The length of the shape
determines the rank of the result array. Many different behaviors
are possible, but currently we use the rule that trailing dimensions
indexed with scalars are dropped.1 For example:

A[1:m, 1:n, 2] # rank 2
A[1:m, 2, 1:n] # rank 3
A[1:m, 2, 1:n, 1] # rank 3

The following two method definitions express this behavior:

drop trailing dimensions indexed with scalars
index_shape(i::Real...) = ()
index_shape(i, I...) = tuple(length(i),

index_shape(I...)...)

(The ... ellipsis syntax within an expression, on the right-hand
side of a definition, performs “argument splicing”: the elements of a
container are spread into multiple arguments to the called function.
Formal arguments that lack a :: type specializer match any value.)
The first definition traps and collapses runs of Real arguments of
any length. The second definition ensures that the first definition
only applies to the tail of an argument tuple, by keeping indexes as
long as some non-scalar arguments remain.

Since all indexing functions call this function, changing these
two lines is sufficient to change how indexing works. For example,
another rule one might want is to drop all dimensions indexed with
scalars:

drop dimensions indexed with scalars
index_shape() = ()
index_shape(i::Real, I...) = index_shape(I...)
index_shape(i, I...) = tuple(length(i),

index_shape(I...)...)

Or we could imitate APL’s behavior, where the rank of the result
is the sum of the ranks of the indexes, as follows:

rank summing (APL)
index_shape() = ()
index_shape(i, I...) = tuple(size(i)...,

index_shape(I...)...)

1 This rule has been the subject of some debate in the Julia community [11].
Fortunately it is easy to change, as we will see.

Array Operators Using Multiple Dispatch 3 2014/7/16

Here size (as opposed to length) gives the shape tuple of an
array, so we are just concatenating shapes.

2.5 Exploiting dataflow type inference
Julia’s multi-methods were designed with the idea that dataflow
type inference would be applied to almost all concrete instances of
methods, based on run-time argument types or compile-time esti-
mated argument types. Our definitions exploit the dataflow oper-
ation of matching inferred argument types against method signa-
tures, thereby destructuring and recurring through argument tuples
at compile-time. As a result, the compiler is able to infer sharp
result types for many variadic calls, and optimize away argument
splicing that would otherwise be prohibitively expensive. More so-
phisticated method signatures lead to more sophisticated type de-
ductions.

Tuple types (or product types) are crucial to this analysis. Since
the type of each element of a tuple is tracked, it is possible to
deduce that the type of f(x...), where x has tuple type (A,B),
is equal to the type of f applied to arguments of types A and
B. Variadic methods introduce unbounded tuple types, written as
(T...). Unbounded tuple types form a lattice of infinite height,
since new subtypes can always be constructed in the sequence
(T...), (T,T...), (T,T,T...), etc. This adds significant com-
plexity to our lattice operators.

2.6 Similarities to symbolic pattern matching
Julia’s multi-methods resemble symbolic pattern matching, such
as those in computer algebra systems. Pattern matching systems
effectively allow dispatch on the full structure of values, and so
are in some sense even more powerful than our generic functions.
However, they lack a clear separation between the type and value
domains, leading to performance opacity: it is not clear what the
system will be able to optimize effectively and what it won’t.
Such a separation could be addressed by designating some class
of patterns as the “types” that the compiler will analyze. However,
more traditional type systems could be seen as doing this already,
while also gaining data abstraction in the bargain.

2.7 Implications for Julia programmers
In many array languages, a function like index shape would be
implemented inside the run-time system (possibly scattered among
many functions), and separately embodied in a hand-written trans-
fer function inside the compiler. Our design shows that such ar-
rangements can be replaced by a combination of high-level code
and a generic analysis. Similar conclusions on the value of incor-
porating analyzed library code into a compiler were drawn by the
Telescoping Languages project [16]. Yet other languages like Sin-
gle Assignment C allow great flexibility in user-defined functions
but require the built-in shape functions to be implemented with spe-
cial purpose type functions [10, 28].

From the programmer’s perspective, Julia’s multi-methods are
convenient because they provide run-time and compile-time ab-
straction in a single mechanism. Julia’s “object” system is also
its “template” system, without different syntax or reasoning about
binding time. Semantically, methods always dispatch on run-time
types, so the same definitions are applicable whether types are
known statically or not. This makes it possible to use popular dy-
namic constructs such as A[I...]where I is a heterogeneous array
of indexes. In such a case the compiler will need to generate a dy-
namic dispatch, but only the performance of the call site is affected.

One price of this flexibility is that not all such definitions are
well-founded: it is possible to write methods that yield tuples of in-
determinate length. The compiler must recognize this condition and
apply widening operators [5, 6]. In these cases, the deduced types
are still correct but imprecise, and in a way that depends on some-

Language DR CR DoS
Gwydion 1.74 18.27 2.14
OpenDylan 2.51 43.84 1.23
CMUCL 2.03 6.34 1.17
SBCL 2.37 26.57 1.11
McCLIM 2.32 15.43 1.17
Vortex 2.33 63.30 1.06
Whirlwind 2.07 31.65 0.71
NiceC 1.36 3.46 0.33
LocStack 1.50 8.92 1.02
Julia 5.86 51.44 1.54
Julia operators 28.13 78.06 2.01

Table 1. Comparison of Julia (1208 functions exported from the
Base library) to other languages with multiple dispatch. The “Julia
operators” row describes 47 functions with special syntax (binary
operators, indexing, and concatenation). Data for other systems are
from Ref. [23].

what arbitrary choices of widening operators (for example, such a
type might look like (Int...) or (Int,Int...)). Nevertheless,
we believe that the flexibility of Julia’s multi-methods is of net ben-
efit to programmers.

3. Discussion
Multiple dispatch is used heavily throughout the Julia ecosystem.
To quantify this statement, we use the following metrics for evalu-
ating the extent of multiple dispatch [23]:

1. Dispatch ratio (DR): The average number of methods in a
generic function.

2. Choice ratio (CR): For each method, the total number of meth-
ods over all generic functions it belongs to, averaged over all
methods. This is essentially the sum of the squares of the num-
ber of methods in each generic function, divided by the total
number of methods. The intent of this statistic is to give more
weight to functions with a large number of methods.

3. Degree of specialization (DoS): The average number of type-
specialized arguments per method.

Table 3 shows the mean of each metric over the entire Julia
Base library, showing a high degree of multiple dispatch compared
with corpora in other languages [23]. Compared to most multiple
dispatch systems, Julia functions tend to have a large number of
definitions. To see why this might be, it helps to compare results
from a biased sample of only operators. These functions are the
most obvious candidates for multiple dispatch, and as a result
their statistics climb dramatically. Julia is focused on technical
computing, and so is likely to have a large proportion of functions
with this character.

3.1 Other applications
To give a better sense of how multi-methods are or could be used
in our domain, we will briefly describe a few examples.

3.1.1 Array views
In certain instances of array indexing, it is possible to keep the data
in place and return just a view (pointer) to the data instead of copy-
ing it. This functionality is implemented in a Julia package called
ArrayViews.jl[19]. A crucial property of an array view is its
contiguous rank: the number of leading dimensions for which the
strides equal the cumulative product of the shape. When a view is

Array Operators Using Multiple Dispatch 4 2014/7/16

constructed of another view, the type of view constructed depends
on the indexes used and the contiguous rank of the argument. In
favorable cases, a more efficient ContiguousView is returned.

This determination is made by a definition similar to the follow-
ing:

function view(a::DenseArray, I::Subs...)
shp = vshape(a, I...)
make_view(a, restrict_crank(contrank(a, I...), shp),

shp, I...)
end

contrank essentially counts the number of leading “colons”
in the indexing expression. make view selects (via dispatch) what
kind of view to return based on the result type of restrict crank,
which is set up to return the smaller of its two argument shapes.
This is an excellent example of a library that needs to define
behaviors actually exceeding the complexity of what is provided
in the standard library.

3.1.2 Distributed arrays
Other classes of array indexing rules are needed in distributed
array implementations. The Star-P system [4, 12] let users “tag”
dimensions as potentially distributed using the notation *p, which
constructed a special type of object tracked by the system. Indexing
leads to questions of whether to take the first instance of *p as
the distributed dimension, the last instance, or perhaps just the last
dimension.

Such distribution rules could be implemented and experi-
mented with readily using an approach similar to that used for
index shape.

3.1.3 Unit quantities
A package providing unitful computations (SIUnits.jl[8]) makes
use of the same kinds of tradeoffs as array semantics. Unitful com-
putations are another case where the relevent metadata (exponents
on units) can be known at compile-time in many cases, but not
always. The SIUnits library is free to express the general case,
and have the overhead of tagging and dispatching removed where
possible.

The method signatures of operators on unit quantities ensure
that they only apply to arguments with the same units. Because of
this design, if an operator is applied to two arguments where the
units are only statically known for one, the compiler can infer that
the other must have the same units for the operation to succeed.
Another implication is that mismatched units can be handled with
a 1-line fallback definition that simply raises an informative error.

3.2 Performance
In this work, we focus on the performance that arises from elim-
inating abstraction overhead. Our goal is to convert general defi-
nitions (e.g. an indexing function that can handle many kinds of
arguments) into the rough equivalent of handwritten C code for
any particular case. This is a useful performance target, since pro-
grammers often resort to rewriting slow high- level code in C. Fur-
ther speedups are possible, but entail techniques beyond the current
scope. Additionally, we reuse the optimization passes provided by
LLVM[17], allowing us to ignore many lower-level performance
issues.

Experience so far suggests that we are close to meeting this
performance goal [2].

4. Conclusion
Programming languages must compromise between the ability to
perform static analyses and allowing maximal flexbility in user pro-
grams. Performance-critical language features like arrays benefit

greatly from static analyses, and so even dynamic languages that
initially lack static analyses eventually want them one way or an-
other.

We speculate that, historically, computer scientists developing
multiple dispatch were not thinking about technical computing, and
those who cared about technical computing were not interested in
the obscurer corners of object-oriented programming. However, we
believe that the combination of dataflow type inference, sophisti-
cated method signatures, and the need for high-productivity techni-
cal environments is explosive. In this context, multi-methods, while
still recognizable as such, can do work that departs significantly
from familiar uses of operator overloading. By itself, this mecha-
nism does not address many of the concerns of array programming,
such as memory access order and parallelism. However, we feel it
provides a useful increment of power to dynamic language users
who would like to begin to tackle these and other related problems.

Acknowledgments
The authors gratefully acknowledge the enthusiastic participation
of the Julia developer community in many stimulating discussions,
in particular Dahua Lin and Keno Fischer for the ArrayViews.jl[19]
and SIUnits.jl[8] packages, respectively. This work was sup-
ported by the MIT Deshpande Center, an Intel Science and Tech-
nology award, grants from VMWare and Citibank, a Horizon-
tal Software Fellowship in Compuational Engineering, and NSF
DMS-1035400.

References
[1] G. Bavestrelli. A class template for N-dimensional generic

resizable arrays. C/C++ Users Journal, 18(12):32–43,
December 2000. URL http://www.drdobbs.com/
a-class-template-for-n-dimensional-gener/184401319.

[2] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: A fast
dynamic language for technical computing. arXiv:1209.5145v1, 2012.

[3] V. A. Busam and D. E. Englund. Optimization of expressions in
Fortran. Communication of the ACM, 12(12):666–674, 1969. .

[4] R. Choy and A. Edelman. Parallel MATLAB: Doing it right. In
Proceedings of the IEEE, volume 93, pages 331–341, 2005. .

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’77,
pages 238–252, New York, NY, USA, 1977. ACM. .

[6] P. Cousot and R. Cousot. Comparing the Galois connection
and widening/narrowing approaches to abstract interpretation. In
M. Bruynooghe and M. Wirsing, editors, Programming Language Im-
plementation and Logic Programming, volume 631 of Lecture Notes
in Computer Science, pages 269–295. Springer Berlin / Heidelberg,
1992.

[7] A. D. Falkoff and K. E. Iverson. The design of APL. SIGAPL APL
Quote Quad, 6:5–14, April 1975. .

[8] K. Fischer. URL https://github.com/loladiro/SIUnits.jl.

[9] R. Garcia and A. Lumsdaine. MultiArray: a C++ library for generic
programming with arrays. Software: Practice and Experience, 35(2):
159–188, 2005. .

[10] C. Grelck and S.-B. Scholz. SAC: A functional array language for
efficient multi-threaded execution. International Journal of Parallel
Programming, 34(4):383–427, 2006. ISSN 0885-7458. .

[11] T. E. Holy. Drop dimensions indexed with a scalar? URL https:
//github.com/JuliaLang/julia/issues/5949.

[12] P. Husbands. Interactive Supercomputing. PhD thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, 1999.

Array Operators Using Multiple Dispatch 5 2014/7/16

http://www.drdobbs.com/a-class-template-for-n-dimensional-gener/184401319
http://www.drdobbs.com/a-class-template-for-n-dimensional-gener/184401319
https://github.com/loladiro/SIUnits.jl
https://github.com/JuliaLang/julia/issues/5949
https://github.com/JuliaLang/julia/issues/5949

[13] P. G. Joisha and P. Banerjee. An algebraic array shape inference
system for MATLAB. ACM Transactions on Programming Languages
and Systems, 28(5):848–907, Sept. 2006. .

[14] M. A. Kaplan and J. D. Ullman. A scheme for the automatic inference
of variable types. Journal of the ACM, 27(1):128–145, January 1980.
.

[15] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and
B. Lippmeier. Regular, shape-polymorphic, parallel arrays in Haskell.
In Proceedings of the 15th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’10, pages 261–272, New York,
NY, USA, 2010. ACM. .

[16] K. Kennedy, B. Broom, K. Cooper, J. Dongarra, R. Fowler, D. Gan-
non, L. Johnsson, J. Mellor-Crummey, and L. Torczon. Telescoping
languages: A strategy for automatic generation of scientific problem-
solving systems from annotated libraries. Journal of Parallel and Dis-
tributed Computing, 61(12):1803 – 1826, 2001. .

[17] C. Lattner and V. Adve. LLVM: A compilation framework for life-
long program analysis & transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), pages 75–86, Palo Alto, California, Mar 2004.

[18] X. Li and L. Hendren. Mc2For: a tool for automati-
cally transforming MATLAB to Fortran 95. Technical Re-
port SABLE-TR-2013-4, Sable Research Group, School of Com-
puter Science, McGill University, Montréal, Québec, Canada,
2013. URL http://www.sable.mcgill.ca/publications/
techreports/2013-4/techrep.pdf.

[19] D. Lin. URL https://github.com/lindahua/ArrayViews.jl.
[20] B. Lippmeier and G. Keller. Efficient parallel stencil convolution

in Haskell. In Proceedings of the 4th ACM Symposium on Haskell,
Haskell ’11, pages 59–70, New York, NY, USA, 2011. ACM. .

[21] B. Lippmeier, M. M. T. Chakravarty, G. Keller, and S. Peyton Jones.
Guiding parallel array fusion with indexed types. In Haskell ’12
Proceedings of the 2012 Haskell Symposium, pages 25–36, New York,
2012. ACM. .

[22] B. H. Liskov and S. N. Zilles. Programming with abstract data types.
In Proceedings of the ACM SIGPLAN symposium on Very high level
languages, volume 9, pages 50–59, New York, 1974. ACM.

[23] R. Muschevici, A. Potanin, E. Tempero, and J. Noble. Multiple
dispatch in practice. In Proceedings of the 23rd ACM SIGPLAN
Conference on Object-oriented Programming Systems Languages and
Applications, OOPSLA ’08, pages 563–582, New York, NY, USA,
2008. ACM. .

[24] B. Randell and L. J. Russell. ALGOL 60 Implementation, vol-
ume 5 of The Automatic Programming Information Centre Studies
in Data Processing. Academic Press, London, 1964. URL
http://www.softwarepreservation.org/projects/ALGOL/
book/Randell_ALGOL_60_Implementation_1964.pdf.

[25] L. D. Rose and D. Padua. Techniques for the translation of MATLAB
programs into Fortran 90. ACM Transactions on Programming Lan-
guages and Systems, 21:286–323, 1999.

[26] K. Sattley. Allocation of storage for arrays in ALGOL 60. Communi-
cation of the ACM, 4(1):60–65, 1961. .

[27] K. Sattley and P. Z. Ingerman. The allocation of storage for arrays in
ALGOL 60. ALGOL Bulletin, Sup 13.1:1–15, 1960.

[28] S.-B. Scholz. Single Assignment C: Efficient support for high-level
array operations in a functional setting. Journal of Functional Pro-
gramming, 13(6):1005–1059, 2003. .

[29] S. van der Walt, S. C. Colbert, and G. Varoquaux. The NumPy array:
A structure for efficient numerical computation. Computing in Science
& Engineering, 13(2):22–30, 2011. .

[30] T. L. Veldhuizen. Arrays in Blitz++. In D. Caromel, R. R. Oldehoeft,
and M. Tholburn, editors, Computing in Object-Oriented Parallel En-
vironments, volume 1505 of Lecture Notes in Computer Science, pages
223–230. Springer Berlin Heidelberg, 1998. .

[31] J. Verlaguet and A. Menghrajani. Hack: a new programming language
for HHVM. March 2014. URL http://code.facebook.com/
posts/264544830379293.

Array Operators Using Multiple Dispatch 6 2014/7/16

http://www.sable.mcgill.ca/publications/techreports/2013-4/techrep.pdf
http://www.sable.mcgill.ca/publications/techreports/2013-4/techrep.pdf
https://github.com/lindahua/ArrayViews.jl
http://www.softwarepreservation.org/projects/ALGOL/book/Randell_ALGOL_60_Implementation_1964.pdf
http://www.softwarepreservation.org/projects/ALGOL/book/Randell_ALGOL_60_Implementation_1964.pdf
http://code.facebook.com/posts/264544830379293
http://code.facebook.com/posts/264544830379293

	1 Array libraries
	1.1 Static tradeoffs
	1.2 Dynamic language approaches

	2 Julia arrays
	2.1 Array indexing rules
	2.2 The need for flexibility
	2.3 Multiple dispatch in Julia
	2.4 Argument tuple transformations for indexing
	2.5 Exploiting dataflow type inference
	2.6 Similarities to symbolic pattern matching
	2.7 Implications for Julia programmers

	3 Discussion
	3.1 Other applications
	3.1.1 Array views
	3.1.2 Distributed arrays
	3.1.3 Unit quantities

	3.2 Performance

	4 Conclusion

