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ABSTRACT 

This paper presents closed-form analytical solutions for estimating far-field ground 

deformations caused by shallow tunneling in a linear elastic soil mass with cross-

anisotropic stiffness properties.  The solutions describe 2-D ground deformations for 

uniform convergence (uε) and ovalization (uδ) modes of a circular tunnel cavity, based on 

the complex formulation of planar elasticity and superposition of fundamental singularity 

solutions.  The analyses are used to interpret measurements of ground deformations 

caused by open-face shield construction of a Jubilee Line Extension tunnel in London 

Clay at a well-instrumented site in St James Park.  Anisotropic stiffness parameters are 

estimated from hollow cylinder tests on intact block samples of London Clay (from the 

Heathrow Airport Terminal 5 project) while the selection of the two input parameters is 

based on a least squares optimization using measurements of ground deformations.  The 

results show consistent agreement with the measured distributions of surface and 

subsurface, vertical and horizontal displacement components, while anisotropic stiffness 

properties appear to have little effect on the pattern of ground movements.  The results 

provide an interesting counterpoint to prior studies using FE analyses that have reported 

difficulties in predicting the distribution of ground movements for the instrumented 

section of the JLE tunnel. 

 

 

                                                        
1
 Ph.D Student, Massachusetts Institute of Technology, Cambridge MA 

2
 Civil Engineer MSc, Dimitras 16A, Ag. Paraskevi, 15342, Greece 

3
 Professor, Massachusetts Institute of Technology, Cambridge MA 

Main Text
Click here to download Main Text: Main_Text.docx 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/geo/download.aspx?id=63674&guid=165cd368-d912-4936-9c68-432ac16babcb&scheme=1


 2 

INTRODUCTION 

All tunnel operations cause movements in the surrounding soil.  Figures 1a and 1b 

illustrate the primary sources of movements for cases of closed-face shield tunneling and 

open-face sequential support and excavation (often referred to as NATM), respectively. 

For open-face shield tunneling the stress changes around the tunnel face and the 

unsupported round length are primary sources of ground movements.  Current 

geotechnical practice relies almost exclusively on empirical methods for estimating 

tunnel-induced ground deformations.  Following Peck (1969) and Schmidt (1969) the 

transversal surface settlement trough can be fitted by a Gaussian function: 

 (1)  

where x is the horizontal distance from the tunnel centerline, uy
0
 the surface settlement at 

the tunnel centerline, and xi, the location of the inflexion point. 

Mair and Taylor (1997) show that the width of the settlement trough is well 

correlated to the depth of the tunnel, H, and to characteristics of the overlying soil (see 

Figure 2a).  The same framework has been extended to subsurface vertical movements by 

varying the trough width parameter: 

 (2) 

where K is a non-linear function shown in Figure 2b. 

There is very limited data for estimating the horizontal components of ground 

deformations.  The most commonly used interpretation is to assume that the displacement 

vectors are directed to a point on or close to the center of the tunnel as proposed by 

Attewell (1978) and O‘Reilly & New (1982) such that:  

 (3) 

There are also a variety of analytical solutions that have been proposed for 

estimating the 2-D distributions of ground movements for shallow tunnels.  These 

analyses make simplifying assumptions regarding the constitutive behavior of soil and 
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ignore details of the tunnel construction procedure, but otherwise fulfill the principles of 

continuum mechanics.  In principle, these analytical solutions provide a more consistent 

framework for interpreting horizontal and vertical components of ground deformations 

than conventional empirical models and use a small number of input parameters that can 

be readily calibrated to field data.  They also provide a useful basis for evaluating the 

accuracy of numerical analyses. 

The ‗far-field‘ ground movements caused by shallow tunneling processes 

(excavation and support) are solved as a linear combination of deformation modes 

occurring at the tunnel cavity, Figure 3, with input parameters, uε and uδ, corresponding 

to uniform convergence and ovalization, respectively.  Pinto and Whittle (2011) have 

shown that closed-form solutions obtained by superposition of singularity solutions (after 

Sagaseta, 1987) provide a good approximation of the more complete (‗Exact‘) solutions 

obtained by representing the finite dimensions of a shallow tunnel in a linear elastic soil 

(after Verruijt and Booker, 1996; Verruijt, 1997).  

Pinto et al. (2011) have evaluated the analytical solutions through a series of case 

studies involving tunnels excavated through different ground conditions using a variety 

of closed and open-face construction methods.  They generally found good agreement 

with measured data for tunnels constructed in low permeability clays assuming isotropic 

elastic properties.  Although the analytical solutions do not model the actual tunnel 

construction process, selecting appropriate input parameters can very well capture the net 

effect of different construction methods.  Pinto et al. (2011) noted significant limitations 

for the case of the Heathrow Express trial tunnel (Deane & Bassett, 1995) and the 

discrepancies between predicted and measured settlements were attributed to anisotropic 

stiffness properties of the heavily overconsolidated London Clay. 

More recently Gasparre et al. (2007) have presented results from a comprehensive 

and definitive laboratory investigation of the stiffness properties of natural London Clay 

using block samples obtained during the excavations for Heathrow Terminal 5.  Their test 

program included measurements of small strain elastic properties (based principally on 

wave propagation data using triaxial devices equipped with bender elements), limits on 

the reversible elastic response (referred to as the Y1 yield condition) through drained and 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 4 

undrained triaxial stress probe tests, and measurements of the degradation of secant 

stiffness parameters with strain level (using local strain measurements in triaxial and 

hollow cylinder devices).  They conclude that the small strain behavior of the clay is well 

described by the framework of cross-anisotropic elasticity, and that ‗significant 

anisotropy was revealed at all scales of deformation‘.   

This paper extends the analytical solutions presented by Pinto and Whittle (2011) 

to account for cross-anisotropic stiffness properties of the clay.  The solutions are then 

evaluated through comparisons with data from the Jubilee Line Extension (JLE) project, 

involving open-face shield tunnel construction beneath a well-instrumented site in St 

James Park (Nyren, 1998).  This is a very well instrumented and documented case site, 

with extensive supporting data on cross-anisotropic stiffness parameters for London clay 

reported by Gasparre et al. (2007).  The JLE test section has been extensively analyzed 

by others using FE analyses and many have reported problems in predicting far-field 

deformations, and hence,  provides an interesting opportunity to assess the capabilities of 

the proposed analytical solutions.  Independent research by Puzrin et al (2012) has 

attempted to model the same case study using a related analytical approach.   

 

ANALYTICAL SOLUTIONS FOR CROSS-ANISOTROPIC ELASTIC SOIL 

The current analyses consider deformations in a vertical plane [x, y] through a 

cross-anisotropic, linear elastic soil with isotropic properties in a plane with dip angle α 

to the horizontal as shown in Figure 4.  The stiffness parameters of the soil are given for a 

local [x‘, y‘, z‘] coordinate system (Appendix A shows the transformation to the global 

frame [x, y, z]).  The five independent anisotropic stiffness parameters are defined in the 

local coordinate system as E1, the Young‘s modulus of the soil at a direction parallel to 

the isotropic plane, 1 the Poisson‘s ratio of strains in the isotropic plane (x‘-z‘), E2, the 

Young‘s modulus normal to the isotropic plane, G2, the shear modulus for strain in 

direction y‘, and ν2, the Poisson‘s ratio for strain in y‘ direction due to strain in the x‘ 

direction. 

Following Milne-Thompson (1960) and Lekhnitski (1977) the stress-strain 

relations for plane strain geometry conditions can be written as follows: 
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(4a) 

 

where the βij coefficients are related to the 5 independent stiffness parameters and the dip 

angle α as shown in Table 1.  For α = 0° (i.e., isotropic properties in the horizontal plane), 

Ε1 = Εh, ν1 = νhh, E2 = Ev, ν2 = νvh, G2 = Gvh and the βij coefficients are:  

 

(4b) 

 

where the stiffness ratios n = Eh/Ev and m = Gvh/Ev are used later in the paper. 

Figure 5 shows non-linear secant stiffness measurements of Ev, Eh and Gvh from 

drained hollow cylinder (HCA) uniaxial load tests on natural London Clay (unit B2) as 

functions of strain level (Gasparre et al., 2007).  The data show that London Clay is 

strongly anisotropic at very small strain levels (true elastic range).  The stiffness ratio, n = 

Eh/Ev, varies only slightly, n = 1.72 – 2.30, while m = Gvh/Ev increases from 0.66 to 1.27 

with increased strain level.  The small strain stiffness ratios calculated from undrained 

tests are very similar to those from drained parameters as shown in Figure 5.  

 The elastic parameters are further constrained by thermodynamic considerations 

(e.g. Pickering 1970) such that: 

Gvh, Ev, Eh > 0;  0 < n < 4;  -1 < hh < 1;  hh + 2 hv vh  1 (4c) 

The conditions for incompressibility are given by Gibson (1974) as: 

 (4d) 

In the absence of body forces, the stresses can be solved using the Airy Stress 

function, F(x, y): 

 (5) 
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with  

Equation (5) is solved by means of the characteristic equation: 

 (6) 

The roots of this equation are conjugate complex numbers, say  and 

without loss of generality 1 = a1 + ib1, 2 = a2 + ib2, and b1 > b2 > 0.  Any analytic 

function g(x+y) satisfies eqn. (5) if  is a solution to the characteristic equation.  Since 

the resulting stress function must be real, the general solution is given by the following 

expression: 

 (7) 

where .  Introducing the new functions: , 

the stresses are found using the definition of complex variables z1, z2: 

 (8a) 

 (8b) 

 (8c)
 

and the displacements U(x, y), V(x, y) are found by integrating the strains: 

 (9a) 

 (9b) 
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Uniform Convergence Mode 

For a cylindrical cavity of radius, R, in an infinite medium undergoing uniform 

convergence, uε, the displacement components at the tunnel wall can be expressed by 

(Figure 6a): 

  (11a) 

 (11b) 

where . 

The circular boundary of the tunnel cavity in the [x, y] plane is transformed into 

an inclined ellipse in the plane of the complex variable  (Fig.  6b): 

 (12a) 

 (12b) 

The boundary conditions can be solved by a further mapping onto a circle of unit 

radius as shown in Figure 6b: 

 (13) 

The analytic functions Φk(zk) can be expressed as a Laurent series of the 

conformed variable k: 

 (14a) 

 (14b) 

At the tunnel wall, | z | = R and 1 = 2 = e
iθ

 = .  Hence, from Eqn. 9 the 

displacement components can be found from: 
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 (15a) 

 (15b) 

 Equating the coefficients for powers of ζ: 

 (16) 

 The series coefficients are then solved as: 

   (17) 

 

Ovalization Mode 

The ovalization mode involves no ground loss and displacements at the tunnel 

cavity can be represented as follows: 

 (18a) 

 (18b) 

Applying the same methodology used above (for uniform convergence) the series 

coefficients an, bn are found: 

    (19) 
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an infinite cross-anisotropic elastic medium are then obtained by combining equations 17 
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 (20a) 

 (20b) 

 

Effect of Traction-Free Ground Surface 

Following Sagaseta (1987), the ground movements associated with a shallow 

tunnel, located at a depth H below the traction-free ground surface can be represented 

approximately through a singularity superposition technique, Figure 4. The deformation 

field for the shallow tunnel is represented by superimposing full-space solutions for a 

point source, [0, -H], and mirror image sink, [0, +H] (i.e., with equal and opposite cavity 

deformations) relative to the stress-free ground surface (y = 0), respectively: 

Contracting tunnel (-uε > 0, uδ > 0):  

 (21) 

Mirror image (-uε < 0, uδ < 0): 

 (22) 

The resulting normal and shear tractions at the surface y = 0 due to these mirror 

images are as follows: 

 (23a) 

 (23b) 

A set of (equal and opposite) ‗corrective‘ shear tractions T
c
(x) must then be 

applied at the free surface (Figure 4).  The resulting displacements on a half-plane due to 

these corrective stresses are: 

 (24) 

where the analytic functions  are obtained through integration (after Lekhnitski, 
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 (25a) 

 (25b) 

and the integrals of the normal and shear tractions along the boundary are: 

 (25c) 

 (25d) 

Appendix Β summarizes the solution of the infinite integrals in equations 25a, 

25b, and 25d from which the following analytical functions are found: 

 (26a) 

 (26b) 

 

The final field of ground deformations for a shallow tunnel with uniform 

convergence at the tunnel cavity is then obtained from equations 21, 22 and 24: 

 (27a) 

 (27b) 

 

Typical Results 

Figures 7 and 8 illustrate the effects of cross-anisotropic stiffness properties on 

predictions of the shape of the surface settlement trough and lateral deflections for a 

‗reference inclinometer‘ offset at a distance x/H = 1 from the tunnel centerline.  These 

results correspond to solutions for undrained deformations (i.e., incompressible 

conditions with Poisson‘s ratios defined in Eqn. 4d) for a shallow tunnel in clay with R/H 

= 0.22 (and typical cross-anisotropic stiffness ratios, n and m).  Figure 7 shows that for 

horizontal planes of isotropy (α = 0°),
 
as the ovalization ratio ρ = -uδ/uε increases the 

predicted settlement troughs become narrower and the surface centreline settlement uy
0
 

 
 

   2 1 2c

1 1

1 2 1

f f1 1
z d

2 i z





   
  

    

 
 

   1 1 2c

2 2

1 2 2

f f1 1
z d

2 i z





   
   

    

 
   

s

1f s N x dx 0


  

 
     

s s

c

2f s T x dx T x dx
 

  

 
     c

1 1 1 1 1 1 2 2 1 2

1 2

2
z z H z H           

 
     c

2 2 1 1 2 1 2 2 2 2

1 2

2
z z H z H            

        c

x x x xu x, y u x, y u x, y u x, y   

        c

y y y yu x, y u x, y u x, y u x, y   

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 11 

increases significantly.  For ρ = 0 the analyses predict inward horizontal displacements 

near the tunnel springline, while increases in ρ result in larger outward movements at this 

elevation (Fig. 7b).  Figure 7 also illustrates results for cases where the plane of isotropy 

is dipping (α = 0°, 15°, 30°, 45° and ρ = 1), representing (for example) conditions at the 

edge of a sedimentary basin.  As the dip angle increases, the predicted surface centreline 

settlement uy
0
 increases, while the effect on the horizontal displacements is less 

pronounced. 

Figure 8 shows the effects of the stiffness ratios, n and m for the case where the 

soil has isotropic properties in the horizontal plane (α = 0°).  The results show a 

narrowing of the surface settlement trough for normal stiffness ratios, n > 1 (n = Eh/Ev =1 

is isotropic case), which is especially pronounced for n > 3.  Increases in the shear 

stiffness ratio, m = Gvh/Ev, have the opposite effect.  The settlement trough for m = 1 is 

much wider than the isotropic case (m = 0.33).  There is also a change in the mode shape 

of the settlement trough shown for m = 1.5, where the maximum settlement does not 

occur above the centerline, but is instead offset at x/H ≈ 0.5.  This result is often observed 

in 2-D finite element analyses of shallow tunnel excavation for cases with high in-situ K0 

stress conditions (e.g., Möller, 2006; Franzius et al., 2005; Addenbrooke et al., 1997), but 

has not been reported in prior tunneling projects.  The transition in mode shape is a 

function of the anisotropic stiffness ratios (m and n) and the ovalization ratio, ρ, as shown 

in Figure 9.  The subsequent applications of the analyses for the JLE tunnel use a 

constrained range of ρ to avoid the higher mode solutions.  

 

PRIOR INTERPRETATION OF JLE TUNNEL IN ST JAMES PARK 

The Jubilee Line Extension project (JLE, 1994-1999) included 15km of twin, 

4.85m diameter, bored tunnels constructed using an open-face shield and excavated by 

mechanical backhoe.  Ground displacements were measured at a well-instrumented 

greenfield site in St. James‘s Park and were described in detail by Nyren (1998).  The 

Westbound (WB) tunnel passed under the instrumentation site in April 1995 with 

springline depth, H = 31m and an advance rate of 45.5m/day (i.e., 1.9m/hr).  The EB 

tunnel (not considered in this paper) traversed the section in January 1996 at depth, H = 

20.5m (and offset at 21.5m from the WB bore). 
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The instrumentation at the test section included an array of 24 Surface Monitoring 

Points (SMP; surveyed by total stations), while subsurface ground movements were 

recorded using a set of: 1) 9 electrolevel inclinometers, with tilt angles typically 

measured at vertical intervals of 2.5m; and 2) 11 rod extensometers, each measuring 

vertical displacement components at up to 8 elevations.  Figure 10 shows eight locations 

(A-H) where 2D vectors of displacement can be interpreted from the inclinometer and 

extensometer data.   

The soil profile comprises 12m of fill, alluvium and terrace gravels overlying a 

40m thick unit of low permeability London Clay (with 4 divisions shown in Figure 10), 

above the Lambeth Group (lower aquifer system).  The groundwater table is located 

approximately 3m below ground surface but pore pressures are 5 - 7m below hydrostatic 

at the elevation of the WB tunnel springline.  Standing and Burland (2006) have carried 

out a detailed review of the physical and engineering properties of the four divisions of 

the London Clay along this section of the JLE alignment.  They report the undrained 

shear strength of London Clay increasing from, su = 215±80kPa (unit A3) to 233±77kPa 

(A2), and in-situ hydraulic conductivity values, k = 0.15 – 2.0x10
-10

 m/s.  

 

Surface Displacements 

Figures 11a and 11b show the vertical and horizontal surface movements 

measured approximately 1 day after the passage of the WB tunnel face, when it can 

reasonably be assumed that there is little consolidation within the London clay.  Standing 

and Burland (2006) fitted the transversal surface settlement trough using the empirical 

Gaussian relation (eqn. 1) with a trough width, xi = 13.3m (i.e., K = xi/H = 0.43) and 

maximum settlement above the crown, uy
0
 ≈ 20mm.  Hence, the volume loss at the 

ground surface, ΔVs (=2.5uy
0
xi) corresponds to an apparent ground loss at the tunnel 

cavity, ΔVL/V0 = 3.3%, caused by tunnel construction.  They attribute this unexpectedly 

high volume loss to details of the construction method (the WB tunnel was constructed 

with up to 1.9m of unsupported heading) and to a local ground zone above the WB tunnel 

crown with a higher concentration of sand and silt partings in the London Clay. 

The horizontal surface displacements (Fig. 9b) are also well fitted by conventional 

empirical assumptions using eqn. 3 with maximum surface horizontal movement ux ≈ 
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5.7mm at x ≈ 14m east of the centreline.  However, it should be noted that the measured 

profile shows a loss of anti-symmetry (e.g., ux ≠ 0mm at x = 0m) that Nyren (1998) 

attributes to a deviation in principal stresses acting in the horizontal plane. 

 

Prior Numerical Analyses 

Franzius et al (2005) used non-linear finite element analyses to evaluate the 

measured ground movements reported by Nyren (1998).  They compare 2D and 3D 

analyses, using different coefficients of lateral earth pressure at rest, K0 and various 

constitutive models for simulating the construction of the JLE WB tunnel.  Their base 

case scenario used a non-linear, isotropic elasto-plastic constitutive model with K0 = 1.5.  

For an assumed volume loss, ΔVL/V0 = 3.3%, this resulted in a computed maximum 

surface settlement uy
0
 = 10mm and a transverse surface settlement trough that was much 

wider than the measured behavior, Figure 12.  Similar results were obtained using 3D 

analyses with more refined modeling of the tunnel heading. 

The Authors modified the constitutive model to include non-linear cross-

anisotropic stiffness properties (using a simplified 3 parameter formulation proposed by 

Graham and Houlsby, 1983).  They were only able to achieve good agreement with the 

measured settlement trough in the 2D analyses using an unrealistically high elastic 

Young‘s modulus ratio, n = Eh/Ev = 6.5 (i.e., outside the theoretical elastic range of n, 

eqn. 4b) in combination with a low value of K0 = 0.5.  However, when the same model 

parameters were used in a 3D analysis of the open-face tunnel construction, much larger 

surface settlements were obtained (  = 85mm with interpreted volume loss, ΔVL/V0 = 

18%) as shown in Figure 12.  

Wongsaroj (2005) formulated a bespoke constitutive model to describe the non-

linear, anisotropic behavior of London clay and used the model in 3D finite element 

simulations for short and long-term ground movements caused by JLE tunnel 

construction.  Figure 13 compares the measured surface settlements with computed 

results using four different input parameter sets.  Models with both isotropic and 

anisotropic small strain stiffness (K0 = 1.5; small strain, drained elastic stiffness ratios, n 

= 0.44, m = 0.13, that are inconsistent with data shown in Fig. 5) resulted in settlement 

troughs that are wider than the field measurements for the WB JLE tunnel and also 
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overestimate significantly the back-figured volume loss (ΔVL/V0 = 5.4% to 6.0%).  Good 

agreement is only achieved by increasing the anisotropic stiffness ratio (Ghh/Gvh = 5 

corresponding to m = 0.04) and reducing the assumed value of K0 = 1.2.  Figure 13b 

shows further comparisons with the subsurface horizontal displacements reported by 

Wongsaroj (2005).  The analyses generally predict larger lateral deformations of the soil 

towards the tunnel centerline than are measured in the field.  The Author attributed this 

discrepancy, in part, to surveying errors in the field measurements.  Subsurface horizontal 

displacements were not reported for the fourth model (Ghh/Gvh = 5) and thus are not 

shown in Figure 13b. 

 

APPLICATION OF ANALYTICAL SOLUTIONS 

The input parameters for the analytical solutions are interpreted from the 

measured ground deformations of the WB JLE tunnel in St James Park through a least 

squares fitting approach.  The analyses assume linear elastic behavior throughout the soil 

mass and hence, are likely to underestimate ground deformations close to the tunnel 

lining where plastic failure occurs in the clay.   

This near-field zone of plasticity can be estimated from solutions of a cylindrical 

cavity contraction in an elastic-perfectly plastic soil (e.g., Yu and Rowe, 1999).  The 

radius of the plastic zone, Rp can be found from: 

 (28) 

where N = (p0 – pi)/su is the overload factor, p0 and pi are the pressures in the far field and 

within the tunnel cavity. 

 The radius of the plastic zone can then be estimated by 1) equating p0 with the 

overburden pressure (ζv0 ≈ 600kPa) at the springline, 2) assuming pi = 0; and 3) 

considering a likely range of undrained shear strength for the London Clay, su = 136 – 

293 kPa (A3 unit; Standing & Burland, 2006).  Based on these assumptions, Rp ≈ 4 - 

13m.  The current interpretation excludes measured data within the estimated plastic zone 

but considers 46 of subsurface deformations (along 8 vertical lines, A-H, Fig. 5) together 

with 24 locations where surface movements were surveyed.  Figure 14 shows the 

derivation of the least squares solution error (LSS) for the input parameter state space (uε, 
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uδ), where: 

 (29) 

In most practical cases, engineers will expect to fit the measured centerline 

surface settlement, , and hence, it is preferable to present a modified least squares 

solution, LSS*, that includes this additional constraint. 

Figures 14a and 14b compare results for two sets of soil stiffness properties a) 

isotropic case (m = 0.33, n = 1, ν = νvh = νhh = 0.5); and b) cross-anisotropic case (with  

= 0°), based on the small strain behavior reported by Gasparre et al (2007) and assuming 

incompressibility of the London clay (m = 0.66, n = 2.07, νvh = 0.5, νhh = [1 - 0.5n] = -

0.035).  It should be noted that the small strain elastic anisotropic stiffness ratio n = Eh/Ev 

obtained from undrained tests is very close to that obtained from drained tests as shown 

in Gasparre et al (2007).  

There is little difference in the magnitude of the global least squares error 

between the two sets of analyses, while the constrained LSS* solution for the isotropic 

case is slightly closer to the global minimum than the cross-anisotropic case.  The derived 

cavity contraction parameter is smaller for the cross-anisotropic case (-uε = 34mm vs 

36mm for the isotropic case), with a lower relative distortion, ρ = -uδ/uε = 1.56 vs 1.32).  

Both LSS* solutions imply slightly lower volume loss ratios at the tunnel cavity (ΔVL/V0 

= 3.0% and 2.8%; Figs. 14a, 14b, respectively) than were estimated by conventional 

empirical solutions (3.3%; Fig. 11a). 

Figure 15 compares analytical solutions of the distributions of vertical and 

horizontal surface displacement components for the WB JLE tunnel, using isotropic and 

cross-anisotropic soil properties (with LSS* tunnel mode input parameters).  The fields of 

vertical displacements are very similar for both sets of analyses, while the cross-

anisotropic case predicts slightly larger lateral ground movements around the tunnel 

springline than the isotropic case (Fig. 15b). 

Figures 16a and 16b show that both sets of analysis produce very reasonable 

agreement with the measured vertical and horizontal surface displacements.  These 

results show that reasonable predictions of surface displacements can be achieved using 

the analytical solutions with isotropic stiffness properties for the London Clay.  This is a 
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very surprising result that is due to counteracting effects of the two key stiffness ratios, n 

and m (cf. Figs. 8a, 8b). 

Figures 17a and 17b compare the computed and measured subsurface vertical and 

horizontal displacement components for the WB JLE tunnel.  The computed 

deformations are generally in very good agreement with both vertical and horizontal 

components of movements measured in the far field (i.e., outside the expected zone of 

plastic soil behavior).  Very similar patterns of soil displacements are obtained using 

isotropic and anisotropic elastic stiffness parameters.  The analysis tends to overestimate 

measured centerline vertical settlements below 10m but produce very accurate 

predictions at the rest of the extensometer positions.  The analytical solutions fit well the 

inclinometer readings at locations from the ground surface up to a transition depth 

marked by contour line ux = 0mm in Figure 17b, but predict outward movement below 

this transition depth while the inclinometers show zero ground movements.   

 

CONCLUSIONS 

This paper has presented new analytical solutions for estimating 2D ground 

deformations caused by shallow tunneling in a cross-anisotropic soil.  These analyses 

extend prior solutions derived by Pinto (1999), Whittle and Sagaseta (2003) and Pinto 

and Whittle (2011) in which the complete distribution of far-field ground movements can 

be interpreted from two basic tunnel cavity deformation mode parameters (uε and uδ or ρ), 

the dip angle of the isotopic stiffness plane, , and two key anisotropic stiffness ratios, n 

= Eh/Ev and m = Gvh/Ev.  

The analytical solutions have been applied to re-interpret ground deformations 

associated with the open-face construction of the WB tunnel for the Jubilee Line at a 

well-instrumented site in St. James Park (Nyren, 1998).  The current analyses benefit 

from high quality measurements of the cross-anisotropic stiffness properties of intact 

London Clay measured in an independent study for Heathrow Airport T5 (Gasparre et al., 

2007).  These data show that London Clay exhibits pronounced stiffness anisotropy at 

small strain levels. 

The cavity deformation mode parameters are evaluated using a least squares fit to 

surface and subsurface deformations at the instrumented test site.  The results show that 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 17 

both the isotropic and cross-anisotropic analytical solutions produce very good fits to the 

measured ground displacements. Using the high quality measurements undertaken by 

Gasparre et al (2007), it can indeed be concluded that cross-anisotropic stiffness 

parameters have only a small influence on predictions of the far-field ground 

deformations caused by tunneling in London Clay. The analytical solutions achieve 

comparable levels of agreement with measurements of the surface settlement trough that 

are conventionally fitted using an empirical Gaussian distribution function.  However, the 

current analytical solutions correspond to smaller volume losses at the tunnel cavity than 

those estimated by conventional empirical assumptions (cf., Standing & Burland, 2006) 

while offering a more consistent framework for interpreting the complete distribution of 

horizontal and vertical components of ground deformations.  Although these results are 

very encouraging, further case studies are needed to establish how the cavity mode 

parameters are related to different methods of tunnel construction. 
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APPENDIX A  

Rotation of Planes from Local to Global Coordinate System 

 Considering a cross-anisotropic, linear elastic soil with isotropic properties in a 

general [x‘, z‘] plane with dip angle α to the horizontal as shown in Figure 4, the strains 

are related to the stresses in the local [x‘, y‘, z‘] coordinate system through the following 

relation:  

 (A1) 

 

The local material compliance matrix Cx‘y‘z‘ is transformed to the global compliance 

matrix Cxyz  as shown below: 

 (A2) 

where R is the transformation matrix: 
  

 (A3) 
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APPENDIX B 

Calculation of corrective stresses integrals 

 

The integral of the tractions along the free surface (eq. 22d) after some 

manipulation reduces to: 

 

 (B1) 

 

 The calculation of the stress functions of the corrective stresses ,  

requires the calculation of the infinite integral (eq. 25a): 

 

 (B2) 

Consider the integrals of the complex functions    along the path 

shown in Figure B1.  This path includes branch points for function Fk 

  (B3) 

For small ratios R/H, and usual degrees of anisotropy function the two branch 

points of the Fk will lie in the upper plane (i.e., outside the chosen integration path) and 

therefore the integral of the analytic function Fk according to the Cauchy integral formula 

assumes the value: 

  (B4) 

Also:  (B5) 

The final result is    (B6a) 

Similarly,  (B6b) 
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LIST OF SYMBOLS 

Latin 

an Laurent series coefficients 

bn Laurent series coefficients 

C integration path 

E1  Young‘s modulus at the direction parallel to the isotropic plane 

E2  Young‘s modulus at the direction normal to the isotropic plane 

Eh  Young‘s modulus in (any) horizontal direction (plane of isotropy) 

Ev  Young‘s modulus in the vertical direction 

fk(x) integral of traction along boundary 

F Airy‘s stress function 

G2  Shear modulus for strain in direction normal to the isotropic plane 

Ghh  shear modulus for strain in the horizontal plane 

Gvh  shear modulus for strain in (any) vertical plane (planes of anisotropy) 

H depth to tunnel springline 

i imaginary unit 

k hydraulic conductivity 

K empirical parameter related to the settlement trough width  

K0 coefficient of lateral earth pressure at rest 

L radius of integration path 

LSS least squares solution 

LSS* constrained least squares solution that fits uy
0
 

n, m stiffness ratios 

N(x) normal traction on free surface 

N overload factor 

pk, qk analytic coefficients  

p0 pressure outside the tunnel cavity 

pi pressure inside the tunnel cavity 

R radius of tunnel 

Rp radius of plastic zone 

s variable 
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Sk boundary in zk domain 

su undrained shear strength 

T(x) shear traction on free surface 

uδ  ovalization parameter 

uε uniform convergence parameter 

ux horizontal ground displacements 

 horizontal ground displacement measured at point i 

uy vertical ground displacements 

 vertical ground displacement measured at point i 

uy
0
 centerline surface settlement 

U, V full space solution (horizontal and vertical displacements) 

wk branch points of (w) 

x distance from the tunnel centerline 

[x, y, z] Global coordinate system 

[x’, y’, z’] Local coordinate system 

y depth measured from the ground surface 

z, zk complex parameters 

 

Greek 

α dip angle of plane with isotropic properties 

ij  coefficients related to stiffness parameters 

ij shear strain 

ΔVs volume loss at the ground surface 

ΔVL/V0 volume loss at the tunnel cavity 

i normal strain 

k transformed variable 

  angle 

k  roots of the characteristic equation (with positive imaginary part) 

  Poisson‘s ratio (isotropic case) 

1  Poisson‘s ratio for the effect of strains in the isotropic plane (x‘-z‘) 

 uxi

 uyi
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2  Poisson‘s ratio for the effect of strain in y‘ due to strain in the x‘ direction  

hh  Poisson‘s ratio for the effect of horizontal on complementary horizontal strain 

hv  Poisson‘s ratio for the effect of horizontal on vertical strain 

vh  Poisson‘s ratio for the effect of vertical strain on horizontal strain 

 integration variable 

ρ  ovalization ratio 

ζ analytic coefficient  

i  normal stress 

ζv0 overburden pressure  

k  boundary in k domain 

ij  shear stress 

k(z) analytic function 

 

Superscripts 

+ corresponding to cavity at (0, H) 

 corresponding to cavity at (0, -H) 

c ―corrective‖ solutions 

 

Subscripts 

B boundary 

k integer (assumes values 1, 2) 
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A.  Deformation at tunnel heading 
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a) Closed-face tunnel b) Sequential excavation 

Figure 1: Sources of ground movements associated with tunneling  

(adapted from Möller, 2006) 
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Figure 2: Empirical estimation of inflexion point (after Mair & Taylor, 1997) 
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Figure 3: Deformation modes around tunnel cavity (after Whittle & Sagaseta, 2003)  
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Figure 4: Superposition method to represent shallow tunnel in cross-anisotropic soil  
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Figure 5: Anisotropic stiffness ratios from drained HCA uniaxial loading tests on natural 
London Clay (after Gasparre et al., 2007) 
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i) Uniform convergence 

 
ii) Ovalization 

Figure 6a: Prescribed displacement modes at tunnel cavity 

 

 
Figure 6b: Problem boundaries in zk-plane and in transformed plane 
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a) Surface Settlements 
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b) Lateral Displacements at x/2R = 1 

 

Figure 7: Effect of relative distortion and dip angle on predicted surface settlements and 

subsurface lateral displacements for cross-anisotropic clay 
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a) Normalized surface settlement trough 
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b) Normalized lateral displacements at offset, x/2R = 1 

 
Figure 8: Effect of anisotropic stiffness ratios (n and m) on predicted surface settlements 

and subsurface lateral displacements 
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Figure 9:  Effect of anisotropic stiffness ratios and tunnel ovalization ratio on the surface 

settlement trough mode shapes for shallow tunnels 
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Figure 10:  Cross-section and instrumentation of test section of JLE project in St James's 

Park – shading indicates plastic zone around tunnel (Rp/R=4-13) 
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a) Surface settlement trough (after Standing & Burland, 2006) 
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b) Surface horizontal displacements 

 
Figure 11: Empirical interpretation of surface displacements for WB JLE tunnel in St. 

James Park  
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Figure 12: Surface settlement troughs as predicted by FE analysis undertaken by Franzius 

et al (2005) 
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a) Surface settlement trough 
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b) Subsurface Lateral Displacements  
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Figure 13: Comparison between field measurements and FE analysis results undertaken 

by Wongsaroj (2005)  
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a) Isotropic case 
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b) Cross-anisotropic case 

 
Figure 14: Least squares error analysis undertaken for input parameter selection 
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a) Vertical displacements (mm) 

 
b) Horizontal displacements (mm) 

Figure 15:  Analytical predictions of vertical and horizontal ground deformations for 

LSS* solutions with isotropic and cross-anisotropic stiffness properties for London Clay 
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a) Settlements 

 
b) Horizontal displacements 
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Figure 16: Comparison of computed and measured surface movements for WB JLE 
tunnel  
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a) Vertical Displacements 
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b) Horizontal displacements 
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Figure 17: Comparison of computed and measured subsurface ground movements for 

WB JLE tunnel 
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Figure B1: Integration path 
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