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Abstract 

 

The solute diffusion of tungsten at low concentrations in chromium has been investigated both by 

experiments and computational methods. From finite-source diffusion experiments measured with an 

Electron Probe Micro Analyzer at temperatures from 1526−1676 K, it was found that the diffusivity of 

tungsten in chromium follows the Arrhenius relationship D = 𝐷0 exp(-Q/RT), where the activation 

energy was found to be Q = 386 ± 33 kJ/mol. Diffusion of tungsten in chromium was investigated 

computationally with both the activation-relaxation technique (ART) and molecular dynamics (MD) 

using a hybrid potential. From ART, the effective diffusion activation energy was determined to be 𝑄 = 

315 ± 20 kJ/mol based on a multi-frequency model for a monovacancy mechanism.  From MD, the 

square displacement of tungsten was analyzed at temperatures between 1200 and 1700 K, and the 

diffusion activation energy was determined to be 𝑄 = 310 ± 18 kJ/mol.  In spite of possible 

complications arising due to experimental compositions away from the dilute limit, the agreement 

between experiments and simulations falls within the calculated uncertainties, supporting a 

monovacancy mechanism for diffusion of tungsten in chromium. 

 

Keywords: High-temperature alloys, Diffusion, Clusters, Vacancy formation, Chromium, Tungsten 

 

1. Introduction 

 

Because it is often used at elevated temperatures, diffusion in chromium (Cr) has been studied 

experimentally, theoretically, and computationally for decades [1–15].  Although there were some early 

discrepancies regarding the mechanisms and activation energy of Cr self-diffusion [1,10–12], these 

were eventually resolved and Cr self-diffusion is now believed to follow the normal mechanisms 

identified for other BCC metals [1,10], namely, monovacancy diffusion at lower temperatures, with a 

contribution from divacancy diffusion at higher temperatures (generally above about 1700 to 2000 K 

[4,14]).  Additionally, there exists a large body of work regarding diffusion in a number of Cr-alloys 

[9,16–22]. Diffusion in chromium-tungsten (Cr-W) alloys is among the least studied of these binary 

systems, with Ref. [23] providing the only discussion of it of which we are aware, and that being a 

qualitative analysis of Cr-W grain boundary diffusion.  

 

As tungsten (W) is only mildly soluble in Cr, it is not surprising that this couple has not previously 

been given much attention. However, recent work on the stability of nanocrystalline alloys [24,25] 

indicates that Cr-W is a good candidate system to form stable nanocrystalline phases [24].   The 

possibility of fabricating nanocrystalline alloys with superior strength, hardness, and thermal stability 

in the Cr-W system is compelling, and our group’s unpublished work on the processing of such alloys 

also led us to appreciate the need for a better understanding of the kinetics of the system.  It is therefore 

our purpose in the present paper to address the gap in kinetic data in the literature for the diffusion of W 

in Cr. 

 

In this study, Cr-W diffusion was investigated experimentally at temperatures in the range 1526−1676 
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K in the low-concentration solid solution regime (i.e., W content below the solubility limit of ~30%) 

that is most relevant to applications of the Cr-W system. To complement this experimental work and 

more explicitly connect to the dilute limit, computational studies of dilute C-W systems were also 

performed. The activation-relaxation technique (ART) [26,27] was used to investigate the energies of 

the accessible atomic structure transitions at a vacancy in a Cr-W system.  Additionally, the diffusion of 

a single W atom in Cr was investigated with molecular dynamics simulations at temperatures between 

1200 and 1700 K. 

 

2. Experiments 

 

Chromium discs (99.9% purity, 10 mm diameter, 5 mm thickness, from Alfa Aesar) were ground flat 

and parallel. To induce grain growth, the specimens were annealed at 1675 K for 24 hours. The final 

grain size was about 350−400 μm. A thin film (~1 μm) of high-purity tungsten (99.95%, from Alfa 

Aesar) was deposited on each disc by physical vapor deposition for 3 hours using an in-house sputter 

system operated  under 155 W of RF power (from CESAR), while flowing 10 sccm Ar gas, with the 

chamber vacuum maintained below 10-7 Torr.  

 

Each specimen was sealed in a quartz tube, first evacuated to 10-6 Torr using a turbo pump, and then 

backfilled with high-purity argon gas to 120 Torr. The sealed specimen was annealed in a furnace and 

exposed to temperatures of 1526, 1550, 1576, 1627, and 1676 K for 398, 212, 120, 48, and 22 hours, 

respectively.  The diffusion depth in all cases was around 40 μm. After annealing, each specimen was 

laid on its side, embedded in an electrically conductive resin, and ground through half of its full width 

using an automatic polisher (TegraForce-5 from Struers) to expose the diffusion cross-section. A right 

angle between the side and top surface was achieved to within 0.2 degrees. An Electron Probe Micro 

Analyzer (EPMA, JXA-8200 from JEOL) was then used to obtain depth profiles of tungsten 

concentration in chromium. For each specimen, 5−12 concentration profiles were acquired, spaced at 

least 20 μm apart. 

A cross section of a chromium disc after tungsten diffusion is shown in Figure 1, where the image con-

trast from backscattered electrons and the inset energy-dispersive spectroscopy (EDS) map show the 

local tungsten content. The tungsten diffusion profile is uniform along the long axes of the specimen 

and approximates one-dimensional diffusion well.    

Tungsten concentration as a function of diffusion depth at five different temperatures measured using 

EPMA is shown in Figure 2.  The diffusion of W into Cr in this experimental setup follows that for a 

semi-infinite one-dimensional solution of Fick’s second law with a limited diffusant source: 

 
 

𝐶(𝑥, 𝑡) =
𝑀

√𝜋𝐷𝑡
exp (−

𝑥2

4𝐷𝑡
) (1)  

Here, C is the concentration of tungsten at a distance 𝑥 from the initial Cr-W interface after diffusion 

time t, and M is the total amount of deposited tungsten. D is the solute self-diffusion coefficient of 

tugnsten in chromium. Concentration was converted to specific activity and is plotted vs. 𝑥2 in Figure 

3. Specific activity was obtained from concentration through division by the specimen density in any 

convenient units; for the data in Figure 3, the units of density were chosen for each profile so as to 

provide uniform separation of the curves.  From a fit of Eq. (1) to the data in Figure 3 (with M treated 

as an unknown fitting parameter at each temperature), the diffusion coefficient was determined for each 

specimen (correlation coefficients R2 > 0.98 were obtained for each profile), as listed in Table 1, and an 



Arrhenius plot of ln 𝐷 vs. 1/T is presented in Figure 4. In Eq. (1), 𝐷 is assumed to be independent of 

concentration; the use of this equation is valid in the present study because log (activity) vs 𝑥2 was 

found to be linear and the thickness of the deposited solute layer was less than 1μm, which is much less 

than (𝐷𝑡)1/2 for every investigated temperature. 

 

The equation for the solute diffusion of tungsten in chromium can be described by an Arrhenius 

relationship:  

 
  

𝐷 = 𝐷0 exp ( −
𝑄

𝑅𝑇
) (2)  

 

A least squares regression analysis of the data from Figure 4 yields the activation energy, 𝑄 = 386 ±
33 kJ/mol and the diffusion prefactor, 𝐷0 = 𝐴0 exp( − 6.8 ±  2.5) m2/s  where 𝐴0 is the unit measure 

of diffusivity: 1 m2/s, and the reported uncertainty ranges correspond to 95% confidence bounds. 

 

3. Computations 

 

3.1 Cr-W Potential and Vacancy Structure 

 

The initial configuration, generated with the open-source Large-scale Atomic/Molecular Massively 

Parallel Simulator (LAMMPS) software package [28,29], was a pure, single crystal of BCC Cr with 

periodic boundary conditions in all directions and initial geometry minimized according to the 

concentration-dependent embedded atom method (CD-EAM) potential developed by Stukowski et al. 

[30–32]. This potential was developed to study BCC Fe-Cr alloys throughout the full compositional 

range and was verified to satisfactorily reproduce the self-diffusion behavior of pure chromium with a 

monovacancy migration energy of 0.99 eV [6].   

 

One atom was removed from the single-crystal structure of pure Cr to generate a vacancy, and the 

system geometry was minimized again with the Stukowski CD-EAM potential. The vacancy formation 

energy in Cr was determined to be 2.56 eV, in agreement with previously reported results [16]; this 

value is calculated by taking the difference between the total energy of the system containing a vacancy 

and a perfect crystal with the same number of atoms. One Cr atom adjacent to the vacancy was then 

replaced with a W atom, and a hybrid potential was used to minimize the system. In the hybrid 

potential, the Cr-Cr interactions were again modelled with the Stukowski CD-EAM potential, and the 

W-Cr interactions were modelled with the cubic-spline pair potential developed by Bonny et al. [18]. 

As the system being investigated was low in concentration, only one W atom was present in the 

computational setup, and no W-W interactions were considered.  The results presented herein 

correspond to a system of 431 total atoms in a cubic supercell with 1.7 nm length edges.  For 

verification of the results, a system with 3455 total atoms was also considered, corresponding to a cubic 

supercell with 3.45 nm edge length, yielding results that did not differ significantly from the smaller 

system. 

 

A binding energy between W and the vacancy was observed.  When the vacancy was separated from 

the W, the system was found to be 0.66 eV higher in energy than when W was bound to the vacancy.  

Images of the configurations of the vacancy structure when bound to a W atom and sufficiently 

removed from the W atom are shown in Figure 5. Atoms that were not in the vacancy structure were 

excluded from this figure. Atoms are colored according to centrosymmetry [33] with the scale shown. 

  

From Figure 5, it is apparent that the W atom introduces an asymmetry into the vacancy structure that 



is not present in the unbound vacancy.  Intermediate structures with intermediate energies (0.54 and 

0.59 eV above the minimum energy structure) were found for the cases where W was a nearest 

neighbor and next-nearest neighbor to the vacancy. A schematic showing all relevant locations of the W 

atom with respect to the vacancy is shown in Figure 6, and their relative energy levels are presented in 

Table 2. 

 

3.2 Local Transitions at a Vacancy  

 

3.2.1 The Activation-Relaxation Technique 

 

The activation-relaxation technique (ART) was implemented to determine the kinetic transitions 

accessible to the Cr-W alloy system at a vacancy.  ART is an algorithm for finding transition states in a 

potential energy landscape when only the initial configuration is known [26,27] and consists of each a 

perturbation, convergence, and relaxation phase.  In the perturbation phase, the Cr-W atomic 

configuration in a minimum energy state was locally perturbed until the lowest eigenvalue of the 

Hessian matrix, 𝜆min, was less than a small negative number, 𝜆c =  −1.0.  The perturbation event 

consisted of choosing a random atom in the vicinity of the defect and displacing it in a random 

direction by a random distance in the range 0.5 − 2.0 Å. An atom was deemed to be in the vicinity of 

the defect if its centrosymmetry parameter [33] was larger than a critical value of 0.1. 

 

In the convergence phase of ART, the system was iteratively pushed along the eigenvector 

corresponding to the lowest eigenvalue of the Hessian matrix and relaxed in the hyperplane of this 

vector until either a transition state was converged upon or an alternative exit condition was met.  A 

transition state had to meet the requirements: 𝜆min < 0 and 𝑓max <  𝑓tol, where 𝑓max refers to the 

maximum force in any direction on any atom, and here, 𝑓tol = 0.005 eV/Å was used. Alternative exit 

conditions for the convergence phase of the algorithm included reaching either a configuration with 

𝜆min > 0 or the maximum number of convergence steps, prescribed here as 100. If a transition state 

was found in the convergence phase, its connectivity to the initial minimum was then checked [34], and 

if it was determined that the transition state was connected to the initial minimum, the algorithm 

proceeded to the relaxation phase.  If any of the requirements for a transition state were not met or the 

transition state was not found to be connected to the initial minimum, the search was deemed 

unsuccessful. 

 

The relaxation phase of the algorithm consisted of a constant-stress conjugate gradient relaxation (with 

all elements of the stress tensor set to zero) from the transition state to an adjacent minimum, which 

was achieved by pushing the atomic configuration at the transition state slightly away from the initial 

minimum configuration prior to the minimization.  This relaxation was performed in LAMMPS using 

the same hybrid potential as discussed in Section 3.1. 

 

This ART procedure was repeated many times with different random perturbations in order for the 

space of possible transitions accessible to the system to be sufficiently explored.  The search was 

deemed complete when no new transitions were identified for 100 consecutive successful searches.           

 

In all cases, the forces throughout the system were determined in LAMMPS using the hybrid potential 

described in Section 3.1.  The minimum eigenvalue was approximated using the Lanczos method 

[35,36] with a maximum number of iterations: 𝐿𝑁 = 15.  If 𝐿𝑁 Lanczos iterations were completed 

before other exit conditions of the algorithm were reached, convergence was tested by comparing the 

residual to a cutoff value, here: 0.1. If the convergence test failed, then the Lanczos method was 

implicitly restarted, where the most recently calculated eigenvector was used as the initial guess to 



initialize the method [36]. It should be noted that, in this discussion, the term ‘residual’ is a measure of 

the quality of the approximated eigenvalue-eigenvector pair and is calculated as: |𝐴𝜈 − 𝜆𝜈| for matrix 

𝐴, approximate eigenvector 𝜈, and eigenvalue 𝜆.  This implicit restarting procedure was repeated until 

either the residual was lower than the specified value or Lanczos method had been attempted 𝐿𝑁 times.  

 

Within the Lanczos method, it is possible to obviate the need for explicitly calculating the Hessian 

matrix by instead approximating the product of the Hessian matrix, 𝐻(𝑥𝑛), with the jth vector of the 

Krylov subspace, 𝜈𝑗, using a second order finite difference approximation: 

 
 

𝐻(𝑥𝑛)𝜈𝑗 ≈
1

2𝜖
 (∇𝑓(𝑥𝑛 + 𝜖𝜈𝑗) − ∇𝑓(𝑥𝑛 − 𝜖𝜈𝑗)) (3)  

 

Where 𝑓 is the potential energy function and, consequently, −∇𝑓 is the 3N force vector for the system 

(N being the number of atoms in the system). This approach allowed for significant improvements in 

computational efficiency compared with the direct method. 

 

The energy landscape data found with ART was post-processed by first synthesizing the data such that 

only unique transitions were included in further analysis.  Two transitions were considered non-unique 

if their respective transition state and adjacent minimum energies were identical to the nearest 0.01 eV 

and the centrosymmetries of their respective atoms in the defect region were sufficiently similar (within 

0.1).  Additionally, transitions for which the adjacent minimum energy, 𝐸𝑎𝑑𝑗, was within kT of the 

transition state energy, 𝐸𝑎, were excluded from further analysis as the reverse reaction rate for these 

structures to fall back down to the initial minimum would be very large compared to the forward 

reaction rate.  T = 1673 K was used for this criterion, so transitions for which the difference  

𝐸𝑎 − 𝐸𝑎𝑑𝑗 < 𝑘𝑇 = 0.14 eV were neglected. 

 

3.2.2 Local Transitions from ART 

 

A schematic relevant to solute diffusion in dilute alloys is presented in Figure 6 and will be useful in 

discussing the results of ART.  The post-processed data from ART is summarized in Table 2 including 

the type of transition corresponding to Figure 6, the activation energy of the transition, and the final 

energy of the configuration after the transition, both relative to the lowest energy structure. Although 

multiple mechanisms were found for some transitions, all activation energies reported in Table 2 

correspond to the lowest energy mechanism found. It should be noted that only the jump corresponding 

to  𝜔1𝑊 results in any motion of the tungsten atom. However, the relative jump frequencies of all the 

events accessible to the bound vacancy must be considered in correctly analyzing the solute diffusion 

of W in Cr. In particular, these other frequencies are important in determining the correlation 

coefficient and vacancy escape frequency [15,37] as discussed in Section 3.2.3.  The activation energies 

for the reverse jumps can be calculated from Table 2 as the difference: 𝐸𝑟𝑒𝑣 = 𝐸𝑎 − 𝐸𝑎𝑑𝑗. 

  

The transition in which the vacancy moves to position 4 in Figure 6 corresponds to the separation of the 

vacancy from the tungsten, such that the final structure is 0.66 eV higher in energy than that of the 

bound structure. Additionally, when the vacancy moves to position 2 in Figure 6, the total energy of the 

structure is actually higher in energy than the unbound state by 0.07 eV, resulting in a repulsive 

interaction between the W and the vacancy. 

 

A visual summary of all the transitions found with ART for this system, once again including only the 

lowest energy mechanisms, is presented in Figure 7, plotted as an energy landscape graph [38].  



Important features of these transitions including the energy at the transition state, 𝐸𝑎, and the energy of 

the adjacent minimum configuration, 𝐸𝑎𝑑𝑗 (both shown in eV relative to the initial minimum), can be 

read directly from Figure 7. For clarity, the transitions have each been labeled to correspond to the 

jump frequencies in Figure 6.  

        

3.2.3 Determination of Diffusivity from ART Transitions 

 

Solute diffusivity, 𝐷𝑆, can be calculated from the jump frequencies in Figures 6 and 7 according to: 

  
 𝐷𝑆 = 𝑎2𝑓𝑆𝜔𝑆 exp[−(𝐺𝑣

𝑓
+ 𝐺𝑣

𝑏)/𝑘𝑇] (4)  

 

Where a is the lattice parameter, 𝜔𝑆 is the jump frequency for the solute to exchange with the vacancy 

(𝜔1𝑊 in our model), 𝐺𝑣
𝑓
is the formation energy of a vacancy in pure Cr (2.56 eV), and 𝐺𝑣

𝑏 is the 

binding energy of the solute atom with the vacancy, which is negative when attractive, (−0.66 eV for 

W in Cr).  The correlation factor, 𝑓𝑆, depends on the other jump frequency terms in Figure 6 according 

to an equation developed by Manning [37] for dilute BCC systems: 

 
 

𝑓𝑆 =
7𝐹𝜔𝛽𝑚

2𝜔𝑆 + 7𝐹𝜔𝛽𝑚
 (5)  

 

𝜔𝛽𝑚 is defined as the jump frequency for the vacancy to move between the first- and third- or fifth- 

nearest neighbor site with respect to the solute atom, and 7F is defined by Manning [37] as: 

 
 

7𝐹 =

331.14 (
𝜔𝑗𝛽

𝜔𝑗𝑚
)

2

+ 857.93 (
𝜔𝑗𝛽

𝜔𝑗𝑚
) + 409.95

165.57 (
𝜔𝑗𝛽

𝜔𝑗𝑚
) + 134.21

 (6)  

 

With 𝜔𝑗𝛽 being the jump frequency for the vacancy to move from a second- to a first- nearest neighbor 

position and 𝜔𝑗𝑚 being the jump frequency for the vacancy to move from a second- to a fourth- nearest 

neighbor position with respect to the W atom.  

 

In the present analysis, instead of using the traditional geometrical definition of nearest neighbor based 

on the shortest Cartesian distance, we choose the site with the lowest activation barrier as the ‘nearest 

neighbor’ in order to accurately determine the escape frequency.  Similarly, the second- and third- 

nearest neighbors are those with increasingly higher activation barriers.  We note that the geometry and 

symmetry arguments used to develop Eqs. (5-6) assumed both that the traditional nearest neighbor 

definition was used and that the binding of the second-nearest neighbor was much stronger than for the 

third- or fifth-nearest neighbors. The approach used here conforms to the latter assumption, and usually 

also yields neighbor orderings consistent with the geometrical approach as well. 

 

Thus, in the calculations performed here: 𝜔𝑗𝛽 = 𝜔51, 𝜔𝑗𝑚 = 𝜔54 (where 𝐸𝑎,𝑗𝑚 = 𝐸𝑎,54 = 0.89 eV was 

found with ART), and 𝜔𝛽𝑚 = 𝜔12.  In all cases, jump frequency was related to the activation energy of 

the transition by: 

 
 𝜔𝑖𝑗 = 𝜈𝑖𝑗

∗ exp (−Ea,ij /𝑘T) (7)  

  



Where 𝜈𝑖𝑗
∗  is the effective frequency for a transition from position i to position j. This value is defined 

by Vineyard [39] as the ratio of the products of all real vibrational frequencies in the initial state to all 

the real vibrational frequencies in the transition state: 

 
 

𝜈∗ = (∏ 𝜈𝑖

𝑁

𝑖=1

) (∏ 𝜈𝑖
′

𝑁−1

𝑖=1

)⁄  (8)  

 

Under the harmonic approximation, the vibrational modes themselves can be calculated from the 

eigenvalues of the mass-normalized Hessian matrix (i.e. 𝐻𝑖𝑗
𝑚 = 𝐻𝑖𝑗/√𝑚𝑖𝑚𝑗).  Thus, for each transition 

of interest, the mass-normalized Hessian matrix was calculated using a centered difference 

approximation with the potential described in Section 3.1.  The eigenvalues, 𝜆𝑖, of the normalized 

Hessian matrix for both the initial configuration and saddle point were then determined using standard 

LAPACK routines [40]. From the eigenvalues, the vibrational modes were calculated according to:  

 
 

𝜈𝑖 =
1

2𝜋
√𝜆𝑖 (9)  

 

All real vibrational modes were then used in Eq. (8) to determine the effective transition frequency, 𝜈∗. 

The effective transition frequency for each of the transitions required in order to calculate 𝐷𝑆 are shown 

in Table 3. 

 

Using the values in Tables 2 and 3, 𝐷𝑆 was calculated according to Eq. (4) at temperatures between 

1200 and 1700 K.  An Arrhenius fit of the data is presented in Figure 8. 

 

From a linear fit of the data in Figure 8, we find that the effective activation energy for W diffusion in 

Cr given a monovacancy mechanism is 𝑄 = 315 ± 20 kJ/mol, and the pre-exponential term is 𝐷0 =
𝐴0 exp(−11 ± 2.5) m2/s, where 𝐴0 is again the unit measure of diffusivity: 1 m2/s.  Uncertainty 

associated with these values derives both from the inherent uncertainties in the potentials used to model 

the system as well as from the assumptions that lead to the calculation of the correlation factor 

including consideration of only mechanisms within a traditional ‘single-jump’ distance and the use of 

the harmonic approximation. We estimate these uncertainties as amounting to perhaps ± 20 kJ/mol in 

the activation energy and ± 2.5 in the constant of the linearized Arrhenius model based on the range of 

values these terms can take when the input activation energies in Eq. (4) are varied (individually) by 

0.2 eV− a reasonable assumption of the error associated with the potential.  

 

3.3 MD of Many Transitions 

 

3.3.1 Molecular Dynamics Procedure 

 

The system, generated as described in Section 3.1, was annealed at temperatures in the range 

1200−1700 K.  The system was brought to the target temperature by a staged equilibration process in 

increments of 300 K for 300 picoseconds each, with a timestep of 1 femtosecond, temperature and 

pressure held constant, and an additional Berendsen barostat used to moderate the pressure [41].  After 

equilibrating in this manner at the target temperature, the simulation was run for 100 nanoseconds, with 

a timestep of 1 femtosecond, at constant temperature and volume, again with a Berendsen barostat.  At 

each stage, the target pressure in the system was set to zero.  

 



During the final stage of the MD simulation, the displacement of all atoms was tracked at every 10,000 

steps. When this data was post-processed, resampling was achieved by treating each step in the 

simulation as its own initial configuration so that a mean square displacement for each possible time 

interval could be calculated. Diffusivity was then calculated based on the relation: 〈(𝑥 − 𝑥0)2〉 = 6𝐷𝑡, 

which assumes an isotropic diffusion model. The slope of the mean squared displacement curve vs. 

time was then taken as an estimate of the diffusivity of W in Cr at each temperature investigated.  

 

It should be noted that the slope of the mean squared displacement least-squares fit had to be rescaled 

to account for a discrepancy between the expected vacancy fraction in a physical specimen of Cr at the 

temperature of interest and the vacancy fraction in the system generated for this simulation. Namely, 

the correction: 𝐷′ =  𝑓𝑎𝑐𝑡𝑢𝑎𝑙 𝑓𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛⁄ 𝐷, was used, where the vacancy fraction follows the Arrhenius 

form: 𝑓 = exp(− 𝐺𝑣
𝑓

𝑘𝑇⁄ ).  

 

3.3.2 Molecular Dynamics Results and Discussion 

 

The activation energy for diffusion of W in Cr was estimated from the MD data (based on an enforced 

monovacancy mechanism) in the same fashion as the experimental data analysis presented in Section 2.  

The Arrhenius representation of the diffusivities determined at 11 different temperatures between 1200 

and 1700 K is presented in Figure 9.  From this treatment, it was calculated that Q = 310 ±  18 kJ/mol 

with 95% confidence bounds and 𝐷0 = 𝐴0 exp(13.7 ± 1.5) m2/s, with 𝐴0 the unit measure of 

diffusivity: 1 m2/s.   

 

4. Discussion 

 

A summary of the results for the activation energy and diffusion prefactor for diffusion of W in Cr as 

determined by all three methods is presented in Table 4. The activation energies determined with the 

computational results are in excellent agreement with one another.  To some extent, this can be 

regarded as a validation of the methodology used in connection with Eqs. (5-6) and the use of an 

energy-based ordering of atomic neighbors, since the MD results do not depend on that analysis and 

return the same essential output with regard to the diffusion activation energy.  However, the diffusion 

values predicted by these two approaches differ by about an order of magnitude due to the discrepancy 

in their diffusion prefactor estimates. This difference may be related to the harmonic approximation 

assumed in the multiple frequency analysis; i.e., anharmonic effects may be relevant in the present 

temperature range. However, since validation with a system containing 3455 atoms did not show 

significantly different diffusion behavior from the 431 atom system, we do not expect this to be a major 

factor at these temperatures. Alternatively, it may be an indication that the empirical values in Eqs. (5-

6) are not optimized for diffusion in the Cr-W system.   

 

While there is a non-negligible difference between the computational and experimental activation 

energies of order 20%, this is an apparent inconsistency on the slope of the data and not of the 

diffusivity values themselves. This can be seen in Figure 10, where diffusivity data for all three 

methods has been overlaid, and the agreement is good within uncertainty.  The experimental data lie 

between those of the models, and actually lie within the error bands of both of the two methods, which 

is encouraging.    

 

A number of features of the computational approach may have contributed to the observed mild 

disagreement between the activation energies determined by the experimental results and models.  

These include the use of a highly-simplified model in which only monovacancy mechanisms were 



considered and W-W interactions were ignored. Additionally, the accuracy of both computational 

methods was highly dependent on the quality of the potential used to model the system, which is 

uncertain. Alternatively, whereas in a very dilute alloy the assumed simple monovacancy mechanism 

may be of the only contributing mechanism to diffusion in this system; however, the experimental 

system in this study involved concentrations up to about 7 atomic % W, where W-W interactions may 

play a role.  

 

To investigate this last possibility, a computational system with multiple tungsten atoms was 

considered.  In particular, a system was built as in Section 3.1, and then a Cr atom in the vacancy 

structure was replaced with a W atom, such that the final system contained two W atoms in the vacancy 

structure. The system was minimized using the hybrid potential described in Section 3.1 with the 

addition of another EAM potential to account for W-W interactions [42].  ART was then performed on 

this system in order to find the transitions accessible to a vacancy with two adjacent W atoms as well as 

the binding energy of the vacancy to the tungsten pair.  Additionally, the importance of W-W clusters 

was considered by comparing the relative energy of a system with adjacent W atoms to a system with 

two separated W atoms. 

 

From these simulations, it was found that separation of the two W atoms resulted in an energy penalty 

of 5.05 eV, which indicates a strong likelihood that the W atoms would be found in pairs or possibly 

clusters of higher order in a non-dilute alloy.  Additionally, it was found that the binding energy of a 

vacancy to the W atom pair was -0.54 eV, which is 0.12 eV less attractive than the interaction between 

a single W atom and a vacancy.  From these features, one could conjecture that the diffusivity of W in 

this system may involve a contribution from W-W interactions, and this may in turn account for some 

of the minor discrepancies amongst the data series in Fig. 10.  

 

5. Conclusions 

 

The diffusion of tungsten in low W-concentration Cr-W alloys was studied both experimentally in 

finite-source diffusion measurements and computationally with both the activation-relaxation technique 

(ART) and molecular dynamics (MD). Experimentally, it was determined that the activation energy of 

diffusion in the Cr-W system was Q = 386 ± 33 kJ/mol. The results from the computational approach 

gave activation energies of Q = 315 ± 20  kJ/mol calculated from ART and Q = 310 ± 18 kJ/mol 

calculated from MD, which are about 20% different from the experimental results.  However, the 

agreement of the individual diffusivities is good and within the uncertainty of the models when 

examined on the basis of the diffusivity values themselves.  

 

The solute diffusion model used in both computational approaches in this work generally requires that 

the solute concentration is less than 1−2% [15]; however, the experimental method contained 

concentrations near the interface as high as 7 atomic % tungsten. W-W pairs were found to be 

drastically favored over lone W atoms in the simulations, supporting the possibility that higher order W 

clusters could form and alter the overall W diffusion rate in Cr.  This could be one contribution to the 

mild differences seen between the computationally and experimentally determined diffusivities. 

 

Acknowledgements 

 

This study was supported by the US Defense Threat Reduction Agency under Grant No. HDTRA1-11-

1-0062 and by the US Army Research Office under Grant No. W911NF-09-1-0422. MP acknowledges 

support through a Kwan-Jung scholarship. KCA acknowledges support from a DOE Computational 

Science Graduate Fellowship under Grant No. DE-FG02-97ER25308 and support from the Fannie and 



John Hertz Foundation.  

 

References 

[1] J. Askill, D.H. Tomlin, Self-diffusion in chromium, Philos. Mag. 11 (1965) 467–474. 

[2] J. Stephens, W. Klopp, High-temperature creep of polycrystalline chromium, J. Less Common 

Met. 27 (1972) 87–94. 

[3] J. Mundy, C. Tse, W. McFall, Isotope effect in chromium self-diffusion, Phys. Rev. B. 13 (1976) 

2349–2357. 

[4] J. Campbell, C. Schulte, Positron trapping and self-diffusion activation energies in chromium, 

Appl. Phys. 152 (1979) 149–152. 

[5] J.N. Mundy, H.A. Hoff, J. Pelleg, S.J. Rothman, L.J. Nowicki, Self-diffusion in chromium, 

Phys. Rev. B. 24 (1981) 658–665. 

[6] J. Johansson, a. Vehanen, J. Yli-Kauppila, P. Hautojärvi, P. Moser, Positron lifetime 

measurements on electron-irradiated chromium, Radiat. Eff. 58 (1981) 31–33. 

[7] M.W. Finnis, J.E. Sinclair, A simple empirical N-body potential for transition metals, Philos. 

Mag. A. 50 (1984) 45–55. 

[8] H. Schultz, Defect parameters of bcc metals: group-specific trends, Mater. Sci. Eng. A. 141 

(1991) 149–167. 

[9] J. Askill, Tracer diffusion in the chromium–nickel system, Phys. Stat. Sol. (a). 8 (1971) 587–

596. 

[10] A.D. Le Claire, Application of diffusion theory to the body-centered cubic structures, in: 

Diffusion in Body-Centered Cubic Metals, 1964: pp. 3–24. 

[11] W.C. Hagel, Self-diffusion in solid chromium, Trans. Metall. Soc. AIME. 224 (1962) 430. 

[12] H.W. Paxton, E.G. Gondolf, Rate of self-diffusion in high purity chromium, Arch. Fur 

Eisenhuttenwes. 30 (1959). 
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Figure 1. Scanning electron microscopy (SEM) image 

taken in backscatter mode, for a chromium disc cross 

section after annealing at 1526 K. A tungsten ele-

mental map from EDS is shown in the inset.  

 

 

 
 



  
Figure 2. Tungsten concentration versus penetration-

distance at five different temperatures from EMPA 

measurements in a Cr-W diffusion.  The diffusion 

length is zeroed at the initial Cr-W interface. 

 

Figure 3. Specific activity versus square-penetration-

distance at five different temperatures, presented on a 

logarithmic scale. 

 

 

Figure 4. Arrhenius plot of solute diffusion data 

for Cr-W diffusion experiments. 5−12 depth 

profiles are represented by each data point, and 

the error bars correspond to 95% confidence 

bounds on the mean value of the diffusivity 

calculated at each temperature. 

 
 

   

Figure 5. Vacancy structures for the bound and free states found in this study.  The image 

containing W in the vacancy structure (left) is 0.66 eV lower in energy than the free vacancy 

structure with the W atom in the bulk (right). Atoms with centrosymmetry parameter < 0.5 were 

excluded from the image for clarity. The images were generated with AtomEye [43]. 

 



 

Figure 6. Schematic of the possible jumps 

relevant to solute diffusion. The vacancy is 

initially at point 1 and the solute is located 

in the site marked with the W.  Sites of 

unique vacancy jumps are numbered.  Jump 

frequency from site i to site j is indicated by 

𝜔𝑖𝑗 and is proportional to the exponential of 

the activation energy required for the jump.  

If the forward and reverse activation 

energies identified by ART were identical 

for a given transition, then only  𝜔1𝑗 is 

shown in the schematic. This schematic is 

modeled after Ref. [15]. 

 
 

 

Figure 7. Energy landscape graph of 

transitions relevant to the diffusion of 

tungsten in chromium found using ART, 

plotted on a vertical energy axis. Energy 

values are plotted relative to the initial 

minimum energy of the structure.  The 

circles correspond to accessible 

configurations on the energy landscape and 

the lines correspond to the pathways 

connecting them. Forward progress in the 

transition corresponds to progress along the 

abscissa.  The transitions have been labeled 

to correspond to the jump frequencies in 

Figure 6.  Only a single label is necessary 

to denote the symmetric transitions. 

 



 

Figure 8. Solute diffusion of W in Cr as 

generated from Eq. (4), using activation 

energies determined with ART.  

 

 

Figure 9. Arrhenius diffusion data for solute 

diffusion of W in Cr from MD simulations.  

The dashed lines indicate the 95% 

confidence bounds for the value of D.  

 

 

Figure 10. Arrhenius diffusion data for 

diffusion of W in Cr from experiments, MD 

simulations, and ART.  The blue, dashed lines 

and black error bars indicate the 95% 

confidence bounds for the value of D from 

MD and experiments, respectively.  

 
 

 

 

  


