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1. Introduction

One way to describe the content of these lecture notes is to say that they give
a proof of the following statement (up to certain technical details that can be
looked up in suitable articles).

Theorem 1.1. Let B1, B2, . . . be independent standard Brownian motions. De-
fine

Zt
N =

∫

0<s1<···<sN−1<t

eB1(s1)+
(
B2(s2)−B2(s1)

)
+···+

(
BN (τ)−BN(sN−1)

)
ds1 . . . dsN−1.

Then, for any κ > 0,

lim
N→∞

P

{
logZκN

N − c1(κ)N

c2(κ)N1/3
≤ u

}
= F2(u)
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with certain explicit κ-dependent constants c1, c2 > 0, where F2( · ) is the dis-
tribution function of the GUE Tracy-Widom distribution.

The quantity Zt
N was introduced by O’Connell-Yor [68], and it can be viewed

as the partition function of a semi-discrete Brownian polymer (also sometimes
referred to as the “O’Connell-Yor polymer”). The limit relation above shows
that this polymer model belongs to the celebrated Kardar-Parisi-Zhang (KPZ)
universality class, see Corwin [34] for details on the KPZ class and §1.6 of [13]
for more explanations, consequences, and references concerning the polymer
interpretation.

The exact value of c1(κ) was conjectured by O’Connell-Yor [68] and proven by
Moriarty-O’Connell [63], and the above limit theorem was proven by Borodin-
Corwin [13] for a restricted range of κ and by Borodin-Corwin-Ferrari [16] for
all κ > 0. A nice physics-oriented explanation of c2(κ) was given by Spohn [78].

Although the most direct proof of this theorem would likely be quite a bit
shorter than these notes, brevity was not our goal. Despite the probabilistic
appearance of the statement, any of the known approaches to the proof would
involve a substantial algebraic component, and the appearance of algebra at first
seems at least slightly surprising. The goal of these lecture notes is to suggest
the most logically straightforward path (in authors’ opinion) that leads to the
desired result, minimizing as much as possible the number of ad hoc steps one
takes along the way. (For an interested reader we remark that a shorter proof
of Theorem 1.1 can be obtained via combining Corollary 4.2 of [66], Theorem 2
of [20], and asymptotic analysis of [13].)

As we travel along our path (that naturally starts on the algebraic side —
in representation theory of unitary groups), we encounter other probabilistic
models that are amenable to similar tools of analysis. The approach that we
develop has a number of other applications as well. It was so far used for (we
refer the reader to the indicated references for further explanations)

• asymptotics of the KPZ equation with a certain class of initial condi-
tions [16];

• asymptotics of Log-Gamma fully discrete random directed polymers [20];
• asymptotics of q-TASEP and ASEP [21, 42];
• analysis of new integrable (1+1)d interacting particle systems — discrete
time q-TASEPs of [15], q-PushASEP [27, 37], and (q, µ, ν)-TASEP [35];

• establishing a law of large numbers for infinite random matrices over a
finite field [29] (conjectured by Vershik and Kerov, see [45]);

• Gaussian Free Field asymptotics of the general beta Jacobi corners pro-
cess [25];

• developing spectral theory for the q-Boson particle system [19];
• asymptotics of probabilistic models originating from representation theory
of the infinite-dimensional unitary group U(∞) [10, 11, 28, 12].

The emerging domain of studying such models that enjoy the benefits of a rich
algebraic structure behind, is sometimes called Integrable Probability, and we
refer the reader to the introduction of Borodin-Gorin [24] for a brief discussion
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of the domain and of its name (the integrable nature of the semi-discrete polymer
of Theorem 1.1 was first established by O’Connell [66]). To a certain extent, the
present text may be considered as a continuation of [24], but it can be also read
independently.

In contrast with [24], in our exposition below we do not shy away from the
representation theoretic background and intuition that were essential in de-
veloping the subject. We also focus on proving a single theorem, rather than
describing the variety of other related problems listed above, in order to discuss
in depth the analytic difficulties arising in converting an algebraic formalism
into analytic statements. These difficulties are related to the phenomenon of
intermittency and popular yet highly non-rigorous and sometimes dangerous
replica trick favoured by physicists, and one of our goals is to show how raising
the amount of “algebraization” of the problem can be used to overcome them.

The notes are organized as follows.
In Section 2, we explain how lozenge tilings of a class of polygons on the

triangular lattice can be interpreted via representation theory of the unitary
groups, and how this leads to contour integral formulas for averages of various
observables.

In Section 3, we show, in a specific example, how the steepest descent analysis
of the obtained contour integrals yields meaningful probabilistic information
about lozenge tilings.

Section 4 describes an approach to constructing local Markov dynamics on
lozenge tilings, and how (1+1)-dimensional interacting particle systems (like
usual and long range Totally Asymmetric Simple Exclusion Processes (TASEPs))
arise as marginals of such dynamics. The approach we describe is relatively re-
cent; it was developed in Borodin-Petrov [27] (an extension of the method will
appear in [29]).

Section 5 deals with a two-parameter (Macdonald, (q, t)-) generalization of
the previous material.

In Section 6 we show how simple-minded asymptotics of the contour integrals
in the q-deformation of lozenge tilings leads to semi-discrete Brownian polymers.
The contour integrals describe the q-moments of the q-TASEP, an integrable
deformation of the usual TASEP.

Section 7 explains difficulties which arise if one straightforwardly tries to
describe the distribution of the polymer partition function using its moments.
The latter come out naturally as limits of the q-TASEP’s q-moments.

In final Section 8 we demonstrate how those difficulties can be overcome
through considering the Laplace transform of the polymer partition function
and its q-analog for the q-TASEP particle locations.

2. Lozenge tilings and representation theory

We begin with a discussion of a well-known probabilistic model of randomly
tiling a hexagon drawn on the triangular lattice, and explain its relation to
representation theory of unitary groups. This relation produces rather natural
tools for analysis of uniformly random lozenge tilings of the hexagon.
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c a
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b

b

Fig 1. An example of a lozenge tiling of the hexagon with sides a, b, c, a, b, c, where a = 2,
b = 5, and c = 2.

2.1. Lozenge tilings of a hexagon

Consider the problem of tiling a hexagon with sides of length a, b, c, a, b, c drawn
on the triangular lattice by lozenges that are defined as pairs of triangles glued
together (see Fig. 1a). Here a, b, and c are any positive integers, and we assume
that the side of an elementary triangle has length 1. There are three different

types of lozenges: , , and . Such tilings (that are in a bijective correspon-
dence with boxed plane partitions) can be interpreted in a variety of ways (see
Fig. 2):

(1) As dimers (or perfect matchings) on the dual hexagonal lattice.
(2) As sets of nonintersecting Bernoulli paths following lozenges of two types

( and ) with prescribed beginnings and ends.
(3) As stepped surfaces made of 1× 1× 1 cubes.
(4) As interlacing configurations of lattice points — centers of lozenges of one of

the types, say, , as on Fig. 2. Such configurations must have a prescribed
number of points in each horizontal section that may depend on the section.

Our first goal is to match this combinatorial object with a basic representation
theoretic one.

2.2. Representations of unitary groups

Denote by U(N) the (compact Lie) group of all the unitary matrices1 of size N .
A (finite-dimensional) representation of U(N) is a continuous map

T : U(N) → GL(m,C)

(for somem = 1, 2, . . .) which respects the group structure: T (UV ) = T (U)T (V ),
U, V ∈ U(N). A representation is called irreducible if it has no invariant sub-
spaces E ⊂ Cm (E 6= 0 or Cm), i.e., such that T (U(N))E ⊂ E.

1U∗ = U−1, where U∗ is the conjugate transpose.
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(1) (2)

(3) (4)

Fig 2. Various interpretations of a lozenge tiling.

The classification of irreducible representations of U(N) (equivalently, of
GL(N,C) by analytic continuation — “unitary trick” of H. Weyl) is one of
high points of the classical representation theory. It is due to Hermann Weyl in
mid-1920’s. In order to understand how it works, let us restrict T to the abelian
subgroup of diagonal unitary matrices

HN :=
{
diag(eiϕ1 , . . . , eiϕN ) : ϕ1, . . . , ϕN ∈ R

}
.

Any commuting family of (diagonalizable2) matrices can be simultaneously di-
agonalized. In particular, this is true for T (HN ). Hence, for 1 ≤ j ≤ m,

Cm =

m⊕

j=1

Cvj , T
(
diag(eiϕ1 , . . . , eiϕN )

)
vj = tj(e

iϕ1 , . . . , eiϕN ) · vj ,

where each tj is a continuous homomorphism HN → C. Any such homomor-
phism has the form

t(z1, . . . , zN ) = zk1

1 . . . zkN

N , k1, . . . , kN ∈ Z.

Each N -tuple (k1, . . . , kN ) ∈ ZN for t = tj , 1 ≤ j ≤ m, is called a weight of the
representation T . There is a total of m weights (which is the dimension of the
representation).

2Any finite-dimensional representation of a finite or compact group, in particular, U(N),
is unitary in a suitable basis (e.g., see [84]), hence all our matrices are diagonalizable.
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Theorem 2.1 (H. Weyl, see, e.g., [82, 84]). Irreducible representations of U(N)
are in one-to-one correspondence with ordered N -tuples λ = (λ1 ≥ · · · ≥ λN ) ∈
ZN .

The correspondence is established by requiring that λ is the unique highest
(in lexicographic order) weight of the corresponding representation. Then the
generating function of all weights of this representation Tλ can be written as

Trace
(
Tλ
(
diag(z1, . . . , zN)

))

=
∑

(k1, . . . , kN ) weight of Tλ

zk1
1 . . . zkN

N =
det
[
z
N+λj−j
i

]N
i,j=1

det
[
zN−j
i

]N
i,j=1

. (1)

Note that the denominator in (1) is the Vandermonde determinant which
evaluates to

det
[
zN−j
i

]N
i,j=1

=
∏

1≤i<j≤N

(zi − zj).

The numerator in (1) is necessarily divisible by the denominator because of its
skew-symmetry with respect to zi ↔ zj, and thus the ratio is a finite linear

combination of the monomials of the form zk1
1 . . . zkN

N , k1, . . . , kN ∈ Z (i.e., an
element of C[z±1

1 , . . . , z±1
N ]S(N)).

The polynomials Trace(Tλ) are called Schur polynomials, after Issai Schur,
who used them in the representation theory of the symmetric group in his thesis
around 1900. However, one of the earliest appearances of them dates back to
Cauchy [32] and Jacobi [53], over 100 years before Weyl’s work. The Schur
polynomials are denoted by sλ = Trace(Tλ). Schur polynomials are, generally
speaking, symmetric homogeneous Laurent polynomials in N variables.

While the ratio of determinants formula (1) is beautiful and concise (it is
a special case of Weyl’s character formula which works for any compact semi-
simple Lie group), is does not describe the set of weights explicitly. To do that,
we need an elementary

Lemma 2.2. For any λ = (λ1 ≥ · · · ≥ λN ) ∈ ZN ,

sλ(z1, . . . , zN) =
∑

µ≺λ

sµ(z1, . . . , zN−1)z
|λ|−|µ|
N , (2)

where the sum is taken over µ = (µ1, . . . , µN−1) ∈ ZN−1, the notation µ ≺ λ
means the interlacing

λN ≤ µN−1 ≤ λN−1 ≤ · · · ≤ λ2 ≤ µ1 ≤ λ1,

and |λ| =∑N
j=1 λj, |µ| =

∑N−1
j=1 µj.

Proof. Clear the denominators in (2) and compare coefficients by each of the
monomials zk1

1 . . . zkN

N .
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Applying this lemma N times, we see that the weights are in one-to-one
correspondence with interlacing triangular arrays of integers

λN λN−1 . . . . . . . . . . . . λ2 λ1

µN−1 µN−2 . . . µ2 µ1

νN−2 ν1

≤≤≤

≤ ≤

≤

≤

≥≥ ≥

≥

≥

≥

≥
. . . . . . . . . . . .

ω1

(3)

Such arrays are called Gelfand–Tsetlin schemes/patterns, and they will play a
prominent role in what follows.

Observe that if we shift all leftmost entries of a Gelfand–Tsetlin scheme of
depth (or height) N by 0, the second to left ones by 1, etc., then in the end we
obtain a similar array where some of the inequalities become strict:

λN λN−1 + 1 . . . . . . . . . λ2 +N − 2 λ1 +N − 1

µN−1 µN−2 + 1 . . . µ2 +N − 3 µ1 +N − 2

νN−2 ν1 +N − 3

<<<

< <

<

<

≥≥ ≥

≥ ≥

≥

≥
. . . . . . . . . . . . . . . . . .

ω1

(4)

Proposition 2.3. Lozenge tilings of the hexagon with sides a, b, c, a, b, c (Fig. 1)
are in one-to-one correspondence with weights of the irreducible representation
of the unitary group U(a+ b) with highest weight

λ =
(
b, b, . . . , b︸ ︷︷ ︸
a times

, 0, 0, . . . , 0︸ ︷︷ ︸
c times

)
. (5)

Proof. By picture, see Fig. 3. If we coordinatize by taking the centers of the
vertical lozenges in the coordinate system on the picture, then we read off the
shifted Gelfand–Tsetlin schemes (4).

The total number of weights of Tλ (or, equivalently, the dimension of the
representation) was denoted by m = m(λ) above, and it is given by

Proposition 2.4. For any λ = (λ1 ≥ · · · ≥ λN ) ∈ ZN ,

dim Tλ = sλ
(
1, 1, . . . , 1︸ ︷︷ ︸

N

)
=

∏

1≤i<j≤N

(λi − i)− (λj − j)

j − i
. (6)
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ν

η

0

b = 4

c = 3
a = 2

N = a+ c = 5

Fig 3. On the correspondence between lozenge tilings of a hexagon and weights.

This is a special case of Weyl’s dimension formula (which again works for
any compact semi-simple Lie group).

Proof. Follows from (1) either directly (by the L’Hôpital’s rule), or through the
substitution (z1, . . . , zN ) = (1, q, q2, . . . , qN−1) and the limit q → 1.

2.3. Distribution of lozenges on a horizontal slice

Consider the uniform probability measure Proba,b,c on the space of all lozenge
tilings of the hexagon with sides a, b, c, a, b, c (see Fig. 1). The normalizing factor
in the measure Proba,b,c (the so-called partition function) is given in (6) with λ
as in (5).

Remark 2.5. For tilings of the hexagon with sides of length a, b, c, a, b, c the
partition function was first computed in a nicer product form

s(b,b,...,b,0,0,...,0) =

a∏

i=1

b∏

j=1

c∏

k=1

i+ j + k − 1

i+ j + k − 2

by MacMahon [61].

Let us focus on what happens when we consider one horizontal slice of
our uniformly random lozenge tiling. As above, we coordinatize it by loca-
tions of centers of the vertical lozenges. It is easiest to assume that the slice
is close enough to one of the two horizontal boundaries, say, the lowest one (see
Fig. 4).

Proposition 2.6. For any h, 0 ≤ h ≤ min(a, c), the distribution of lozenges
on the horizontal slice at height h has the form
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a

b

c

h ≤ min(a, c)

xh x1x2. . .

Fig 4. Horizontal slice of a lozenge tiling.

Proba,b,c,h{x1, . . . , xh} = const(a, b, c, h) ·
∏

1≤i<j≤h

(xi − xj)
2

h∏

i=1

wa,b,c,h(xi),

(7)

where

wa,b,c,h(x) =
(b+ c− 1− x)! (a− h+ x)!

x! (b+ h− 1− x)!
. (8)

Remark 2.7. Probability measures of the form (7) with arbitrary positive
weight function w(·) are known as orthogonal polynomial ensembles as they are
closely related to the orthogonal polynomials with weight w. The measure (7)
itself is often referred to as the Hahn orthogonal polynomial ensemble, as this
particular weight w (8) corresponds to the classical Hahn orthogonal polynomi-
als. See, e.g., [58] and references therein for details.

Proof. We can cut the enumeration problem into two that look like those on
Fig. 5, and then multiply the results. Each of the two problems (compute the
number of tilings of the corresponding region with fixed top row) is solved by
the dimension formula (6).

The computation of Proposition 2.6 already allows to see asymptotic transi-
tions for a fixed h (for example, h = 1). We can rewrite (8) as

wa,b,c,h(x) =
(b+ c− 1)! (a− h)!

(b + h− 1)!
× (9)

×
[
1

x!
· (a− h+ 1) . . . (a− h+ x) · (b + h− 1) . . . (b + h− x)

(c+ b− 1) . . . (c+ b− x)

]
.

One can consider the following limit regimes:

(1) If a, b, c→ ∞ so that ab/c→ t, the first term just contributes to a constant,
while the second one converges to tx/x!.
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fill

xh x1x2. . .

x1 xhx2 . . .

fill

Fig 5. Computing the distribution of lozenges on a horizontal slice (cf. Fig. 4) amounts to
two enumeration problems.

(2) In a similar way, if we keep a finite and send b, c → ∞ in such a way that
b/(b+ c) → ξ, 0 < ξ < 1, then we see that the relevant part of (9) converges
to

(a− h+ 1)(a− h+ 2) . . . (a− h+ x)

x!
ξx.

(3) A slightly more complicated limit transition would be to take a, b, c→ ∞ so
that the triple ratio a : b : c has a finite limit. Then Stirling’s formula shows
that after proper shifting and scaling of (x1, . . . , xh), which would not affect
the factor

∏
1≤i<j≤h(xi − xj)

2, the nontrivial part of wa,b,c,h(x) converges

to a Gaussian weight e−x2/2, x ∈ R.

There is also a representation-theoretic way to view these results. Restricting
to a fixed horizontal slice means that we only care about the restriction of
our representation of U(a + c) (recall Proposition 2.3) to the subgroup U(h)
of matrices which are nontrivial (i.e., different from Id) only in the top-left
h× h corner. In terms of weights, we only care about powers of z1, . . . , zh and
substitute zh+1 = · · · = zN = 1. This is equivalent to saying that the probability
(7) of (x1, . . . , xh) = (µ1+h− 1, µ2+h− 2, . . . , µh) is the normalized coefficient
of sµ(z1, . . . , zh) in the identity

sλ(z1, . . . , zh, 1, . . . , 1)

sλ(1, . . . , 1)
=

∑

µ1≥···≥µh

Proba,b,c,h{µ} ·
sµ(z1, . . . , zh)

sµ(1, . . . , 1)
, (10)

where λ is as in (5), and we are dividing by the normalizing constants to have
the “Prob” coefficients add up to 1. This corresponds to looking at relative
dimensions of isotypical subspaces (i.e., those that transform according to fixed
irreducible representation) rather than the actual ones.

The first two of the above three limit transitions turn (10) into

ab

c
→ t :

h∏

i=1

et(zi−1) =
∑

µ1≥···≥µh

Probt,h{µ} ·
sµ(z1, . . . , zh)

sµ(1, . . . , 1)
;

(11)
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b

b+ c
→ ξ :

h∏

i=1

(1 − ξ)a

(1 − ξzi)a
=

∑

µ1≥···≥µh

Proba,ξ,h{µ} ·
sµ(z1, . . . , zh)

sµ(1, . . . , 1)
.

(12)

In fact, these two limits ab/c → t and b/(b + c) → ξ correspond to certain
infinite-dimensional representations of the infinite-dimensional unitary group
U(∞) = lim−→U(N).

The third (Gaussian) limit is the eigenvalue projection of the matrix Fourier
transform identity

∫

Herm(N)

eiTrace(AB)M(dB) = e−Trace(A2)/2,

where Herm(N) is the space of N × N Hermitian (H∗ = H) matrices, A ∈
Herm(N), and M(dB) is the probability measure on Herm(N) with the density

e−Trace(B2)/2dB also known as the Gaussian Unitary Ensemble (or GUE ). This
limit is a special case of the so-called quasi-classical limit in representation
theory that degenerates “large” representations to probability measures on (co-
adjoint orbits of) the associated Lie algebra, e.g., see [76, 51, 50]. For a broad
survey of quantization ideas in representation theory see e.g. [57] and references
therein.

2.4. Scalar operators and observables

We are interested in more complex limit transitions than those in §2.3, and
for accessing them the following representation theoretic thinking is useful. Our
probability weights (7) arise as relative dimensions of the isotypical subspaces
in the representation space for U(N). Moreover, these subspaces are blocks of
identical irreducibles with respect to the action of the smaller group U(h).

2.4.1. Locally scalar operators

The problem of decomposing a representation on irreducible components is often
referred to as the problem of (noncommutative) harmonic analysis. It can be
viewed as a noncommutative Fourier transform — an analogue of the classical
Fourier transform when R acts by shifts on L2(R). The “best” way to solve
such a problem would be to find operators in the representation space which
project to a given isotypical component. For the classical Fourier transform,
these operators have the form

f 7→
∫ +∞

−∞
e−ixpf(x)dx.

For the action of the symmetric group, such operators are known under the
name Young symmetrizers, they date back to the earliest days of representa-
tion theory. However, even if one can construct such operators, they are quite
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complicated. The “next best” thing is to find operators which are scalar in
each irreducible representation (the projection operators take value 1 in one
irreducible representation, and 0 in all other irreducible representations). By a
simple Schur’s lemma, such operators are exactly those that commute with the
action of the group.

2.4.2. Dilation operators

Observe that U(h) has a nontrivial center — scalar matrices of the form eiϕ · 1,
ϕ ∈ R. Their action on elements diag(z1, . . . , zh) ∈ Hh amounts to multiplying
each zj by eiϕ, and their action on a vector of weight (k1, . . . , kh) ∈ Zh is the
multiplication by eiϕ|k| = eiϕ(k1+···+kh) (see §2.2). Hence, using the homogeneity
of the Schur polynomials we see that on an irreducible representation of U(h)
with highest weight µ = (µ1 ≥ · · · ≥ µh) such an operator acts as the scalar
operator eiϕ|µ| · 1.

Let us now apply such an operator, viewed simply as the dilation opera-
tor (Dϕ f)(z1, . . . , zh) = f(eiϕz1, . . . , e

iϕzh), to the decomposition identity (11)
defining Probt,h{µ}:

h∏

j=1

et(e
iϕzj−1) =

∑

µ1≥···≥µh

eiϕ|µ| Probt,h{µ} ·
sµ(z1, . . . , zh)

sµ(1, . . . , 1)

(clearly, Dϕ sµ = eiϕ|µ|sµ). Setting z1 = · · · = zh = 1 above, we get

eht(e
iϕ−1) =

∑

µ1≥···≥µh

eiϕ|µ| Probt,h{µ}.

This immediately tells us (“for free”), that |µ| has the Poisson distribution with
parameter ht because the left-hand side is the characteristic function of that
distribution.

2.4.3. Quadratic Casimir–Laplace operator

Going further, the first nontrivial example of an operator which commutes with
the action of U(h) is the so-called quadratic Casimir–Laplace operator C2. Its
action on functions on Hh is given by

(C2f)(z1, . . . , zh)

=
∏

1≤i<j≤h

(zi − zj)
−1

h∑

r=1

(
zr

∂

∂zr

)2 ∏

1≤i<j≤h

(zi − zj) f(z1, . . . , zh).

Such operators exist for all semi-simple Lie groups and are one of the basic
representation-theoretic objects. Also,

C2 −
h−1∑

j=1

j2 (13)
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is the (projection to eigenvalues of the) generator of the Brownian motion on
U(h). In other words, (13) is the generator of the circular Dyson Brownian
motion [40, 39]. See also §4.1 below for a related Markov dynamics.

It is immediate to see (using the ratio of determinants formula (1) and the
fact that (z ∂

∂z )z
k = kzk) that the action of the quadratic Casimir–Laplace

operators on the Schur polynomials is diagonal, and

C2sµ =

h∑

i=1

(µi + h− i)2sµ.

We could now proceed with the application of C2 to (11). However, let us
first note that the dilation operators Dϕ can be written in a form rather similar
to C2:

(Dϕ f)(z1, . . . , zh)

=
∏

1≤i<j≤h

(zi − zj)
−1 e

iϕ

(

h
∑

r=1
zr

∂
∂zr

−h(h−1)
2

)

∏

1≤i<j≤h

(zi − zj) f(z1, . . . , zh).

Indeed, the desired eigenrelation Dϕ sµ = eiϕ|µ|sµ again follows from (1) and

the fact that eiϕz ∂
∂z zk = eiϕkzk.

2.4.4. A q-deformation

Let us now note that we have a general recipe on our hands of constructing
operators which have Schur functions as their eigenfunctions. Namely, for any
operator of the form

(D f)(z1, . . . , zh) =
∏

1≤i<j≤h

(zi − zj)
−1
( h∑

r=1

D
(zr)

) ∏

1≤i<j≤h

(zi − zj) f(z1, . . . , zh)

(14)

with

D
(z) zk = dkz

k,

we have

D sµ =
( h∑

i=1

dµi+h−i

)
sµ. (15)

For example, we can take

D
(z) = Tq,z , (Tq,z f)(z) = f(qz), dk = qk,

where q ∈ C is a parameter.



From representation theory to Macdonald processes 15

Then using (14) we obtain a q-difference operator that can be rewritten in
the form

D
(1) =

h∑

i=1

∏

j 6=i

qzi − zj
zi − zj

Tq,zi , (16)

and (15) gives

D sµ =
( h∑

i=1

qµi+h−i
)
sµ. (17)

2.5. Contour integrals and the density function

We can now apply D
(1) (16) to the identity (11) defining the measure Probt,h.

This gives

e
t

h
∑

r=1
(zr−1)

h∑

i=1

∏

j 6=i

qzi − zj
zi − zj

et(qzi−zi) (18)

=
∑

µ1≥···≥µh

( h∑

r=1

qµr+h−r
)
Probt,h{µ} ·

sµ(z1, . . . , zh)

sµ(1, . . . , 1)
.

As before, we would like to substitute z1 = · · · = zh = 1 in the above identity.
However, observe that the left-hand side is not well-suited for that. A standard
trick helps — the left-hand side can be rewritten as a simple contour integral:

Lemma 2.8. Let f : C → C be a holomorphic function. Then

h∑

r=1

∏

j 6=r

qzr − zj
zr − zj

· f(qzr)
f(zr)

=
1

2πi

∮

{w}

h∏

j=1

qw − zj
w − zj

1

qw − w

f(qw)

f(w)
dw,

where the integration contour goes around z1, . . . , zh is the positive direction.

Using the above lemma and setting z1 = · · · = zh = 1, we read from (18):

1

2πi

∮

|w−1|=ε

(
qw − 1

w − 1

)h
1

(q − 1)w
et(q−1)wdw (19)

=
∑

µ1≥···≥µh

( h∑

r=1

qµr+h−r
)
Probt,h{µ}.

The quantity in the right-hand side of (19) does not seem very probabilistic,
but we can now use the arbitrariness of the parameter q. For any n ∈ Z, we can
compare the coefficients of qn in both sides of (19). This amounts to integrating
the left-hand side again (with dq/qn+1), and thus yields:
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Theorem 2.9. For any t ≥ 0 and h = 1, 2, . . .,

Probt,h
{
n ∈ {µi + h− i}hi=1

}
(20)

=
1

(2πi)2

∮

|q|=ε

dq

qn+1

∮

|w−1|=ε

(
qw − 1

w − 1

)h
et(q−1)w

(q − 1)w
dw.

The left-hand side of (20) is a very meaningful probabilistic quantity —
it is the probability of seeing a vertical lozenge at any given location on the
horizontal slice (cf. Fig. 4). This is the so-called density function of the measure
Probt,h. Furthermore, we see that the right-hand side of (20) is well-suited for
asymptotics. We perform the asymptotic analysis in the next section.

Remark 2.10. Theorem 2.9 is a special case of a more general formula that rep-
resents correlation functions of the so-called Schur measures as multiple contour
integrals. See [24] and references therein for details.

3. Asymptotics of tiling density via double contour integrals

Here we perform an asymptotic analysis of the density function (20) of the
measure Probt,h on the hth horizontal slice in the regime

t = τL, n = νL, h = ηL, L→ ∞, (21)

where n is the point of observation in (20), which also must be scaled to yield
nontrivial asymptotics. The limit regime (21) is quite nontrivial and is not
achievable via elementary tools (in contrast with the limit transitions in §2.3).
The reader may want to peek at Figures 10 and 11 below to see what type of
description we are aiming at.

Changing variables q 7→ v = wq, dq = dv/w in the left-hand side of (20) gives

Probt,h
{
n ∈ {µi + h− i}hi=1

}

=
1

(2πi)2

∮

|v|=ε

∮

|w−1|=ε

dv · w−1

vn+1w−n−1

(
v − 1

w − 1

)h
et(v−w)dw

v − w

=
1

(2πi)2

∮

Γ0

dv

v

∮

Γ1

dw
etv(v − 1)hv−n

etw(w − 1)hw−n

1

v − w
.

Here by Γ0 and Γ1 we have denoted small positively oriented contours around
0 and 1, respectively. Further analysis uses the original idea of Okounkov [69]
and largely follows [22]. We observe that the integrand above has the form

eL(F (v)−F (w))

v(v − w)
, F (z) := τz + η ln(z − 1)− ν ln z.

If we manage to deform the contours in such a way that ℜ(F (v)−F (w)) < 0 on
them except for possibly finite number of points (where ℜ denotes the real part),
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0 1

zmin

zmax

0 1

v

w

zmax zmin

Fig 6. Case 1. Plot of ℜ(F (z)) (top), and the deformed contours of integration (bottom). In
this case the two critical points are real and > 1.

then our integral would asymptotically vanish as L → ∞. The deformation
depends on the location of the critical points of F (z), i.e., of the roots of the
equation

F ′(z) =
τz(z − 1) + ηz − ν(z − 1)

z(z − 1)
= 0. (22)

The discriminant of the numerator has the form

discr =
(
ν − (

√
τ −√

η)2
)(
ν − (

√
τ +

√
η)2
)
. (23)

We will now consider all possible cases one by one.

Case 1.
√
ν >

√
τ +

√
η. In this case both roots of (22) are real and greater

than 1. The plot of ℜ(F (z)) looks as on Fig. 6 (top). Moving the v contour to the
level line ℜ(F (v)) = ℜ(F (zmin)) and the w contour to the level line ℜ(F (w)) =
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Fig 7. Case 2. Contour plot of ℜ(F (z)− F (zc)) (left), and the deformed contours (right).

ℜ(F (zmax)), we achieve that ℜ(F (v) − F (w)) = F (zmin)− F (zmax) < 0, which
implies the desired vanishing. However, in the process of deformation, the v
contour, which was originally a small circle around the origin, has swallowed
the w contour, see Fig. 6 (bottom). Because of (v − w)−1 in the integrand, we
have to compensate the result of moving the contours by subtracting the residue

− 1

2πi

∮

Γ1

dw Res
v=w

1

v

eL(F (v)−F (w))

v − w
= − 1

2πi

∮

Γ1

dw

w
= 0.

Thus, we see that for
√
ν >

√
τ +

√
η, the density of vertical lozenges asymp-

totically vanishes.

Case 2. |√τ−√
η| < √

ν <
√
τ+

√
η.In this case, two critical points — solutions

of (22) — are complex conjugate. Consider the contour plot of ℜ(F (z)−F (zc)),
where we have shifted F (z) by the value of F at the upper critical point, F ′(zc) =
0, ℑ(zc) > 0 (ℑ denotes the imaginary part). This contour plot looks like Fig. 7
(left). Deforming the w contour into the region where ℜ(F (w)) is greater than
ℜ(F (zc)), and the v contour into the region where ℜ(F (v)) is less than ℜ(F (zc)),
we again achieve that ℜ(F (v)−F (w)) < 0 on the deformed contours. However,
in the process of deformation, we pick up the residue

− 1

2πi

∫ zc

z̄c

dw Res
v=w

1

v

eL(F (v)−F (w))

v − w
=

1

2πi

∫ zc

z̄c

dw

w
=

arg(zc)

π
,

which is the limiting density function for vertical lozenges in this regime.

Case 3. 0 <
√
ν < |√τ −√

η|. This final case contains two subcases depending
on whether

√
τ >

√
η or

√
τ <

√
η.

In the first one, the plot of ℜ(F (z)) looks as on Fig. 8 (upper). Deforming the
integration contours to level lines (similarly to what was done before in Case 1)
requires no residue-picking. Thus, the limiting density is zero for the subcase√
τ >

√
η.

In the second subcase, the picture is slightly different, see Fig. 8 (lower). The
familiar deformation of the contours to the level lines now requires that the w
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0 1

zmin

zmax

0 1

zmin

zmax

Fig 8. Case 3. Plots of ℜ(F (z)) for two subcases, τ > η (upper) and τ < η (lower).

0 1

w

v

zmax zmin

Fig 9. Case 3. Deformed contours when τ < η.

contour swallows the v contour (see Fig. 9). This results in the extra residue

− 1

2πi

∮

Γ0

dv

v
Res
w=v

eL(F (v)−F (w))

v − w
=

1

2πi

∮

Γ0

dv

v
= 1.

Thus, the limiting density is 1 in this case.
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ν

η

η = τ

ν = τ

discr = 4ητ − (η+ τ − ν)2 = 0

ρ =
arg(zc)

π

ρ = 0

ρ = 0

ρ = 1

Fig 10. Limiting density of the vertical lozenges in the (ν, η)-plane.

Fig 11. Simulation of the limiting distribution of lozenges. See also [41].

Summarizing, we see that the asymptotic density of the vertical lozenges is
nontrivial for each given τ , inside the parabola discr = 0 (23) in the (ν, η)-plane.
Outside of this parabola, the density of the vertical lozenges either vanishes or
tends to 1, signaling the frozen parts (facets) of the limit shape, see Figures 10
and 11.

In a similar way, using products of operators D
(1) with different values of

q, one can extract integral representations for higher correlation functions of
vertical lozenges (i.e., probabilities that a given set of locations is occupied by
vertical lozenges). Those integral representations can be analyzed exactly in the
same fashion as above, this was done in [22]. Indeed, if one knows (here h is
fixed, but one can also handle different h’s)

∑

µ1≥···≥µh

( h∑

i=1

qµi+h−i
1

)
. . .
( h∑

i=1

qµi+h−i
s

)
Probt,h{µ}
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for any q1, . . . , qs ∈ C, one can extract the order s correlation function by
looking at coefficients of monomials qn1

1 qn2
2 . . . qns

s . The result reproduces known
formulas for the correlation functions of the so-called Schur processes, e.g., see
[24] and references therein.

It should also be possible to carry out a similar program for the case of the
growing hexagon with sides a, b, c, a, b, c when the triple ratio a : b : c remains
constant. This would require analyzing the asymptotics of ratios of the form

sλ(q1, . . . , qs, 1, . . . , 1)

sλ(1, 1, . . . , 1)

with growing λ as in (5), which can probably be done via recently developed
techniques of [46].

In a different way, integral representations for the correlation functions in the
hexagon were recently obtained and asymptotically analyzed in [70, 71, 72].

4. Markov dynamics

Our next goal is to add an extra dimension to our probabilistic models by
introducing suitable Markov evolutions on them. This is not obvious and requires
preliminary work.

4.1. Dyson Brownian motion and its discrete counterparts

A hint at the existence of a nontrivial Markov dynamics comes from the relation
to random matrices mentioned before (in particular, see the third limit regime
in §2.3). Indeed, a GUE matrix of size N × N has density with respect to the
Lebesgue measure on the linear space Herm(N) of Hermitian N × N matrices
given by

M(dX) = e−Trace(X2)/2dX =

N∏

i=1

e−x2
ii/2

∏

1≤i<j≤N

e−(ℜxij)
2

e−(ℑxij)
2

dX,

where X = [xij ]
N
i,j=1. Thus, the N

2 quantities

(xii,
√
2 · ℜxij ,

√
2 · ℑxij) (24)

are independent identically distributed standard normal random variables. Fol-
lowing Dyson [39], one can replace these variables by standard Brownian mo-
tions. A nontrivial computation shows that the corresponding Markov process
on Hermitian matrices projects to a Markov process on the spectra of matri-
ces. The generator of the process on the spectra is given by (here Spec(X) =
(x1, . . . , xN )):

1

2

N∑

i=1

∂2

∂x2i
+

N∑

i=1

(∑

j 6=i

1

xi − xj

) ∂

∂xi
(25)
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=
∏

1≤i<j≤N

(xi − xj)
−1 ◦ 1

2

N∑

i=1

∂2

∂x2i
◦

∏

1≤i<j≤N

(xi − xj).

Here on the right, ◦ means composition of operators: First, we multiply by
the Vandermonde determinant

∏
i<j(xi − xj), then apply the Laplacian, and

after that divide by the Vandermonde determinant, similarly to (14) above.
The projection of the (random) matrix X(t) ∈ Herm(N) (evolving according to
standard Brownian motions of its elements (24)) to the spectrum then has the
distribution density (see for example [4])

const ·
∏

1≤<j≤N

(xi − xj)
2

N∏

i=1

e−x2
i/2t.

The dynamics with generator (25) (called the Dyson Brownian motion) can
be easily mimicked for all the ensembles of the form const·∏i<j(xi−xj)2

∏
i w(xi)

considered in §2.3. Let us focus on the Poisson (ab/c → t) case, when w(x) =
tx/x!, x ∈ Z≥0. Consider a Markov jump process with generator

L
(N)
Poisson =

∏

1≤i<j≤N

(xi − xj)
−1 ◦

N∑

i=1

∇i ◦
∏

1≤i<j≤N

(xi − xj), (26)

where (∇f)(x) = f(x+1)−f(x) is the generator of the standard Poisson process,
and ∇i acts as ∇ on the ith coordinate. One easily checks that the measures
with w(x) = tx/x! are generated by the above Markov process started from the
initial condition (x1, . . . , xN ) = (N − 1, N − 2, . . . , 1, 0).

The process with generator (26) can be obtained by conditioning independent
Poisson processes not to intersect until time +∞, and also to grow at the same
rate:

lim
t→∞

x1
t

= · · · = lim
t→∞

xN
t
.

(Different growth rates of different xi’s will result in conjugating
∑N

i=1 ∇i by
a different function, cf. [59, 26].) This is similar to the stationary version of
the Dyson Brownian motion being obtained from independent one-dimensional
standard Brownian motions by conditioning on the event that they never inter-
sect, and, moreover, stay within the distance o(

√
time) from the origin as time

goes to plus or minus infinity.

4.2. Gibbs property and stochastic links

There is also another “perpendicular” Markovian structure on the measures from
§2.3. Observe that the uniform measure on lozenge tilings has the following
property: If we pick a domain inside the hexagon, then fixing the boundary
lozenge configuration induces the uniform measure on tilings of the interior.
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This seemingly trivial observation becomes useful when the hexagon becomes
infinitely large in some way (as in §2.3). Then the global uniform measure makes
no sense, but this property survives. We will refer to it as to the Gibbs property.

In particular, fixing h vertical lozenges on the horizontal slice of height h
(as on Fig. 4) induces the uniform measure on the set of all configurations
of lozenges between this slice and the lower border (height zero). Thus, given

locations x(h) = (x
(h)
1 , . . . , x

(h)
h ) of the vertical lozenges on the h-th slice, the

distribution of h − 1 vertical lozenges at height h − 1 is given by the ratio
(assuming that x(h−1) interlaces x(h))

Prob
{
x(h−1) |x(h)

}

=
# of GT schemes of depth h− 1 with top row x(h−1)

# of GT schemes of depth h with top row x(h)
(27)

=

∏
1≤i<j≤h−1

x
(h−1)
i − xh−1

j

j − i

∏
1≤i<j≤h

x
(h)
i − xhj
j − i

= (h− 1)! ·

∏
1≤i<j≤h−1

(x
(h−1)
i − xh−1

j )

∏
1≤i<j≤h

(x
(h)
i − xhj )

.

(we have used Proposition 2.4). We will denote the above probabilities by
Λh
h−1(x

(h);x(h−1)).
Note that the horizontal slices of measures that we obtain in §2.3 by taking

limits ab/c → t and b/(b + c) → ξ of the hexagon are also related by these
stochastic links Λh

h−1. In the GUE limit, the formula remains the same, except

that the x
(h−1)
i , x

(h)
i are now reals, not integers. In this case the above formula

(27) gives the density of a Markov kernel with respect to the Lebesgue measure.

4.3. Example of a two-dimensional dynamics

The two Markov processes discussed above (the Dyson Brownian motion and its

discrete analogue L
(N)
Poisson) are quite canonical, but they have one deficiency —

they are one-dimensional (in the sense that the state space consists of parti-
cle configurations in Z1 or R1). We would like to construct a two-dimensional
process which has interlacing two-dimensional arrays (3) as its state space, and
that “stitches together” the above one-dimensional processes in a natural way.
We begin by considering one such process which is constructed as follows.

Consider random words built from the alphabet {1, 2, . . . , N} as follows: Each
letter j is appended at the end of the word according to a standard (= rate 1)
Poisson process’ jumps, and different letters appear independently. We can en-
code this as on Fig. 12: We draw a star (∗) in row j at the time moment when a
new letter j is added. The stars in each row form a Poisson process, and different
rows are independent.

From these data we construct a Gelfand–Tsetlin scheme (3) of depth N writ-
ten as

λ = (λ(1) ≺ λ(2) ≺ . . . ≺ λ(N)), λ(h) = (λ
(h)
1 ≥ · · · ≥ λ

(h)
h ),
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time

1

2

3

N

.

..

.

..

∗

∗ ∗

∗

∗
∗

∗
∗

∗

∗

Fig 12. Encoding random words.

time

1

2

3

h

N

∗

∗ ∗

∗

∗
∗

∗
∗

∗

∗

Fig 13. Nonintersecting paths used to determine λ
(h)
1 + λ

(h)
2 + · · · + λ

(h)
j , see (28). On the

picture, h = 5, j = 2, and λ
(5)
1 + λ

(5)
2 = 7.

as follows (see Fig. 13):

λ
(h)
1 + λ

(h)
2 + · · ·+ λ

(h)
j =




the maximal number of (∗) one can collect on
Fig. 12 along j nonintersecting up-right paths
that connect points (1, 2, . . . , j) on the left bor-
der (time = 0), and (h− j+1, h− j+2, . . . , h)
on the right border (time = t > 0)


 .

(28)

In particular, we see that λ
(h)
1 , h = 1, . . . , N , is the length of the longest

increasing subsequence of letters in the subword made of letters {1, 2, . . . , h}.
Moreover, λ

(h)
1 + · · ·+λ

(h)
h is the total number of letters 1, 2, . . . , h in our word.

Proposition 4.1. After time t, the distribution of the Gelfand–Tsetlin scheme
λ defined by (28) is the same as the ab/c → t limit of the uniform measure on
tilings of hexagon. That is, to obtain the measure on Gelfand–Tsetlin schemes,
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λ
(h+1)
jλ

(h+1)
j+1

λ
(h)
j

Fig 14. Possible directions of move propagation, see Proposition 4.2.

one takes the following distribution of the top row λ(N):

const ·
∏

1≤i<j≤N

(λ
(N)
i − λ

(N)
j )2

N∏

i=1

tλ
(N)
j

λ
(N)
j !

,

and projects it down by the stochastic links, i.e., multiplies it by

ΛN
N−1(λ

(N), λ(N−1))ΛN−1
N−2(λ

(N−1), λ(N−2)) . . .Λ2
1(λ

(2), λ(1)).

Proof. This is essentially Greene’s theorem for the Robinson–Schensted cor-
respondence coupled with explicit formulas for the number of standard and
semistandard Young tableaux. See, e.g., [49, 73, 79].

As we are interested in time evolution, the following statement is relevant:

Proposition 4.2. The Markov process on random words (i.e., the process of
adding new letters according to standard Poisson processes) projects to a Markov
process on Gelfand–Tsetlin schemes defined above. It can be described by the
following rules:

• Each “particle” λ
(h)
1 has an independent Poissonian clock of rate 1. When the

clock rings, the particle jumps by 1, i.e., λ
(h)
1 7→ λ

(h)
1 + 1.

• When any particle λ
(h)
j moves by 1, it triggers either the move λ

(h+1)
j 7→

λ
(h+1)
j + 1, or λ

(h+1)
j+1 7→ λ

(h+1)
j+1 + 1 (exactly one of them), see Fig. 14. The

second one is chosen generically, while the first one is chosen only if λ
(h+1)
j =

λ
(h)
j , i.e., if the move λ

(h)
j 7→ λ

(h)
j + 1 violated the interlacing constraint.

Proof. See [27] (in particular, §7) and references therein.

The Markov dynamics on Gelfand–Tsetlin schemes from Proposition 4.2 turns
out to have the following properties:

(I) For each h ≥ 1 and any initial condition, the evolution of {λ(1), . . . , λ(h)}
is Markovian (i.e., lower rows do not care about the upper ones).

(II) For each h ≥ 1, the evolution preserves the Gibbs property (§4.2) on
{λ(1), . . . , λ(h)}. That is, if one starts with an initial condition of the form

Prob{λ(1), . . . , λ(h)} = mh(λ
(h))Λh

h−1(λ
(h), λ(h−1)) . . .Λ2

1(λ
(2), λ(1)),
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then after running the dynamics for any time t > 0, the distribution
of {λ(1), . . . , λ(h)} will be of the same form with a different probability
measure m̃h.

(III) For each h ≥ 1, the map mh 7→ m̃h is the time t evolution of the Markov

process with the generator L
(h)
Poisson (26).

While (I) is obvious, (II) and (III) are not; they follow e.g. from Theorem 4.5
below.

There is one more property which can be easily observed from the random
words description of the dynamics. Namely, the projection of the process of

Proposition 4.2 to the rightmost particles λ
(1)
1 , . . . , λ

(N)
1 is Markov. It is more

convenient to describe it in shifted strictly ordered coordinates y1 = λ
(1)
1 <

y2 = λ
(2)
1 + 1 < · · · < yN = λ(N) +N − 1 (cf. (4)). Then each yj jumps to the

right by 1 independently with rate 1, and pushes yj+1 over by 1 if yj+1 occupies
the target location of yj (i.e., if we had yj+1 = yj + 1 before the jump). We
call this process the PushTASEP, i.e., the Pushing Totally Asymmetric Simple
Exclusion Process (it was introduced in [77] under the name long-range TASEP,
see also [23]).

Remark 4.3. Definition (28) is powered by what is known as Robinson–Schen-
sted algorithm in Combinatorics. Questions related to application of various
insertion algorithms (including the general Robinson–Schensted algorithm) to
random input were considered in, e.g., [6, 54], [55, §5], and [43], and can be
traced back to the work of Vershik and Kerov [81] in mid-1980’s. The dynami-
cal perspective has been substantially developed by O’Connell [64, 65, 66] and
Biane–Bougerol–O’Connell [9] (see also Chhaibi [33]).

4.4. General construction of two-dimensional dynamics

The existence of the Markov dynamics (of Proposition 4.2) satisfying (I)–(III)
is remarkable, yet its above construction is fairly complicated. We would like to
access it in a different way.

Let us search for all continuous-time Markov jump processes on Gelfand–
Tsetlin schemes which satisfy conditions (I)–(III) of §4.3. They must have the

following structure: Each particle λ
(h)
j jumps to the right by 1 with a certain rate

(potentially dependent on λ(1), . . . , λ(h)), and its jump triggers further moves
on the higher levels λ(h+1), . . . , λ(N). Indeed, because of (III) and the fact that

L
(h)
Poisson moves one particle at a time, no two particles on the same level can

jump simultaneously. Moreover, because of (I), moves can propagate only up-
wards.

In order to reach a reasonable classification, we need to restrict the class

further by requiring nearest neighbor interactions : A move of λ
(h)
j can only

trigger (potentially with certain probabilities) moves of the immediate top right

neighbor λ
(h+1)
j and the the immediate top left neighbor λ

(h+1)
j+1 (see Fig. 14),

which can trigger moves on level h+2, and so on. Actually, it is better to extend
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the notion of the top right nearest neighbor from λ
(h+1)
j to the first particle in

the sequence λ
(h+1)
j , λ

(h+1)
j−1 , . . . , λ

(h+1)
1 whose jump does not violate interlacing.

We will additionally assume (extending the nearest neighbor hypothesis) that
the individual jump rates of particles at level h may only depend on λ(h−1)

and λ(h), and that the same is true for left and right probabilities of move
propagation from level h− 1 to level h.

Let us now parametrize our possibilities. Fix h ≥ 2, and denote by wj =

wj(λ
(h−1), λ(h)) the jump rate of λ

(h)
j , 1 ≤ j ≤ h. Also, denote by lj the condi-

tional probabilities that, given that the jth part of λ(h−1) has just increased by

1, this move propagates to the top left neighbor λ
(h)
j+1 of λ

(h−1)
j :

lj(λ
(h−1), λ(h)) = Prob

(
λ(h) 7→ λ(h) + ej+1 |λ(h−1) 7→ λ(h−1) + ej

)
,

where ej is the vector having zeros at each position except the jth where it has
1. Similarly, let

rj(λ
(h−1), λ(h)) = Prob

(
λ(h) 7→ λ(h) + eξ(j) |λ(h−1) 7→ λ(h−1) + ej

)
,

where ξ(j) is the lower index of the nearest top right neighbor of λ
(h−1)
j that is

free to jump (typically, ξ(j) = j).

Proposition 4.4. Assume that λ(h−1) and λ(h) interlace with strict inequalities
instead of weak ones. Then properties (II), (III) imply

rm + lm−1 + wm = 1, 1 ≤ m ≤ h,

where we set rh = l0 = 0.

Proof. Consider the Gibbs measure on the first h levels that projects to the
delta measure at λ(h) on level h. The rate of any jump λ(h) 7→ λ(h) + em,

1 ≤ m ≤ h, can be computed in two different ways, using L
(h)
Poisson or using the

two-dimensional dynamics on the array. The projection of the array dynamics
to levels (h − 1, h) looks as follows: On level h − 1 we have the process driven

by L
(h−1)
Poisson whose jumps may propagate to level h with probabilities (lj , rj).

Moreover, particles on level h can jump independently according to the jump
rates wj . Comparing the two ways to describe the rate of λ(h) 7→ λ(h) + em
yields the desired relations.

The system of equations of Proposition 4.4 needs to be modified if the in-

equalities between parts of λ(h−1) and λ(h) are not strict. Indeed, if λ
(h)
j is

“blocked” by λ
(h−1)
j−1 , i.e., λ

(h)
j = λ

(h−1)
j−1 , then wj must be zero, and also lj−1

and rj−1 make no sense as λ(h−1) could not have just come from the jump
λ(h−1) − ej−1 7→ λ(h−1). The modification looks as follows.

Theorem 4.5. For any λ(h−1) ≺ λ(h), let

{
j1 + 1 < j2 + 1 < · · · < jκ + 1

}
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be the set of indices such that each particle λ
(h)
jm+1 is free to move, i.e., λ

(h)
jm+1 <

λ
(h−1)
jm

. Then

rjm+1 + ljm + wjm+1 = 1, 1 ≤ m ≤ κ, (29)

with the agreement that rjκ+1 = lj0 = 0.
Solving these equations for all pairs λ(h−1) ≺ λ(h), h = 2, 3, . . ., under the

conditions rj(λ
(h−1), λ(h)) ≥ 0, lj(λ

(h−1), λ(h)) ≥ 0, wj(λ
(h−1), λ(h)) ≥ 0, and

rj(λ
(h−1), λ(h)) + lj(λ

(h−1), λ(h)) ≤ 1, is equivalent to constructing a nearest
neighbor Markov dynamics as defined above satisfying conditions (I)–(III), with

an additional “forced move” rule: If λ
(h−1)
j = λ

(h)
j and λ

(h−1)
j moves (by 1),

then λ
(h)
j also moves.3

Proof. Similar to Proposition 4.4, cf. [27, §6].
It is easy to describe linear spaces of solutions to the above linear systems.

Any combination of them, for every pair λ(h−1) ≺ λ(h), gives us a Markov
process with desired properties. One can choose such combinations to design
different processes.

4.5. Further examples of two-dimensional dynamics

We give three examples below, see [27] for more.

Example 1. All lj ≡ 1, all rj ≡ 0, and

wj =

{
1, j = 1;

0, otherwise.

This is the dynamics described above in §4.3 via nonintersecting paths.

Example 2. All rj ≡ 1, all lj ≡ 0, and

wj =

{
1, j = h;

0, otherwise.

This dynamics can be viewed as coming from the column insertion algorithm
(as opposed to the row insertion algorithm corresponding to the dynamics of
§4.3). Observe that the restriction of this dynamics to the left-most particles

{λ(h)h }Nh=1 is Markovian. Via the shift yh = λ
(h)
h − h this restriction matches

the well-known Totally Asymmetric Simple Exclusion Process (TASEP). This
dynamics was first introduced in [64].

Example 3. All rj ≡ 0, all lj ≡ 0, and all wj ≡ 1. This dynamics has minimal
pushing and maximal “noise” (coming from individual jumps). It can be viewed
as a two-dimensional growth model; in terms of the stepped surfaces interpre-
tation, independently with rate one this dynamics adds all possible “sticks”

3The forced move corresponds to the only possibility of having λ(h−1) and λ(h) not inter-
lacing after a move on level h− 1.
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Fig 15. Examples 1 (left), 2 (center), and 3 (right) of two-dimensional dynamics on inter-
lacing arrays. Circles correspond to wj = 1, and right and left arrows to rj or lj = 1.

Fig 16. Other examples of a two-dimensional dynamics.

⇐⇒ ⇐⇒

Fig 17. Local “flips” are defined for any three particles λ
(h+1)
j , λ

(h+1)
j+1 , and λ

(h)
j in the array

such that the are no outside arrows pointing to any of the upper particles. The type of the lower

particle λ
(h)
j can be arbitrary (i.e., it can jump independently or be pushed/pulled). The “flip”

operation allows to replace one of the three local pictures by any of the two remaining ones.

(directed columns) of the form

. . .

directed as shown (no overhangs allowed).

Projection of this dynamics to the leftmost particles {λ(h)h }Nh=1 gives TASEP,

and projection to the rightmost particles {λ(h)1 }Nh=1 gives PushTASEP. See [22]
for more details on this dynamics.

Pictorially, the three examples can be represented as on Fig. 15. Pictures
like Fig. 16 provide other interesting examples of two-dimensional dynamics, cf.
[27, §7]. Note that due to (29), pictures corresponding to various “fundamental”
dynamics for which two of the three quantities rjm+1 , ljm , and wjm+1 in each of
the equations (29) are zero (and the remaining quantity is 1) can be transformed
one into the other by a sequence of local “flips” as on Fig. 17.
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4.6. Conclusion

We have seen how to construct random growth models in (1 + 1) dimension
(TASEP, PushTASEP) and (2+1) dimension, and in §3 we have seen how these
models can be analyzed at large times. We will now move on to a q-deformation
of this picture, which will eventually lead us to directed polymers in random
media.

5. The (q, t)-generalization

5.1. Historical remarks: Deformations of Schur polynomials

The developments of the previous sections were heavily based on properties of
the Schur polynomials

sλ(x1, . . . , xN ) =
det
[
x
N+λj−j
i

]N
i,j=1

det
[
xN−j
i

]N
i,j=1

=
∑

λ(1)≺λ(2)≺...≺λ(N)

x
|λ(1)|
1 x

|λ(2)|−|λ(1)|
2 . . . x

|λ(N)|−|λ(N−1)|
N .

We would like to add parameters to the theory.
It is easy to deform (= add parameters to) our model viewed as a probabilistic

object. However, most such deformations would lack solvability properties of
the original model based on Schur polynomials. The reason is that the Schur
polynomials are algebraic objects, and algebraic structures (in contrast with
probabilistic ones) are usually very rigid. Thus, to find meaningful (solvable)
deformations of the model requires nontrivial algebraic work.

Historically, first two different one-parameter deformations of the Schur poly-
nomials were suggested: around 1960 by algebraists Philip Hall and D.E. Little-
wood,4 and around 1970 by a statistician Henry Jack.

The Hall–Littlewood polynomials naturally arose in finite group theory and
were later shown to be indispensable in representation theory of GL(n) over
finite and p-adic fields.

The Jack polynomials extrapolated the so-called zonal spherical functions
arising in harmonic analysis on Riemannian symmetric spaces from three dis-
tinguished parameter values that correspond to spaces over R,C, and H. They
are also known as eigenfunctions of the trigonometric Calogero–Sutherland in-
tegrable system.

In mid-1980’s, in a remarkable development Ian Macdonald united the two
deformations into a two-parameter deformation known as Macdonald polynomi-
als. The two parameters are traditionally denoted as q and t. We will soon set
t to 0, so it will not interfere with the time variable in our Markov processes.

4This is not the most famous mathematician with this last name, that would be J.E. Lit-
tlewood.
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The Hall–Littlewood polynomials arise when q = 0, and the Jack polynomials
correspond to the limit regime t = qθ → 1, where θ > 0. Schur polynomials cor-
respond to q = t. Other significant values are: Schur’s Q-functions (for q = 0,
t = −1); monomial symmetric functions (q = 0, t = 1); and (the most important
for us) q-Whittaker functions arising for t = 0.

5.2. Definition of Macdonald polynomials

The shortest way5 to define Macdonald polynomials is to say that these are
elements of Q(q, t)[x1, . . . , xN ]S(N) (this is the algebra of symmetric polynomials
in variables x1, . . . , xN whose coefficients are rational functions in q and t), that
diagonalize the following first order q-difference operator:

D
(1) =

N∑

i=1




∏

1≤i<j≤N

1

xi − xj
Tt,xi

∏

1≤i<j≤N

(xi − xj)


 Tq,xi

=

N∑

i=1

∏

j 6=i

txi − xj
xi − xj

Tq,xi
,

(30)

where, as before, (Tq,x f)(x) = f(qx). It is immediately recognized as a defor-
mation of the q = t operator (16) from §2.4.4.

The operator D(1) from (30) is called the first Macdonald difference operator.
There are also higher order ones,

D
(k) =

∑

I⊂{1,2,...,N}
|I|=k

∏

i∈I
j /∈I

txi − xj
xi − xj

∏

i∈I

Tq,xi
. (31)

The operators D(k) are diagonalized by the same polynomial basis [60, Ch. VI].
As Schur polynomials, the Macdonald polynomials inN variables are paramet-

rized by λ = (λ1 ≥ · · · ≥ λN ). We denote the (monic, i.e., with coefficient 1
of the lexicographically largest monomial, which is xλ1

1 xλ2
2 . . . xλN

N ) Macdonald
polynomials by Pλ. They satisfy

D
(k) Pλ = ek(q

λ1tN−1, qλ2tN−2, . . . , qλN )Pλ, (32)

where

ek(y1, . . . , yN ) =
∑

1≤i1<i2<···<ik≤N

yi1yi2 . . . yik

are the elementary symmetric polynomials. The eigenrelation (32) for k = 1 and
q = t was used in §2 to compute the density function of the vertical lozenges.

5The exposition below is very brief; a much more detailed one can be found in [60, Ch. VI].
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5.3. q-Whittaker facts

Developing the (beautiful) theory of Macdonald polynomials requires significant
efforts, and we will not pursue this here. An excellent resource is the Macdonald’s
book [60]. Instead, we will focus on the q-Whittaker (t = 0) case, where, for a
story parallel to the Schur case (§§2–4), we need the following facts.

Proposition 5.1 (q-analogue of Lemma 2.2). For any λ = (λ1 ≥ · · · ≥ λN ) ∈
ZN , we have

Pλ(x1, . . . , xN ) =
∑

µ : µ≺λ

Pµ(x1, . . . , xN−1)

∏N−1
i=1 (λi − λi+1)!q∏N−1

i=1 (λi − µi)!q(µi − λi+1)!q
x
|λ|−|µ|
N ,

where k!q = (1−q)(1−q2)...(1−qk)
(1−q)k

is the q-analogue of the factorial.

We thus see that the interlacing structure (Gelfand–Tsetlin schemes (3))
remains intact, but the Gibbs property is q-deformed. We will now say that a
probability measure on Gelfand–Tsetlin schemes λ = (λ(1) ≺ . . . ≺ λ(N)) is
Gibbs if for any 2 ≤ h ≤ N ,

Prob
{
λ(1), . . . , λ(h−1) |λ(h)

}

= Λh
h−1(λ

(h), λ(h−1))Λh−1
h−2(λ

(h−1), λ(h−2)) . . .Λ2
1(λ

(2), λ(1)),

with the q-deformed stochastic links

Λh
h−1(λ, µ) =

Pµ(1, . . . , 1)

Pλ(1, . . . , 1)
·

∏N−1
i=1 (λi − λi+1)!q∏N−1

i=1 (λi − µi)!q(µi − λi+1)!q
.

Recall that in the Schur case we had simply
sµ(1,...,1)
sλ(1,...,1)

which was then explicitly

evaluated in (27).

Proposition 5.2 (q-analogue of the limit ab/c→ t and L
(h)
Poisson of §4.1). If we

define the coefficients Probt,h{µ} by expanding6

h∏

i=1

et(xi−1) =
∑

µ1≥···≥µh

Probt,h{µ}
Pµ(x1, . . . , xh)

Pµ(1, . . . , 1)
, (33)

then Probt,h{µ} ≥ 0 for any µ. Moreover, these probability measures on {µ1 ≥
· · · ≥ µh ≥ 0} are time t distributions of a jump Markov process with jump rates

L
(h;q)
Poisson(λ 7→ λ+ ej) =

Pλ+ej
(1, . . . , 1)

Pλ(1, . . . , 1)
· (1− qλj−1−λj ), 1 ≤ j ≤ h, (34)

where for j = 1 the last factor is omitted.

A proof (in the more general (q, t)-setting) can be found in [13, §2.3]. In the
Schur case, (34) reduces to the ratio of Vandermonde determinants, cf. (26)
above.

6Such a decomposition exists as {Pµ}µ1≥···≥µh≥0 form a basis in the linear space of
symmetric polynomials in x1, . . . , xh. Thus, (33) is a variant of the Taylor expansion.
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5.4. q-deformed Markov dynamics

Propositions 5.1 and 5.2 give us sufficient data to run the same search (as in §4)
for nearest neighbor Markov processes which preserve the Gibbs measures, and

which on each level are described by L
(h;q)
Poisson (34). This immediately leads to

the following q-analogue of Theorem 4.5:

Theorem 5.3 ([27]). For any λ(h−1) ≺ λ(h), define

Ti(λ
(h−1), λ(h)) :=

(
1− qλ

(h−1)
i −λ

(h)
i+1
)(
1− qλ

(h−1)
i−1 −λ

(h−1)
i +1

)
(
1− qλ

(h)
i −λ

(h−1)
i +1

) ,

Sj(λ
(h−1), λ(h)) :=

(
1− qλ

(h−1)
j−1 −λ

(h)
j

)(
1− qλ

(h)
j −λ

(h)
j+1+1

)

(
1− qλ

(h)
j −λ

(h−1)
j +1

) ,

with 1 ≤ i ≤ k − 1, 1 ≤ j ≤ k. If there is a λ
( · )
· whose indices make no sense,

then the corresponding factor is omitted:

T1(λ
(h−1), λ(h)) =

1− qλ
(h−1)
1 −λ

(h)
2

1− qλ
(h)
1 −λ

(h−1)
1 +1

, S1(λ
(h−1), λ(h)) =

1− qλ
(h)
1 −λ

(h)
2 +1

1− qλ
(h)
1 −λ

(h−1)
1 +1

,

Sh(λ
(h−1), λ(h)) = 1− qλ

(h−1)
h−1 −λ

(h)
h .

Let {j1 + 1 < j2 + 1 < · · · < jκ + 1} be all the indices such that particle λ
(h)
jm+1

is free to move, i.e., λ
(h)
jm+1 < λ

(h−1)
m . Then

Tjm+1rjm+1 + Tjm ljm + wjm+1 = Sjm+1, 1 ≤ m ≤ κ,

with agreement rjκ+1 = lj0 = 0, and also Th = 0. Solving these equations for

all pairs λ(h−1) ≺ λ(h) is equivalent to constructing nearest neighbor Markov
dynamics satisfying the q-versions of conditions (I)–(III) of §4.3.

5.5. Examples of q-deformed two-dimensional dynamics

Using Theorem 5.3, we can now explore the same three examples as in §4.5:
Example 1. We enforce the almost sure move propagation (i.e., rj + lj ≡ 1),
and also

wj =

{
1, j = 1;

0, otherwise.

This gives a unique solution

rj =
S1 + · · ·+ Sj − T1 − · · · − Tj−1

Tj
, lj = 1− rj ,
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for all j such that λ
(h)
j+1 is free. In fact, this expression telescopes to give

rj =






qλ
(h)
1 −λ

(h−1)
1 , j = 1;

qλ
(h)
j −λ

(h−1)
j

1− qλ
(h−1)
j−1 −λ

(h)
j

1− qλ
(h−1)
j−1 −λ

(h−1)
j

, 2 ≤ j ≤ h.

We observe that for 0 ≤ q < 1, all the probabilities rj and lj are nonnegative, and

the projection to the rightmost particles {λ(h)1 }Nh=1 is Markovian. In the shifted

variables yh = λ
(h)
1 +h, it can be described as follows: Each particle jumps to the

right by 1 independently with Poisson clock of rate 1. If the jth particle moved, it
triggers the move of (j+1)st one with probability qgap, where gap is the number
of empty spots in front of the jth particle before the move (which in its turn
may trigger the move of the (j + 2)nd particle, etc.). Note that the probability
qgap is 1 if gap = 0. We call this particle system the q-PushTASEP, it was
first introduced in [27]. Its generalization (called q-PushASEP) with particles
moving in both directions can be found in [37].

Example 2. Now we again enforce lj + rj ≡ 1, and

wj =

{
1, j = h;

0, otherwise.

This gives

rj = 1 +
qλ

(h−1)
j −λ

(h)
j+1

Tj
, lj = 1− rj ,

for all j such that λ
(h)
j+1 is free. Obviously, this gives negative probabilities, and

we do not pursue this example further.

Example 3. Here we enforce lj = rj ≡ 0. This clearly gives wj = Sj , and
for 0 ≤ q < 1 this is a well-defined Markov process without long-range inter-
actions. It was first constructed in [13], and it is closely related to the q-Boson
stochastic particle system of [75], see also [21, 19]. While the projection of this

process to the rightmost particles {λ(h)1 }Nh=1 does not appear to be Markovian

(because S1 depends on λ
(h)
2 ), the projection to the leftmost particles {λ(h)h }Nh=1

is Markovian. In the shifted coordinates yh = λ
(h)
h − h it can be described as

follows: Each particle jumps to the right by 1 independently of the others with
rate 1− qgap, where gap is (as before) the number of empty spaces in front of yh
before the jump. Note that this rate vanishes when gap = 0, which correspond
to a TASEP-like blocking of the move. We call this interacting particle system
the q-TASEP.

Obviously, as q → 0, the q-PushTASEP turns into the usual PushTASEP,
and q-TASEP becomes the usual TASEP.
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5.6. Conclusion

We have thus obtained q-deformations of the random growth models from the
Schur case. Our next task will be to investigate their asymptotic behavior at
large times.

6. Asymptotics of q-deformed growth models

Our main tool in studying asymptotics will be the Macdonald difference oper-
ators (§5.2).

6.1. A contour integral formula for expectations of observables

By Probt,h we mean the measure defined in Proposition 5.2.

Proposition 6.1. For any 1 ≤ h ≤ N ,
∑

λ1≥λ2≥···≥λN≥0

qλN+···+λN−k+1 Probt,N{λ}

=
(−1)

k(k−1)
2

(2πi)kk!

∮
. . .

∮ ∏

1≤A<B≤k

(zA − zB)
2

k∏

j=1

e(q−1)tzj

(1− zj)N
dzj

zkj
,

(35)

where all the integrals are taken over small positively oriented closed contours
around 1.

Proof. In the proof we need to use the second Macdonald parameter t 6= 0. For
this, let us in this proof denote the time variable by τ to avoid the confusion.

We apply the kth order Macdonald operatorD(k) (31) to the series expansion
(33) defining our measures, which now looks as

eτ
∑N

i=1(xi−1) =
∑

λ1≥···≥λN≥0

Probτ,h{λ}
Pλ(x1, . . . , xh)

Pλ(1, . . . , 1)
. (36)

We then replace the sum in the left-hand side by the residue expansion of the
integral (see [13, §2.2.3] for more detail)

D
(k) eτ

∑N
i=1(xi−1)

eτ
∑

N
i=1(xi−1)

=
1

(2πi)kk!

∮
. . .

∮
∏

1≤A<B≤k

(tzA − tzB)(zB − zA)

k∏
A,B=1

(tzA − zB)

×

×
k∏

j=1

(
N∏

m=1

tzj − xm
zj − xm

e(q−1)τzjdzj

)
,

where the contours encircle {x1, . . . , xN} and no other poles (i.e., the residues
are taken at zj = xmj

, j = 1, . . . , k, 1 ≤ mj ≤ N). Note that in fact
∏

1≤A<B≤k(tzA − tzB)(zB − zA)
∏k

A,B=1(tzA − zB)
= det

[
1

tzA − zB

]k

A,B=1

via the Cauchy determinant formula.
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In the right-hand side of (36) we use the eigenrelation (see §5.2):

D
(k) Pλ = ek(q

λ1tN−1, qλ2tN−2, . . . , qλN )Pλ

=
(
qλN+λN−1+···+λN−k+1t

k(k−1)
2 + higher powers of t

)
Pλ.

We then divide both sides of (36) by t
k(k−1)

2 , take the limit as t → 0, and also
set xj = 1.

There are two simple limit transitions that one can observe in the right-hand
side of the contour integral formula (35). We consider them in §6.2 and §6.3
below.

6.2. Gaussian limit

The first limit regime is q = e−ε → 1, t = τε−1 → ∞, zj’s do not change.
Looking at the left-hand side of (35), which is E(qλN+···+λN−k+1), it is natural
to expect that each λj grows as ε−1 so that the quantities qλj have finite limits
(which may still be random variables). Looking at higher powers of Macdonald
operators indeed reveals that this is a Gaussian limit: ελj has a law of large
numbers with Gaussian fluctuations of size ε−1/2, and the Markov dynamics we
constructed converge to Gaussian processes. We do not pursue this limit regime
here, its detailed exposition will appear in [17]. Another, structurally similar
appearance of Gaussian processes can be found in [25].

6.3. Polymer limit

The second limit is a bit more complicated. We again take q = e−ε → 1, but
now t = τε−2 → ∞ (i.e., we wait for a longer time than in the Gaussian limit
of §6.2). Then to see a nontrivial limit, we have to take the zj ’s of distance O(ε)
from 1: zj = 1 + εwj . Then we have

e(q−1)tzj = e(−ε+ε2/2−··· )τε−2(1+εwj) = e−τε−1

eτ/2−τwj ,

(1− zj)
N = (−εwj)

N = (−1)NεNwN
j ,∏

1≤A<B≤k

(zA − zB)
2 = εk(k−1)

∏

1≤A<B≤k

(wA − wB)
2,

N∏

j=1

dzj = εk
N∏

j=1

dwj ,

and we see that the right-hand side of (35) becomes e−τkε−1

εk(k−1)−kN+k times
an asymptotically finite expression. To figure out the limiting behavior of λN +
· · ·+ λN−k+1, we now have to take logq of this expression, or take the natural
logarithm and multiply by −ε−1. This gives

λN + · · ·+ λN−k+1 ∼ τkε−2 + (−kN + k2)
ln ε−1

ε
+
RN,k

ε
,
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Fig 18. Semi-discrete Brownian polymer.

where the remainder RN,k is supposed to be a finite random variable. Equiva-
lently,

λj = τε−2 − (N + 1− 2j)
ln ε

ε
+
TN,j

ε
, 1 ≤ j ≤ N, (37)

with some limiting random variables TN,j. (Note that at this moment this is
simply a guess !)

We can now test what is happening with our dynamics under this conjec-
tural scaling. For example, consider the q-PushTASEP. The asymptotics of the
pushing probability is

qλ
(h)
1 −λ

(h−1)
1 ∼ e

−ε
(

− ln ε
ε

+
Th,1−Th−1,1

ε

)

= εeTh−1,1−Th,1 .

The increment of λ
(h)
1 over time dτ = ε−2dt must then be (1) the increment

coming from its own jumps, which is ε−2dt+ ε−1dBh, where Bh is a Brownian
motion, and (2) the increment coming from pushing, which is εeTh−1,1−Th,1 times

the increment of λ
(h−1)
1 . Collecting terms of order ε−1, we conclude that

dTh,1 = dBh + eTh−1,1−Th,1dτ, 1 ≤ h ≤ N,

where B1, B2, . . . , BN are independent standard Brownian motions (for h = 1
the last term is omitted). This system of stochastic differential equations (SDEs,
for short) is solved by

Th,1 = log

∫

0<s1<···<sh−1<τ

eB1(s1)+···+
(
Bh(τ)−Bh(sh−1)

)
ds1 . . . dsh−1. (38)

The integral in the right-hand side can be viewed as the logarithm of the parti-
tion function (i.e., the free energy) of a semi-discrete Brownian polymer, see
Fig. 18, and also [13, Chapter 5] for a general discussion of directed poly-
mers in random media. More precisely, to any Poisson-type up-right path
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Fig 19. Nonintersecting Poisson paths φ1, . . . , φk.

φ(0,1)→(τ,h) that travels from 1 to h during time τ with jumps at moments
0 < s1 < · · · < sh−1 < τ , assign the energy

E(φ(0,1)→(τ,h)) = B1(s1) +
(
B2(s2)−B2(s1)

)
+ · · ·+

(
Bh(τ) −Bh(sh−1)

)
.

Then Th,1 is the logarithm of the integral of the Boltzmann factor

exp
(
E(φ(0,1)→(t,h))

)

over the Lebesgue measure on all such paths (the inverse temperature can be
absorbed into the rescaling of τ with the help of the Brownian scaling).

Similar empirical scaling arguments show that the Markov process on Gelfand–
Tsetlin schemes of depth N that lead to the q-PushTASEP (Example 1 in §5.5)
converges to a solution of the following system of SDEs:

dTh,k = 1k=1dBh + 1k 6=1dTh−1,k−1 +
(
eTh−1,k−Th,k − eTh−1,k−1−Th,k−1

)
dτ.
(39)

Theorem 6.2. Under the above scaling (37), the measure Probt,h{λ} weakly

converges to a probability measure on arrays7 {Th,k} ∈ R
N(N+1)

2 that can be
written in the form

Th,1 + · · ·+ Th,k = log

∫
. . .

∫
eE(φ1)+···+E(φk)dφ1 . . . dφk, (40)

the integral taken over the Lebesgue measure on the polytope of k-tuples of non-
intersecting Poisson-type paths φ1, . . . , φk joining {(0, 1), (0, 2), . . . , (0, k)} with
{(τ, h− k + 1), (τ, h − k + 2), . . . , (τ, h)}, see Fig. 19. The limit measure is in-
variant under the flip {Th,k ↔ −Th,h−k+1}.

7Note that there is no interlacing in this limit!
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Proof. The Markov dynamics related to the semi-discrete directed Brownian
polymer was introduced in [66]. The weak convergence was proven in [13, §4].

It is also known that the right-hand side of (40) satisfies the system of SDEs
(39). Thus, the convergence in the above theorem should extend to a trajectory-
wise statement, but, to our best knowledge, this has not been worked out in full
detail yet.

Observe the similarity of (40) and the row Robinson–Schensted construction
of §4.3 (in particular, see Figures 13 and 19). In fact, (40) arises via a geometric
lifting of the Robinson–Schensted(–Knuth) correspondence, see [66, 36, 67].

It is worth noting that other (Brownian-type) scaling limits of growth models
discussed here are considered in [47, 48].

7. Moments of q-Whittaker processes

From now on we focus on the asymptotic behavior of the free energy TN,1
d
=

−TN,N (equality in distribution) of the semi-discrete Brownian polymer, see §6.3
(recall that this is the logarithm of the polymer’s partition function e−TN,N ).

The free energy can be viewed as a limit of either λ
(N)
1 (thus, q-PushTASEP),

or of λ
(N)
N (corresponding to the q-TASEP), and either one can be used for the

analysis. (Note that to obtain the polymer’s partition function, N must remain
fixed.) We will employ the q-TASEP, as this is a bit more straightforward, and
there are more details on the q-TASEP in the literature.

7.1. Moments of the q-TASEP

We start by employing products of first order Macdonald operators rather than
a single one to obtain moments (of all orders) of the q-TASEP particle locations.

Proposition 7.1. Consider the random Gelfand–Tsetlin schemes of depth N ≥
1 distributed according to

Probt,N{λ(N)}ΛN
N−1(λ

(N), λ(N−1))ΛN−1
N−2(λ

(N−1), λ(N−2)) . . .Λ2
1(λ

(2), λ(1))

(this is the Gibbs measure with the top row distributed according to Probt,N ,
see §5.3). Then for any N ≥ N1 ≥ N2 ≥ · · · ≥ Nk ≥ 1,

E

(
q
λ
(N1)

N1
+···+λ

(Nk)

Nk

)
(41)

=
(−1)kq

k(k−1)
2

(2πi)k

∮
. . .

∮ ∏

1≤A<B≤k

zA − zB
zA − qzB

k∏

j=1

e(q−1)tzj

(1− zj)Nj

dzj
zj
,

where the integral is taken over positively oriented, nested contours around 1:
The zk contour encircles 1 and no other poles, the zk−1 contour encircles 1 and
the contour {qzk}, and so on; the z1 contour encircles {1, qzk, qzk−1, . . . , qz2},
see Fig. 20.
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0 1q

zk
qzk

zk−1

zk−2

. . . . . . . . .
z1

Fig 20. Nested contours of integration in (41).

Proof. We consider k = 2, for larger k the argument is similar. We start with
the defining identity (33):

et
∑N1

i=1(xi−1) =
∑

λ(N1)

Probt,N1{λ(N1)}P̃λ(N1)(x1, . . . , xN1), (42)

where P̃λ means the normalization of Pλ by itself evaluated at all xj ≡ 1. Apply
the first Macdonald operator in N1 variables to (42) (note that the second
Macdonald parameter t is zero, and it has no relation to the time t in (42)).
This operator has the form

D
(1)
N1

=

N1∑

i=1

∏

j 6=i

−xj
xi − xj

Tq,xi
.

Because of the eigenrelation D
(1)
N1
P̃λ(N1) = qλ

(N1)

N1 Pλ(N1) , in the right-hand side
of (42) we observe

∑

λ(N1)

qλ
(N1)

N1 Probt,N1{λ(N1)}P̃λ(N1)(x1, . . . , xN1).

On the other hand, the left-hand side of (42) is, by residue expansion, equal to
the integral

−x1, . . . , xN1

2πi

∮
et
∑N1

i=1(xi−1)e(q−1)tz

(x1 − z) . . . (xN1 − z)

dz

z
, (43)

over a positively oriented contour around the simple poles x1, . . . , xN1 .

The above argument works for applying D
(1)
N1

to any multiplicative function

F (x1) . . . F (xN1) with the exponentials et
∑N1

i=1(xi−1)e(q−1)tz in (43) replaced by

F (x1) . . . F (xN1)
F (qz)
F (z) .

In the next step, we apply D
(1)
N2

to the result of application of D
(1)
N1

to (42)
after setting xN2+1 = · · · = xN1 = 1 (the order N2 ≤ N1 is important). For the
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right-hand side of the resulting expression, we use Proposition 5.1 that gives

Pλ(N1)(x1, . . . , xN2 , 1, . . . , 1︸ ︷︷ ︸
N1−N2

)

=
∑

λ(N2)

Probt,N1{λ(N1)}ΛN1

N2
(λ(N1), λ(N2))P̃λ(N2)(x1, . . . , xN2).

Here ΛN1

N2
means the matrix product ΛN1

N1−1 . . .Λ
N2+1
N2

.

This implies, together with the eigenrelation D
(1)
N2
Pλ(N2) = qλ

(N2)

N2 Pλ(N2) , that

the right-hand side (after setting x1 = · · · = xN2 = 1) gives E qλ
(N1)

N1
+λ

(N2)

N2 .
On the other hand, in the left-hand side, the x-dependence in (43), after set-
ting xN2+1 = · · · = xN1 = 1, is in the form of G(x1) . . .G(xN2 ) with G(x) =
x

x−ze
t(x−1). Hence, we can apply the same residue expansion (for computing the

application of D
(1)
N2

to (43)) using the fact that

G(qw)

G(w)
= q

z − w

z − qw
et(q−1)w.

Here w is the new integration variable whose contour has to encircle x1, . . . , xN2 ,
but not any other poles (in particular, not q−1z). Renaming (z, w) 7→ (z1, z2),
we obtain the desired formula for k = 2. For larger k the proof is similar.

The above iterative argument is due to V. Gorin, see [18] for a more gen-
eral version. The original proof of (41) in [21] involved a discretization of the
quantum delta Bose gas, see also [19] and §7.2 below.

7.2. Moments of the semi-discrete Brownian polymer

Since we already know the scaling which takes us from λ
(N)
N to the polymer

partition function (§6.3), we can immediately do the limit in the integral of
Proposition 7.1. This is very similar to the limit that we took in §6.3. That is,
let us use

t = τε−2, q = e−ε, zj = 1− εwj .

This leads to the following formula for the moments of the polymer partition
function: For N1 ≥ N2 ≥ · · · ≥ Nk ≥ 0 (as in Proposition 7.1), we have

E

(
e−TN1,N1−···−TNk,Nk

)
=

eτk/2

(2πi)k
,

∮
. . .

∮ ∏

1≤A<B≤k

wA − wB

wA − wB − 1

k∏

j=1

eτwj

w
Nj

j

dwj ,

(44)

where the integrals are now over nested contours around 0: the wk contour
contains only 0, the wk−1 contour contains {wk + 1} and 0, and so on; the w1

contour contains {0, wk+1, wk−1+1, . . . , w2+1}. This limit transition from (41),
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however, is not a proof of the formula (44). Indeed, Theorem 6.2 only claims
weak convergence, and we have exponential moments under the expectation
(that is, expectations of unbounded functions).

Sketch of the proof of (44). Observe that if we define (for any, not necessarily
ordered N1, . . . , Nk ≥ 0)

F (τ ;N1, . . . , Nk) :=
1

(2πi)k

∮
. . .

∮ ∏

1≤A<B≤k

wA − wB

wA − wB − 1

k∏

j=1

eτwj

w
Nj

j

dwj

(with contours as in (44)), then

d

dτ
F (τ ;N1, N2 . . . , Nk) = F (τ ;N1 − 1, N2, . . . , Nk)

+ F (τ ;N1, N2 − 1, . . . , Nk) + · · ·+ F (τ ;N1, N2, . . . , Nk − 1).

Further, for Nk = 0, F vanishes (because there are no poles inside the smallest
contour), and for Ni = Ni+1,

F (τ ; . . . , Ni − 1, Ni+1, . . .)− F (τ ; . . . , Ni, Ni+1 − 1, . . .)

− F (τ ; . . . , Ni, Ni+1, . . .) = 0,

because when we write out the integral for this linear combination, the integrand
will be skew-symmetric in wi and wi+1, and the two corresponding contours can
be taken to be the same (the obstacle to both these properties in (44) is the
factor (wi − wi+1 − 1), and the linear combination above exactly cancels this
factor out). These properties together with initial condition F (0;N1, . . . , Nk) =
1N1=···=Nk=1 uniquely determine F (τ ;N1, N2 . . . , Nk) for N1 ≥ · · · ≥ Nk ≥ 0.
Thus, it suffices to check that the moments of the polymer partition function
(see (40)) satisfy the same properties. This check is fairly straightforward.

A discussion of how the evolution equation and the boundary conditions at
Ni = Ni+1 used above relate to a discrete quantum Bose gas can be found in
[13, 21, 19].

7.3. Continuous Brownian polymer

There is a further limit that takes the semi-discrete polymer to a fully continuous
one. In that case, one defines

Z(t, x) =
1√
2πt

e−
x2

2t E
Brownian bridge
b : (0,t)→R, b(0)=0, b(t)=x

: exp :

{∫ t

0

ξ(s, b(s))ds

}
,

where ξ is the space-time white noise, and : exp : means normally ordered
exponential, e.g., see [1] for an explanation. Equivalently (via the Feynman-Kac
formula), Z solves the stochastic heat equation with multiplicative noise

∂

∂t
Z(t, x) =

1

2

∂2

∂x2
Z(t, x) + ξ(t, x)Z(t, x), Z(0, x) = δ(x).
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Then, defining

u(t;x1, . . . , xk) = Ewhite noise (Z(t, x1) . . . Z(t, xk)) ,

we have
(
∂

∂t
− 1

2

k∑

i=1

∂2

∂x2i

)
u = 0 (45)

away from diagonal subset, and

(
∂

∂xi
− ∂

∂xi+1
− 1

)
u = 0 if xi = xi+1. (46)

The observations (45)–(46) are not hard and were recorded at least as far
back as the end of 1980’s by Kardar [56] and Molchanov [62]. We believe that a
rigorous proof can be extracted from the results of [8]. In particular, case N = 2
was treated in [2, I.3.2]. To the best of our knowledge, the general case has not
been worked out in full detail yet.

A concise way to write (45)–(46) is

∂

∂t
u = Hu, H =

1

2




k∑

i=1

∂2

∂x2i
+
∑

i6=j

δ(xi − xj)


 .

H is called the delta-Bose gas (or Lieb–Liniger) Hamiltonian. The nested con-
tour integral then takes the form

u(t;x1, . . . , xk) =

α1+i∞∫

α1−i∞

dz1 . . .

αk+i∞∫

αk−i∞

dzk
∏

1≤A<B≤k

zA − zB
zA − zB − 1

k∏

j=1

e
t
2 z

2
j+xjzj ,

(47)

where α1 > α2 + 1 > · · · > αk + (k − 1), and x1 ≤ · · · ≤ xk (the above formula
is not true without the order assumption on the xj ’s). For more detail, e.g., see
[13, §6.2] and references therein.

7.4. Intermittency

By setting N1 = · · · = Nk = N in (44), we see that the nested contour integrals
provide us with all moments of the polymer partition function e−TN,N . One
might expect that this is sufficient to find its distribution or, equivalently, the
distribution of the free energy TN,N . It turns out that in this particular situation
this is not true. The distribution of the polymer partition function displays
intermittency, which we now discuss.

This term appeared in studying the velocity and temperature fields in a tur-
bulent medium [7], and describes structures that appear in randommedia having
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the form of peaks that arise at random places and at random time moments.
The phenomenon is widely discussed in physics literature, with magnetic hydro-
dynamics (like on the surface of the Sun) and cosmology (theory of creation of
galaxies) being two well-known examples, e.g., see [83, 62].

The main property that allows one to detect an intermittent distribution is
anomalous behavior (as compared to the Gaussian case, for example) of ratios
of successive moments.

Toy example. Consider a sequence of independent identically distributed ran-
dom variables ξ1, ξ2, . . ., each taking value 0 or 2 with probability 1/2. Set
ξ = ξ1 . . . ξN . Then, clearly,

E ξ = 1, E(ξ2) = 2N , . . . , E(ξp) = 2(p−1)N .

The growth speed can be measured by the quantities

γp =
logE(ξp)

N
= (p− 1) ln 2.

On the other hand, computing a similar quantity for the sum of the ξj ’s (which
is asymptotically Gaussian) gives8

γp = lim
N→∞

logE
(
(ξ1 + · · ·+ ξN )p

)

logN
= p.

The key difference of these two cases is that
γp

p <
γp+1

p+1 in the first case, while
γp

p =
γp+1

p+1 in the second one.

In general, imagine that one has a time-dependent nonnegative random vari-
able Z(t) which grows in t roughly exponentially (or logZ grows roughly lin-
early). There are many ways to measure such growth; we mostly follow [31] in
the exposition below. Define:

• Almost sure Lyapunov exponent

γ̃1 := lim
t→∞

lnZ(t)

t
,

if the a.s. limit exists (the “a.s.” requirement can be weakened to convergence
in probability).

• Moment (or annealed) Lyapunov exponents

γp := lim
t→∞

lnE
(
Z(t)

)p

t

(assuming that limits exist).

8We divide by logN because the random variable in question grows roughly linearly in N ,
and ξ above has exponential growth.
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Hölder’s inequality implies that

γp
p

≤ γp+1

p+ 1

(because (EZp)
1
p ≤ (EZp+1)

1
p+1 ). The strict inequalities will be referred to as

intermittency. Note that we also obviously have γ̃1 ≤ γ1. In a typical situation,
when the distribution of Z(t) does not deviate much from its mean,

γ̃1 = γ1 =
γ2
2

=
γ3
3

= · · · = γp
p

= · · · .

Lemma 7.2. If there exists k ≥ 1 such that

γk
k
<
γk+1

k + 1
,

then for all p ≥ k,

γp
p
<
γp+1

p+ 1
.

Proof. Hölder’s inequality with 1
2 + 1

2 = 1 gives

(EZk)2 ≤ EZk+h · EZk−h, h = 1, 2, . . . , k,

which implies that γk ≤ γk+h+γk−h

2 . Replacing k by k + 1 and taking h = 1, we
have

γk+1 ≤ γk+2 + γk
2

<
1

2

(
γk+2 +

k

k + 1
γk+1

)

(we used the hypothesis of the lemma). Rearranging terms gives the needed
inequality for p = k+1. Repeating inductively, we obtain the desired claim.

Let us now show how the definition of intermittency relates to peaks. If we
pick α such that

γp

p < α <
γp+1

p+1 , then for large enough t (below we omit t in

the notation for Z(t)):

• Prob{Z > eαt} > 0, because otherwise we would have (EZp+1)
1

p+1 ≤ α.
• An overwhelming contribution to EZp+1 comes from the region where Z >
eαt. Indeed,

EZp+1 = E
(
Zp+11Z≤eαt

)
+ E

(
Zp+11Z>eαt

)
.

The first term is ≤ eα(p+1)t ≪ eγp+1t, and we know that the left-hand side
behaves exactly as eγp+1t.

• Prob{Z > eαt} ≤ e−(α−γp/p)pt because EZp ≥ eαpt Prob{Z > eαt}.
Hence, we observe a hierarchy of higher and higher peaks concentrated on
smaller and smaller sets (that are actually exponentially small in probability),
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and higher peaks contribute overwhelmingly to high enough moments. In the
situation of random fields when ergodicity allows to replace computing expec-
tations by space averaging, at each fixed large time one can then observe a
hierarchy of islands with exponentially (in time) high values that dominate mo-
ment computations.

Intermittency is a characteristic feature of products of a large number of
independent random variables (cf. the toy example above). Indeed, by the cen-
tral limit theorem, let us check that random variables of the form eξ1+···+ξt ∼
eN (µt,σ2t) (for example, with independent identically distributed ξj ’s) are inter-
mittent. We have

E

([
eN (µt,σ2t)

]p)
= e

t
(

pµ+ p2

2 σ2
)

,

which implies that

γ̃1 = µ < γ1 = µ+
1

2
σ2 <

γ2
2

= µ+ σ2 <
γ3
3

= µ+
3

2
σ2 < · · · .

7.5. Moment problem and intermittency

Since under intermittency the moments are dominated by increasingly atypical
behavior (i.e., observed with small probability), it is hard to expect that the
moments would determine the distribution. For example, for the exponential of
the standard Gaussian N (0, 1) they do not: Any distribution with density

f(x) =

{
1√
2π

1
x exp

(
− (lnx)2

2

)
· (1 + εh(x)), x > 0;

0, x ≤ 0,

with h(x) := sin(2π ln(x)), −1 ≤ ε ≤ 1, gives the same moments. When ε = 0,
this is the density of the log-normal random variable eN (0,1). See [80] for more
detail.

We will now check if the polymer partition function is intermittent.

Theorem 7.3. The moment Lyapunov exponents for the Brownian polymer are
given by

• In the semi-discrete case (§6.3 and §7.2), γp = Hp(z0,p), where (for N = t)

Hp(z) =
p2

2
+ pz − log(z(z + 1) . . . (z + p− 1)),

and z0,p is the unique solution to H ′
p(z) = 0 on (0,+∞).

• In the fully continuous case (§7.3), for paths between (0, 0) and (t, 0),

γp =
p3 − p

24
.

Proof. Steepest descent for contour integral representations of moments given
before (§7.2 and §7.3). See [14] for details.

In the fully continuous setting, the above result is due to Kardar [56] (non-
rigorously), and Bertini–Cancrini [8].



From representation theory to Macdonald processes 47

7.6. Replica trick

Given our previous discussion on peak domination in moments, it seems hope-
less that this limit behavior of moments would carry any information about
the behavior of the main bulk of the distribution. This is, however, a suitable
moment to demonstrate the (in)famous replica trick widely used in physics.

Note that, at least formally,

logZ(t) = lim
p→0

(Z(t))p − 1

p
.

Averaging both sides, dividing by t and taking t→ ∞ suggests

γ̃1 = lim
p→0

lim
t→∞

1

t

etγp − 1

p
= lim

p→0

γp
p
,

where we tacitly use a (non-unique!) analytic continuation of γp off nonnegative

integers. For the semi-discrete polymer, Hp(z) =
p2

2 + pz − log Γ(z+p)
Γ(z) , and

lim
p→0

Hp(z)

p
= z − ψ(z), ψ(z) = (log Γ(z))′.

Taking the value of z−ψ(z) at the only critical point of this function on (0,+∞),
gives

γ̃1 = inf
z∈(0,+∞)

(z − ψ(z)).

This actually is the correct answer! It was conjectured in [68] and proven in [63].
Similarly, in the fully continuous case,

γ̃1 = lim
p→0

1

p

p3 − p

24
= − 1

24
,

which is also correct [3, 74].
We thus see that this very nonrigorous procedure, quite remarkably, lead us

to the correct almost sure behavior! In the next section we show how to access
these results rigorously, and our approach will also explain in a way why the
replica trick worked in this particular situation.

8. Laplace transforms

8.1. Setup

As we have seen in §7, the intermittency phenomenon prevents us from recover-
ing the distribution of the polymer partition function from its moments. How-

ever, this is not so in the q-setting. Namely, the q-moments E qkλ
(N)
N , k = 1, 2, . . . ,
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uniquely determine the distribution of λ
(N)
N (because λ

(N)
N ≥ 0 and q ∈ (0, 1),

so these are moments of a bounded random variable).

Our plan is thus to convert the q-moment formulas that we have (Proposi-
tion 7.1) into a formula for the expectation of a one-parameter family of ob-

servables that remain bounded (unlike the moments E qkλ
(N)
N ) in the q → 1

which leads to polymers. Since this will involve q-moments with k → ∞, it is
inconvenient to use nested contours in integral representations as their positions
depend on k. There are two ways to “un-nest” the contours: (1) to deform all
of them to identical large concentric circles |z| = R > 1; or (2) to deform all
of them to identical small concentric circles |z − 1| = r < ε. The first way is
easier to realize, but it is harder to turn the result into a meaningful asymptotic
information. Thus, we proceed with the second one. The following lemma is
nontrivial and very useful:

Lemma 8.1. Let f be a meromorphic function and A be its singular set which
must not include 0. Assume that qmA is disjoint from A for all integers m ≥ 1.
Then

µk :=
(−1)kq

k(k−1)
2

(2πi)k

∮
. . .

∮ ∏

1≤A<B≤k

zA − zB
zA − qzB

f(z1) . . . f(zk)

z1 . . . zk
dz1 . . . dzk

= k!q
∑

λ=(λ1≥λ2≥···≥λℓ>0)

λ1+···+λℓ=k

λ=1m12m2 ...

1

m1!m2! . . .

(1− q)k

(2πi)ℓ

∮
. . .

∮
det

[
1

wiqλi − wj

]ℓ

i,j=1

×

×
ℓ∏

j=1

f(wj)f(qwj) . . . f(q
λj−1wj)dwj , (48)

where each zp contour contains {qzj}j>p and A, but not 0 (thus, the z con-
tours are nested), and the wj contours contain A and no other poles (so, the w
contours can be taken to be all the same).

Note that for f(z) = e(q−1)tz

(1−z)N , (48) becomes the formula for E qkλ
(N)
N , see

Proposition 7.1. In this case, A = {1}.

Proof. This lemma is the result of mere bookkeeping of the residues when we
shrink the contours and take into account the poles at zA = qzB. The fact that
the result is rather nice9 is nontrivial, and takes origin in harmonic analysis on
Riemannian symmetric spaces and Hecke algebras, cf. [52]. A proof of the lemma
can be found in [13, Prop. 3.2.1], see also [19, Lemma 3.3 and Prop. 7.4].

A limiting case of this lemma, as q = e−ε → 1, zj = 1 + εz̃j, wj = 1 + εw̃j ,
is at the heart of the moments asymptotics which were stated in §7.5.

9The number of residues involved is much larger than the number of terms in (48).
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8.2. Generating functions

The form of the right-hand side of (48) suggests that one could take a generating
function of such expressions over different k. More exactly, it easily implies that

∑

k≥0

µk
ζk

k!q
=
∑

ℓ≥0

1

ℓ!

∑

n1,...,nℓ≥1

1

(2πi)ℓ

∮
. . .

∮
det

[
1

qniwi − wj

]ℓ

i,j=1

×

×
ℓ∏

j=1

(1− q)njζnjf(wj) . . . f(q
nj−1wj)dwj .

(49)

We will now take f(z) = e(q−1)tz

(1−z)N , with all the integration contours above being

small enough positively oriented contours around 1. Here (n1, . . . , nℓ) are simply
permuted values of (λ1 ≥ · · · ≥ λℓ) in (48), and the change of the combinatorial
factor from 1

m1!m2!...
to 1

ℓ! is due to that un-ordering.10

Now, using the q-exponential identity (e.g., see [5, 44])

∑

k≥0

ak

k!q
=
∏

m≥0

1

1− (1− q)aqm
=:

1(
(1− q)a; q

)
∞
,

we can rewrite the left-hand side of (49) as

E
1

(
(1− q)qλ

(N)
N ζ; q

)
∞

.

One should expect that in a suitable scaling limit as q → 1 (which we can pre-
dict by looking at the moment asymptotics), the q-moment generating function
would converge to the Laplace transform of the polymer partition function. The
latter does define the distribution uniquely, with or without intermittency. The
real question now is how to take a similar limit in the right-hand side of (49).
Observe that termwise limit would produce a moment generating series, and we
already know that it diverges!

8.3. Case N = 1 and the Mellin–Barnes integral representation

Let us consider the case N = 1 in which the problem of convergence is already
there. Then µk’s are the q-moments of the simple continuous-time one-sided
random walk started from 0 at t = 0. We expect their q-generating function to
converge (as q → 1) to the Laplace transform of the lognormal distribution (i.e.,
eN (0,τ)). Indeed, we should expect that because

1
(
(1− q)qλ

(1)
1 (t)ζ; q

)
∞

ε→+0
−−−−−→ e−ue−T1,1(τ)

, λ
(1)
1 ∼ τ

ε2
+
T1,1(τ)

ε
, ζ = eτε

−1

u,

where T1,1(τ) ∼ N (0, τ).

10Indeed, ℓ!
m1!m2!...

is the number of different ways to obtain a given λ = 1m12m2 . . . with

|λ| = ℓ from (n1, . . . , nℓ) ∈ Zℓ
≥1.
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Observe that we only have first order poles at wj = 1 in the right-hand side of
(49) for N = 1. Because of vanishing of the det[ 1

qniwi−wj
]ℓi,j=1 for equal values

of the wj ’s, we conclude that only ℓ ≤ 1 give a nontrivial contribution. This
contribution is

1+
∑

n≥1

1

2πi

∮

Γ1

dw

(qn − 1)w
(1− q)nζn

e(q
n−1)tw

(1− w)(1 − qw) . . . (1− qn−1w)

= 1 +
∑

n≥1

(1− q)nζn

1− qn
e(q

n−1)t

(1 − q) . . . (1 − qn−1)
=
∑

n≥0

(
(1− q)ζ

)n
e(q

n−1)t

(1− q) . . . (1− qn−1)
.

(50)

We now need to take the q → 1 limit in the above sum, and we cannot do
that termwise as this would result in a divergent series. A standard tool of the
theory of special functions used for dealing with such a limit is the Mellin–
Barnes integral representation which dates back to the end of the 19th century.
In its simplest incarnation, it says that

∑

n≥0

g(qn)ζn =
1

2πi

∮

Γ0,1,2,...

Γ(−s)Γ(1 + s)(−ζ)sg(qs)ds, | arg(ζ)| < π,

where the integral in the right-hand side goes in the negative direction around
the poles s = 0, 1, 2, . . ..11 Indeed,

−Res
s=n

Γ(−s)Γ(1 + s)(−ζ)sg(qs) = g(qn)ζn,

where we assume zs to be defined with the branch cut (−∞, 0). Omitting con-
vergence and contour deformation justifications (which can be performed), we
rewrite the series in (50) as

∑

n≥0

(
(1− q)ζ

)n
e(q

n−1)t

(1− q) . . . (1− qn−1)
(51)

=
1

2πi

∫ δ+i∞

δ−i∞
Γ(−s)Γ(1 + s)

(
(q − 1)ζ

)s
e(q

s−1)t

∏
m≥1(1− qs+m)
∏

m≥1(1− qm)
ds,

where 0 < δ < 1 and the integration is taken over a contour as on Fig. 21. We
can now take the needed limit. We note that

Γq(x) =
∏

m≥1

1− qm

1− qx+m−1
(1− q)1−x

is the q-analogue of the Euler Γ-function, and that (e.g., see [5])

lim
q→1

Γq(x) = Γ(x), x /∈ {0,−1,−2, . . .}.

11Note that Γ(−s)Γ(1 + s) = − π
sin(πs)

.
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0

δ

Fig 21. Integration contour in (51).

We take the scaling

q = e−ε → 1, t =
τ

ε2
, ζ = eτε

−1

u,

so that
(
(q − 1)ζ

)s
=
(
(e−ε − 1)eτε

−1(−u)
)s ∼ εseτsε

−1

us, e(q
s−1)t ∼ e−τsε−1+ τs2

2 ,

and

∏

m≥1

1− qs+m

1− qm
=

(1− q)−s

Γq(s+ 1)
∼ ε−s 1

Γ(s+ 1)
.

We see that the limit of the integral in (51) is

1

2πi

∫ − 1
2+i∞

− 1
2−i∞

Γ(−s)Γ(1 + s)
us

Γ(1 + s)
eτs

2/2ds =
1

2πi

∫ − 1
2+i∞

− 1
2−i∞

Γ(−s)useτs2/2ds,

which is a correct expression for the Laplace transform of the lognormal random
variable eN (0,τ), as we expected.

8.4. Asymptotics of the generating function for any N ≥ 1

The same Mellin–Barnes integral representation works for any N ≥ 1. The
summations over n1, . . . , nℓ ≥ 1 are replaced by integrals over 1

2 + iR with
Γ(−sj)Γ(1 + sj) inside, and using scaling of §6.3 together with Theorem 6.2
(which guarantees convergence of expectations of bounded functions), as well
as the asymptotic relations above (setting vj = qwj ), we obtain the following
generating function for the semi-discrete Brownian polymer’s partition func-
tion (§6.3):
Theorem 8.2. Fix N ≥ 1, 0 < δ2 < 1, and 0 < δ1 < δ2/2. Then

12

E e−ue−TN,N (t) = 1 +
∑

ℓ≥1

1

ℓ!

∮

|v1|=δ1

dv1 . . .

∮

|vℓ|=δ1

dvℓ

δ2+i∞∫

δ2−i∞

ds1 . . .

δ2+i∞∫

δ2−i∞

dsℓ

12Note that the time parameter t in (52) was denoted by τ in §6.3 and §8.3.
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0

ai

π
3

0

bj

π
3

Fig 22. The integration contours in (53) for variables ai (left) and bj (right).

×
ℓ∏

j=1

Γ(−sj)Γ(1 + sj)

(
Γ(vj)

Γ(sj + vj)

)N

×

× usj+vj

uvj
e

t
2 (sj+vj)

2

e
t
2v

2
j

det

[
1

vi + si − vj

]ℓ

i,j=1

.

(52)

The expression in the right-hand side above is actually well-suited for further
asymptotic analysis. Let us first state the final result:

Theorem 8.3 ([13, 16]). For any κ > 0, define

fκ = min
s>0

(κs− ψ(s)), sκ = argmin
s>0

(κs− ψ(s)), gκ = −ψ′′(sκ) > 0

(as before, ψ(z) = (log Γ(z))′). Then for t = κN , we have

lim
N→∞

Prob

{−TN,N(t)−Nfκ
N1/3

≤ r

}
= FGUE

((gκ
2

)− 1
3

r

)
,

where FGUE is the GUE Tracy–Widom distribution.

Recall that −TN,N(t) can be identified with the logarithm of the polymer

partition function as in (38) (and that −TN,N(t)
d
= TN,1(t)).

Note that Theorem 8.3 proves the value of the almost sure Lyapunov exponent
γ̃1 that we guessed (for κ = 1, but this could have been for any κ) using replica
trick in §7.6.

The Tracy–Widom distribution in the right-hand side of (52) arises as the
series

FGUE

((gκ
2

)− 1
3

r

)
= 1 +

∑

ℓ≥1

1

ℓ!

1

(2πi)2ℓ

∫
. . .

∫
da1 . . . daℓ

∫
. . .

∫
db1 . . . dbℓ

×
ℓ∏

j=1

1

aj − bj

exp
(
− gκ

6 a
3
j + raj

)

exp
(
− gκ

6 b
3
j + rbj

) det

[
1

bi − aj

]ℓ

i,j=1

,

(53)

where the ai and the bj contours are as on Fig. 22. The identification of (53)
with a traditional formula for FGUE is explained in [13] (after formula (4.51)).
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The way one reaches (53) from the right-hand side of (52) is fairly straight-
forward. By changing the variables sj → yj = sj + vj , one rewrites the part of
the integrand that depends on the large parameter N as

ℓ∏

j=1

exp
(
N
(
G(vj)−G(yj)

))
, G(z) = ln Γ(z)− z

lnu

N
− κ

2
z2.

Since

e−ue−TN,N (t)

= e−e−TN,N (t)+log u

,

we take log u ∼ −Nfκ − rN
1
3 , and then we see that

G(z) ∼ ln Γ(z) + fκz −
κ

2
z2.

The analysis then follows the scheme explained in §3, with v contours being
deformed to the domain with ℜG(v) < 0, and y contours — to the domain
with ℜG(y) > 0. The limiting expression arises in the situation when G(z)
has a double critical point G′(zc) = G′′(zc) = 0, and through a local change
of integration variables near the critical point; the constant −gκ is actually
G′′′(zc). Details can be found in [13] and [16].

Let us conclude by observing that if we expand the right-hand side of (52)
into residues at sj = 1, 2, . . ., we get back the divergent generating series for the
moments of the polymer partition function that we found before. This shows that
a more sophisticated replica trick than the one from §7.6 can actually be used to
obtain the limiting distribution, and not only the law of large numbers (i.e., γ̃1).
Namely, one can obtain the moments by solving the equations (the delta Bose
gas of §7.3) that they satisfy, write down the series for the Laplace transform
through moments (despite the fact that this series diverges), make sense of
this series via the Mellin–Barnes integral representation, and then proceed with
the asymptotic analysis. This approach was successfully carried out in physics
papers [38, 30]. However, the only plausible explanation we have at the moment
as to why such an approach leads to the correct answer, is that it is a limiting
case of the q-deformed situation, where all the steps are legal and indeed lead
to a proof of the GUE edge fluctuations.
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valeurs égales et de signes contraires par suite des transpositions opérés
entre les variables qu’elles renferment. J. École Polyt., 10(29–112), 1815.
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