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1 Introduction

In high energy colliders, jet production plays an important role in probing the strong

interaction, hadron structure, dense media, and new particles beyond the Standard Model.

Thus predicting jet production cross sections and jet structure is one of the important

tasks of Quantum Chromodynamics (QCD). Jet algorithms [1–6] allow exclusive study of

jets and definitions of cross sections with a definite number of jets. However, they also

introduce various parameters like jet radii or sizes and jet vetoes, which require more effort
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to predict accurately in analytic calculations in QCD. Event shapes [7] provide a simple,

inclusive way to identify final states that are jet-like, and can often be predicted to very high

accuracy in QCD. Thrust in e+e− collisions [8] is a classic example of a two-jet event shape

that has been extensively studied in both theory and experiment. Thrust cross sections

in e+e− have been predicted to very high accuracy, N3LL+O(α3
s) in resummed and fixed-

order perturbation theory [9–14], along with rigorous treatments of nonperturbative power

corrections [14–16], that have led to unprecedented 1%-level precision in determinations of

the strong coupling constant αs from e+e− event shape data [13, 14, 17].

Event shapes in DIS have also been studied but not as extensively as in e+e−, and the

theoretical accuracy has yet to catch up to the same level. Two versions of DIS thrust have

been defined and measured in H1 and ZEUS experiments at HERA [18–23] and they have

been calculated up to next-leading-logarithmic accuracy (NLL) at resummed order and

numerically to O(α2
s) at fixed order [24, 25]. The measured DIS thrusts involve non-global

logarithms (NGLs), which present a theoretical obstacle to higher order accuracy [25, 26].

Versions of thrust such as e+e− thrust and the DIS thrust τQ defined in [24] do not

suffer from NGLs. A class of event shapes called N -jettiness τN [27] is a generalization

of these versions of thrust and are applicable in different collider environments, including

e+e−, lepton-hadron, and hadron-hadron collisions. τN measures the degree of collimation

of final-state hadrons along N light-like directions in addition to any initial-state radiation

(ISR) along the incoming beam directions. In a number of recent papers [28–30], factoriza-

tion theorems for various versions of 1-jettiness τ in DIS have been derived by using soft

collinear effective theory (SCET) [31–35]. To date, this has enabled log resummation up

to NNLL accuracy [28–30], which is one order higher in resummed accuracy than earlier

results [24, 25].

The SCET results [28–30] correctly capture and resum all logarithmic terms (singular),

while non-logarithmic terms (nonsingular) can be obtained from fixed-order computations

in full QCD. The full cross section is the sum of singular and nonsingular parts and can

be written as

σfull(τ) = σsing(τ) + σns(τ) . (1.1)

The singular part is factorized in terms of hard, jet, beam, and soft functions each of which

depends on the relevant energy scale for each mode [28–30]. This separation of scales and

renormalization group (RG) evolution between them allows for resummation of the large

logarithms in the fixed-order expansion of the cross section. When the RG evolution is

turned off in the singular part, the full cross section reduces to the ordinary fixed-order

result. The nonsingular part is obtained by subtracting the fixed-order singular part from

the fixed-order cross section.

For an accurate prediction over the entire range of an event shape distribution, both

fixed-order and resummed calculations should be consistently improved. While NNLL

resummation of the singular part in eq. (1.1) has been performed for three different versions

of DIS 1-jettiness in [28] and another version in [29, 30], no analytic computations of the

non-singular part at O(αs) or above have yet been performed. In [36] an O(αs) result

has been numerically obtained for a version of 1-jettiness that requires a jet algorithm to
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determine the jet momentum. Such a numerical approach is appropriate for such cases and

allows for the flexibility of using different jet algorithms.

In this paper, we carry out the first analytic O(αs) calculation for a DIS event shape.

We choose the version of 1-jettiness called τ b1 in [28], which groups final-state particles into

back-to-back hemispheres in the Breit frame and is the same as the DIS thrust called τQ
in ref. [24]. It can be written as

τ b1 =
2

Q2

∑
i∈X

min{qbB ·pi, qbJ ·pi}
Breit
= 1− 2

Q

∑
i∈HJ

pi z , (1.2)

where pi is the momentum of the ith particle in the final state, and Q2 ≡ −q2 is determined

by the momentum transfer q in the event. The reference vectors are defined by qbB = xP

and qbJ = q + xP , where P is the proton momentum. In the Breit frame these vectors

point exactly back-to-back. The second definition in eq. (1.2) is valid in the Breit frame,

and requires measuring the z components pi z of momenta of particles only in the jet

hemisphere (current hemisphere) HJ . The definition in eq. (1.2) differs from the measured

version τH1 = 1−TZEUS
γ [20, 23] in normalization (replacing 2/Q by 1/Ehemi where Ehemi is

the hemisphere energy). This change in normalization to the energy only in one hemisphere

is responsible for the sensitivity of τH1, TZEUS
γ to NGLs [24, 25].

We present our results in terms of fixed-order singular and nonsingular parts of the

cross section as in eq. (1.1). They can be put in a simple form which can easily be

implemented in other analyses. The main new results of this paper are the nonsingular

1-jettiness structure functions given by eq. (4.5).

We also show numerical results with perturbative uncertainties by varying scales at

the HERA energy. Our results could be compared to existing HERA data [18–23] or to

future EIC data [37]. In [28], by comparing our resummed singular cross section to the

known fixed-order total cross section, we estimated that the nonsingular corrections would

amount to several percent of the total cross section, and this expectation is borne out by

our computations here.

The paper is organized as follows: in section 2 we briefly review the relevant kinematic

variables in DIS and our definition of 1-jettiness, and express the cross section in terms

of structure functions. In section 3, we outline the basic steps of the O(αs) computation

including the phase space for 1-jettiness and perturbative matching of the hadronic tensor

onto parton distribution functions (PDFs). Section 4 contains our main results, analytic

O(αs) expressions for 1-jettiness structure functions. Details of the fixed-order calculation

are given in appendix A, appendix B and appendix C. In section 5 numerical results are

given for structure functions at O(αs) fixed-order accuracy and cross sections at NLL′ +

O(αs) resummed accuracy. Basic details entering the resummation of the singular terms

are reviewed in appendix D and appendix E for convenience. Finally, we will conclude in

section 6.
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2 1-jettiness in DIS

In this section we review DIS kinematic variables that will be used throughout the paper

and the definition of the 1-jettiness τ cross section in DIS, whose computation will be the

main prediction of our paper.

2.1 Kinematic variables

In DIS, an incoming electron with 4-momentum k scatters off a proton with momentum P

by exchanging a virtual photon1 with a large momentum transfer q = k − k′, where k′ is

the momentum of the outgoing electron. Because the photon has spacelike momentum it

has a negative virtuality, and one can define the positive definite quantity

Q2 ≡ −q2 . (2.1)

Q sets the momentum scale of the scattering. We will be interested in hard scattering,

where Q � ΛQCD. A dimensionless quantity x called the Björken scaling variable is

defined by

x ≡ − q2

2P ·q =
Q2

2P ·q , (2.2)

which ranges between 0 ≤ x ≤ 1. Another dimensionless quantity y is defined by y ≡ 2P ·q
2P ·k ,

which ranges between 0 ≤ y ≤ 1. This variable y represents the energy loss of the electron

in the proton rest frame. The three variables x, y, and Q2 are related to one another via

Q2 = xys, where s = (P + k)2 is the total invariant mass of the incoming particles. The

total momentum of the final state X is pX = q + P and the invariant mass is given by

p2
X = 1−x

x Q2. For large x very near 1, the final state consists of a single tightly collimated

jet of hadrons. This region has been analyzed in SCET in, e.g., [38–42]. We will instead

be interested in different region where two or more energetic jets can occur. This occurs

in the “classic” region where x has a generic size x ∼ 1− x ∼ 1 such that p2
X ∼ Q2.

Although the cross section we compute is frame independent, there is a convenient

frame in which to perform the intermediate steps of the calculation. This is the Breit

frame, where the virtual photon with momentum qµ has nonzero components only in the

spatial directions, and collides with the proton with momentum Pµ along the z direction.

In this frame the virtual photon and the proton have momenta

qµ = Q
nµz − n̄µz

2
, Pµ =

Q

x

n̄µz
2
, (2.3)

where nz = (1, 0, 0, 1) and n̄z = (1, 0, 0,−1).

2.2 1-jettiness

To probe the number of jets in the final state produced at a given value of x and Q, an

additional measurement needs to be made. A simple event shape that accomplishes this is

the N -jettiness [27], a generalization of the thrust [8]. It is defined by the sum of projections

1For simplicity we do not include Z boson exchange in this paper. See [28] for appropriate modifications.
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of final-state particle momenta onto whichever axis is closest among N jet and Nb beam

axes, where Nb = 0 for e+e− collisions, 1 for ep DIS, and 2 for pp collisions. The N -jettiness

τN is designed so that it becomes close to zero for an event with N well-collimated jets

in the final state away from any hadronic beam axes. For example, 1-jettiness in DIS is

defined by one jet and one beam axis:

τ1 ≡
2

Q2

∑
i∈X

min{qB ·pi, qJ ·pi} , (2.4)

where qB, qJ are lightlike four-vectors along the beam and jet directions. It is natural to

choose qB along the proton direction. One can consider several options for choosing qJ .

In [28], we defined three versions of 1-jettiness τa1 , τ b1 , and τ c1 distinguished by different

choices for qJ : (a) qaJ aligned along the jet axis determined by a jet algorithm, (b) qbJ along

the z axis in the Breit frame, and (3) qcJ along the z axis in the center-of-momentum (CM)

frame.

In this paper we consider τ b1 for which qbB and qbJ are given by

qbB
µ

= xPµ , qbJ
µ

= qµ + xPµ . (2.5)

As shorthand, we drop both superscript and subscript in τ b1 throughout the remainder of

the paper.

τ ≡ τ b1 . (2.6)

In the Breit frame, the vectors qbB,J point exactly back-to-back with equal magnitude:

qbB
Breit
= Q

n̄z
2
, qbJ

Breit
= Q

nz
2
, (2.7)

and divide particles in the final state into two equal hemispheres. One is the “beam” or

“remnant” hemisphere HB in the −z direction and the other is the “jet” or “current”

hemisphere HJ in the +z direction.

The 1-jettiness τ in eq. (2.6) has an experimental advantage in that it can be de-

termined by measuring only one of the hemispheres, namely HJ . This avoids having to

measure the whole final state including the beam remnants, a technical difficulty in exper-

iments such as H1 and ZEUS at HERA. By using q and P in the Breit frame in eq. (2.3),

the 1-jettiness can be written in the form

τ
Breit
=

1

Q

∑
i∈X

min{n̄z ·pi, nz ·pi} = 1− 2

Q

∑
i∈HJ

pi z . (2.8)

We used momentum conservation pB = pX−pJ , where pB =
∑

i∈HB pi and pJ =
∑

i∈HJ pi.

The definition eq. (2.8) directly corresponds to the thrust τQ in DIS defined in [24]. We can

obtain the physical upper limit on τ using the kinematic constraints that the jet momentum

pJ z ≥ 0 has to be positive, and that the beam momentum’s z component is negative, so

that pJ z = pX z − pB z ≥ pX z = Q (2x− 1)/(2x). These conditions imply the upper limits

on τ :

τmax =

{
1 x ≤ 1/2 ,
1−x
x x ≥ 1/2 .

(2.9)
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2.3 1-jettiness cross section

The 1-jettiness cross section can be expressed in terms of leptonic and hadronic tensors:

dσ

dx dQ2 dτ
= Lµν(x,Q2)Wµν(x,Q2, τ) , (2.10)

where the lepton tensor for a photon exchange is given by

Lµν(x,Q2) = − α2

2x2s2

[
gµν − 2

kµk′ν + k′µkν

Q2

]
, (2.11)

where k and k′ are incoming and outgoing electron momenta and α ≡ αem. The hadronic

tensor is the current-current correlator in the proton state,

Wµν(x,Q2, τ) =

∫
d4x eiq·x〈P |Jµ†(x)δ(τ − τ̂)Jν(0)|P 〉 , (2.12)

where τ̂ is a 1-jettiness operator that measures 1-jettiness when it acts on the final states,

which we defined in [28], based on the construction of event shape measurement operators

from the energy-momentum tensor in [43–46]. In this paper, we consider only the vec-

tor current Jµ =
∑

f Qf q̄fγ
µqf . Previously we worked with both vector and axial-vector

currents, see [28] for the appropriate generalizations.2 Because the hadronic tensor de-

pends only on the two momenta P and q, it can be decomposed into products of tensors

constructed with gµν , Pµ, qµ and structure functions depending on x, Q, and τ . In our

conventions,

Wµν(x,Q2, τ) = 4π

[
Tµν1 F1(x,Q2, τ) + Tµν2

F2(x,Q2, τ)

P · q

]
, (2.13)

where the two tensor structures that appear are:

Tµν1 = −gµν +
qµqν

q2
, Tµν2 =

(
Pµ − qµP · q

q2

)(
P ν − qν P · q

q2

)
, (2.14)

which arise from parity conservation and the Ward identity qµW
µν = Wµνqν = 0. If we con-

sidered parity-violating scattering, e.g. with neutrinos, a third tensor Tµν3 = −iεµναβqαPβ
would also appear.

In terms of the structure functions appearing in eq. (2.13), the cross section eq. (2.10)

can be expressed

dσ

dxdQ2dτ
=

4πα2

Q4

[
(1 + (1− y)2)F1 +

1− y
x
FL
]
, (2.15)

where FL ≡ F2 − 2xF1. We use calligraphic font for the structure functions in the dif-

ferential τ cross section. We will use Roman font F1,L for the structure functions in the

integrated cross section, see eqs. (4.1) and (4.2).

2Here we will include the quark charges Qf in the hadronic current, whereas in [28] they were in Lµν .
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The structure functions Fi can be obtained by contracting the hadronic tensor with

the metric tensor or the proton momentum Pµ:

F1(x,Q2, τ) =
1

8π(1− ε)

(
− gµνWµν +

4x2

Q2
PµPνW

µν

)
,

FL(x,Q2, τ) =
2x3

πQ2
PµPνW

µν . (2.16)

Although Wµν in a proton state is well defined in 4 dimensions, in intermediate steps below

we will compute Wµν with partonic states, where IR divergences must be absorbed into

the scheme-dependent parton distributions. We regulate these divergences by dimensional

regularization, and define the PDFs in the MS scheme. Thus we choose to always work

with expressions in D = 4 − 2ε dimensions for the vector indices µ and ν, and the factor

of 1/(1 − ε) in F1 comes from taking the contraction gµνT
µν
1 . At O(αs), the contraction

PµPνW
µν turns out to be finite as ε→ 0. The standard structure functions depend just on

x and Q2, while those in eq. (2.16) are additionally differential in τ . The structure functions

can be written in terms of singular and nonsingular parts as we did for the cross section

in eq. (1.1). We will present singular and nonsingular parts of the structure functions in

section 4, from which one easily obtains the corresponding parts of the cross section via

eq. (2.15).

3 Setup of the computation

In this section we outline the basic steps in the O(αs) computation of the 1-jettiness cross

section in DIS. First, we describe the standard perturbative matching procedure for the

hadronic tensor onto PDFs, which allows us to compute the matching coefficients using

partonic external states. Then we set up the phase space integrals in the Breit frame in

which the intermediate steps of the computation are simpler. The final results are frame

independent. The reader who wishes to skip these details may turn directly to the final

results in section 4 and section 5.

3.1 Perturbative matching

Here, we describe the matching procedure to determine the short-distance coefficients that

match the hadronic tensor Wµν(x,Q2, τ) onto PDFs. By using the operator product ex-

pansion (OPE) the hadronic tensor can be written in the factorized form

W h
µν(x,Q2, τ) =

∑
i∈{q,q̄,g}

∫ 1

x

dξ

ξ
fi/h(ξ, µ)wiµν

(x
ξ
,Q2, τ, µ

) [
1 +O

(ΛQCD

Qτ

)]
, (3.1)

where fi/h is the PDF for a parton i ∈ {q, q̄, g} in a hadron h, and wiµν is the short-distance

coefficient that we will determine by perturbative matching.3 The sum over q, q̄ goes over

3The first power correction ∼ ΛQCD/(Qτ) in eq. (3.1), as well as higher-order terms ∼ [ΛQCD/(Qτ)]k, are

all described by the leading-order soft function in the small-τ factorization theorem [28]. For τ ∼ ΛQCD/Q

the leading power corrections not contained in the factorization theorem are O(ΛQCD/Q), while for large

τ ∼ 1 the leading power corrections are O(Λ2
QCD/Q

2).
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all light flavors f ∈ {u, d, s, c, b} at the collision energies we consider. On the left-hand

side of eq. (3.1), the superscript h specifies the hadron in the initial state. The coefficients

wiµν however can be computed in perturbation theory using any appropriate initial state

including partonic ones. This is what we shall describe in this subsection.

The factorization theorem for an initial parton j is given by

W j
µν =

∑
i∈{q,q̄,g}

fi/j ⊗ wiµν , (3.2)

where the arguments are implicit for simplicity and the convolution integral over ξ in

eq. (3.2) is replaced by the symbol ⊗. By comparing eq. (3.2) to eq. (3.1), all implicit

notations can easily be recovered. We determine the coefficients wi by computing the W j
µν ,

which are defined by eq. (2.12) but with a quark or antiquark j = q, q̄ or gluon j = g in the

initial state, and subtracting out the partonic PDFs, which are IR divergent and require

a regulator. We perform this computation using dimensional regularization and defining

PDFs in the MS scheme.

Working toO(αs), and denoting the order αns piece of each function by a superscript (n),

eq. (3.2) becomes

W j (0)
µν =

∑
i∈{q,q̄,g}

f
(0)
i/j ⊗ w

i (0)
µν ,

W j (1)
µν =

∑
i∈{q,q̄,g}

[
f

(1)
i/j ⊗ w

i (0)
µν + f

(0)
i/j ⊗ w

i (1)
µν

]
.

(3.3)

Using MS and using ε to regulate IR divergences, the partonic PDFs to O(αs) are given

by (see, e.g., [47] for related discussion)

f
(0)
i/j = δijδ(1− z) , f

(1)
i/j = −1

ε

αs
2π
CijPij(z) , (3.4)

where the color factors and splitting functions are given by

Cqq′ = Cq̄q̄′ = CF , Pqq′(z) = Pq̄q̄′(z) = δqq′Pqq(z) , (3.5)

Cqg = Cq̄g = TF , Pq̄g(z) = Pqg(z) , (3.6)

with Pqq(z) and Pqg(z) given in eq. (4.7) below. There are no contributions containing

the splitting functions Pgq, Pgq̄, Pgg since the tensor W j
µν in eq. (2.12) we compute contains

only the quark current.

For the 1-jettiness structure functions eq. (2.16), we only need the projections−gµνWµν

and PµPνW
µν of the hadronic tensor in eq. (3.1); hence, we obtain the projected coeffi-

cients −gµνwiµν and PµP νwiµν . We compute the contracted tensors −gµνW i
µν explicitly

in appendix B. Including the factor of (1 − ε) coming from the tensor contractions in D

– 8 –
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dimensions, we obtain:

−gµνW q
µν(x,Q2, τ)

1− ε = 4πQ2
fδ(1− x)δ(τ) + 2αsCFQ

2
f

[
−1

ε
Pqq(x)δ(τ) + wqG(x,Q2, τ)

]
,

(3.7)

−gµνW g
µν(x,Q2, τ)

1− ε = 4αsTF
∑
f

Q2
f

[
−1

ε
Pqg(x)δ(τ) + wgG(x,Q2, τ)

]
, (3.8)

where wq,gG are finite as ε → 0. For the quark tensor we consider one flavor f at a time,

since it will get convolved with a different PDF for each quark flavor, while for the gluon

tensor we include the sum over all flavors. The contractions PµP νW i
µν begin at O(αs),

and take the form

PµP νW i
µν(x,Q2, τ) =

{
αsCFQ

2
f w

q
P (x,Q2, τ) i = q ,

αsTF
∑

f Q
2
f w

g
P (x,Q2, τ) i = g ,

(3.9)

and are finite as ε → 0. Plugging these forms into the matching conditions eq. (3.3), we

find the 1/ε IR divergences cancel between the PDFs in eq. (3.4) and the computed tensors

in eq. (3.7), leaving the finite matching coefficients

− gµνwq (0)
µν = 4πQ2

fδ(1− x)δ(τ) , −gµνwg (0)
µν = PµP νwq,g (0)

µν = 0 , (3.10)

− gµνwi (1)
µν =

{
2αsCFQ

2
f w

q
G

4αsTF
∑

f Q
2
f w

g
G

, PµP νwi (1)
µν =

{
αsCFQ

2
f w

q
P i = q ,

αsTF
∑

f Q
2
f w

g
P i = g ,

.

(3.11)

We compute the finite coefficients wq,gG,P explicitly in appendix B, and they are given in

eqs. (B.12b), (B.20b), (B.22b), and (B.25b).

3.2 Phase space

In this section, we evaluate some of the phase-space integrals for 1- and 2-body final states.

In the partonic computation of the tensor Wµν given in eq. (2.12) or eq. (3.1), we sum over

all the possible n-body final partonic states,

W j
µν(x,Q2, τ) =

1

sj

∑
n

∫
dΦnM∗µ(j(P )→ p1 . . . pn)Mν(j(P )→ p1 . . . pn)

× (2π)DδD(P + q −
∑
i

pi)δ
(
τ − τ({p1 . . . pn})

)
≡
∑
n

W j[n]
µν ,

(3.12)

where the 1/si factor is from averaging over the spins or polarizations of the initial parton

j: sq = sq̄ = 2 and sg = 2(1−ε), and in the last equality we define the n-body contribution

W
j[n]
µν to W . We sum over the spins or polarizations of all the final-state partons. In

eq. (3.12),

Mµ ≡ 〈p1 . . . pn| Jµ |j(P )〉 (3.13)
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is the amplitude for the initial parton j with momentum P to scatter off the current Jµ
and produce the final-state partons with momenta p1 . . . pn, and the n-body phase space

integration measure is given by∫
dΦn ≡

n∏
i=1

(∫
dDpi
(2π)D

2πδ(p2
i )

)
. (3.14)

The n = 1 term in the sum in eq. (3.12) is given by

W j[1]
µν =

1

sj

∫
dΦ1M∗µMν(2π)DδD(P + q − p1)δ(τ − τ(p1)) =

1

sj

2π

Q2
δ(1− x)δ(τ)M∗µMν ,

(3.15)

where the arguments of Mµ are implicit. The n = 2 term is given by

W j[2]
µν =

1

sj

∫
dΦ2M∗µMν(2π)DδD(P + q − p1 − p2)δ

(
τ − τ(p1, p2)

)
=

1

sj

1

8πQ

(4π)ε

Γ(1− ε)

∫ Q

0

dp−2
(p+

2 p
−
2 )ε

δ
(
τ − τ(p1, p2)

)
M∗µMν ,

(3.16)

where the lightcone components are (p+
2 , p

−
2 ) = (nz · p2, n̄z · p2). We have chosen to do the

integrals using the momentum-conserving delta function in eq. (3.16) and the mass-shell

delta functions in eq. (3.14) in such an order that the p−2 integral is left over in eq. (3.16) to

be done last. Where p2 and p1 appear in eq. (3.16), they take values given by the formulas:

pµ1 = (Q− p−2 )
nµz
2

+
1− x
x

p−2
n̄µz
2
− pµ⊥ ,

pµ2 = p−2
nµz
2

+
1− x
x

(Q− p−2 )
n̄µz
2

+ pµ⊥ ,

(3.17)

where p2
⊥ = −(Q − p−2 )p−2 (1 − x)/x. The integrand in eq. (3.16) is independent of the

azimuthal angle φ of p⊥. For example, the p+
2 in the denominator of eq. (3.16) is p+

2 =

(1− x)(Q− p−2 )/x.

We find it convenient to rewrite the phase space in eq. (3.16) in terms of a dimensionless

variable v ≡ p−2 /Q,

W j[2]
µν =

1

sj

1

8π

( 4π

Q2

)ε 1

Γ(1− ε)

(
x

1− x

)ε ∫ 1

0

dv

vε(1− v)ε
M∗µMνδ

(
τ − τ(x, v)

)
. (3.18)

The 1-jettiness τ is now expressed as a function of x and v. Two particles in the final state

can be assigned in four different ways to the two hemispheres, and the formula for τ(x, v)

differs in each of these regions. These four regions (a) to (d) are illustrated in figure 1.

The function τ(x, v) can be broken down into four pieces,

τ(x, v) =
∑

i∈{a,b,c,d}

Θ(i)(x, v)τ (i)(x, v) , (3.19)
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Figure 1. Regions of two-body phase space in the Breit frame. In this frame the incoming proton

has momentum along the −z direction given by P = Qn̄z/(2x). The figure shows a quark and

a gluon in the final state, corresponding to the Feynman diagrams in figure 7. For the diagrams

in figure 8 there would be a quark and an antiquark in the final state. The 1-jettiness τ groups

particles into back-to-back hemispheres in this frame, in the ±z directions. There are four distinct

regions in x and v ≡ p−2 /Q space in which the particles are grouped differently, making τ a function

τ(x, v). In regions (a) and (d) both particles end up in the same region, giving a constant value of

τ . In regions (b) and (c) the two particles are in opposite regions, and τ varies according to the

projection of the two particles’ momenta onto the ±z axes. The values of τ in these four regions

are given in eq. (3.20), and enter the phase space integral in eq. (3.18).

where the two-dimensional step function Θ(i) covers each region (i) and τ (i) is the value of

1-jettiness in the corresponding region:

τ (i)(x, v) =


1
1−v
x
v
x
1−x
x

, Θ(i)(x, v) =


θ(−v + (1− x)) θ(v − x) i = a ,

θ(v − (1− x)) θ(v − x) i = b ,

θ(−v + (1− x)) θ(−v + x) i = c ,

θ(v − (1− x)) θ(−v + x) i = d .

(3.20)

Note that in regions i = a, d the value of τ is constant in v and thus the delta function

comes outside the integral in eq. (3.18). As illustrated in figure 1, in these two regions

both final state particles are in the same hemisphere, and τ takes the v independent value

shown in eq. (3.20) over the entire region, which corresponds to the maximum values of

τ given in eq. (2.9). In regions i = b, c, the value of τ varies with v and thus the delta

function remaining in eq. (3.18) can be used to evaluate the v integral.

We evaluate the integral eq. (3.18) over the four regions in figure 1 using the expressions

eq. (3.20) in appendix B.3.
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4 Analytic results for DIS 1-jettiness structure functions

In this section we present our analytic results for the structure functions in eq. (2.16) that

determine the 1-jettiness cross section in eq. (2.15). We will present our results in terms

of the structure functions appearing in the cumulative (integrated) cross section,

σc(x,Q2, τ) ≡
∫ τ

0
dτ ′

dσ

dx dQ2 dτ ′
, (4.1)

which decomposes into structure functions Fi exactly like eq. (2.15), where

Fi(x,Q
2, τ) =

∫ τ

0
dτ ′Fi(x,Q2, τ ′) , (4.2)

where the Fi are given by eq. (2.16). The results for the integrated structure functions

Fi are more compact to write down than for Fi. We give the results for the differential

structure functions Fi in appendix C.

As the cross section in eq. (1.1) is written in terms of singular and nonsingular parts,

we express the structure functions as:

Fi = F sing
i + F ns

i . (4.3)

The fixed-order structure functions are obtained from the calculation of projected hadronic

tensors in eq. (2.16) that are calculated in appendix B and appendix C. The singular part

of the cross section was calculated in [28]. Our main new results here are the nonsingular

parts of the structure functions that are obtained by subtracting off the known singular

parts from the full expressions.

We will present our final expressions for the singular and nonsingular parts of F1 and

FL in eq. (4.3) in the following form:

F1(x,Q2, τ) =
∑

i∈{q,q̄,g}

(Ai +Bi) ,

FL(x,Q2, τ) =
∑

i∈{q,q̄,g}

4xAi .

(4.4a)

(4.4b)

The singular parts of these can be extracted from the singular cross section in [28], and are
given in eq. (4.8). Our main new results here are for the nonsingular parts. The functions
Ans
i and Bns

i are given by the nonsingular parts of PµP νW i
µν and −gµνW i

µν , respectively.
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They are obtained by integrating the differential structure functions in eq. (C.6). We find

Ans
q =

∑
f

Q2
f

αsCF
4π

{
Θ0

∫ 1
1+τ

x

dz fq(
x
z )(2zτ − 1) +

∫ 1

x

dz fq(
x
z )

}
,

Ans
g =

∑
f

Q2
f

αsTF
π

{
Θ0

∫ 1
1+τ

x

dzfg(
x
z )(2zτ − 1)(1− z) +

∫ 1

x

dz fg(
x
z )(1− z)

}
,

Bns
q =

∑
f

Q2
f

αsCF
4π

{
Θ0

∫ 1
1+τ

x

dz

z
fq(

x
z )
[ 1− 4z

2(1− z) (2zτ − 1) + Pqq(z) ln
zτ

1− zτ
]

+ fq(x)
(
3 ln τ + 2 ln2 τ

)
+

∫ 1

x

dz

z
fq(

x
z )
[
L0(1− z)1− 4z

2
− Pqq(z) ln zτ

]}
,

Bns
g =

∑
f

Q2
f

αsTF
2π

{
Θ0

∫ 1
1+τ

x

dz

z
fg(

x
z )

[
−(2zτ − 1) + Pqg(z) ln

zτ

1− zτ

]

−
∫ 1

x

dz

z
fg(

x
z )
[
1 + Pqg(z) ln zτ

]}
,

(4.5a)

(4.5b)

(4.5c)

(4.5d)

which is one of our main results. Here, we have defined the theta function

Θ0 ≡ Θ0(τ, x) ≡ θ(τ)θ(1− τ)θ

(
1− x
x
− τ
)
, (4.6)

which turns on inside the physically-allowed region 0 < τ < τmax given by eq. (2.9) and

turns off outside. The plus distribution Ln(z) is defined in appendix A. The standard

splitting functions Pqq and Pqg are given by

Pqq(z) ≡
[
θ(1− z)1 + z2

1− z

]
+

= (1 + z2)L0(1− z) +
3

2
δ(1− z) (4.7a)

Pqg(z) ≡ θ(1− z)[(1− z)2 + z2]. (4.7b)

The formulas for Bq and Bg in eqs. (4.5c) and (4.5d) appear to contain terms which are

still divergent as τ → 0, but these divergences cancel in the sum of all terms. Formulas for

Bq,g given as sums of explicitly nonsingular terms can be found in eq. (C.9).

One may recognize that the Θ0 terms in eq. (4.5) introduce a discontinuity in the

cumulative cross section at τ = 1. This feature is associated with asymmetric initial

momentum in the z direction, which can give rise to an event with one of the hemispheres

containing all final-state particles and the other being empty. As illustrated in figure 1, this

occurs in regions (a) and (d), where τ takes on its maximum allowed values in eq. (2.9),

1 for x < 1/2 and (1 − x)/x for x > 1/2. For x < 1/2, this appears at τ = 1 as a

delta function in the differential structure functions eq. (C.6) and a discontinuity in the

integrated structure functions eq. (4.5). However, this feature is not seen for x > 1/2 at

τ = (1− x)/x, because we see that the integrals proportional to Θ0 in eq. (4.5) go to zero

for τ = (1− x)/x, the range of integration shrinking to zero.

The singular part of the cross section has been computed in [28], from which the

singular part of the structure functions can be extracted. F sing
1 is simply half of the

cumulant cross section given in eq. (174) in [28], and F sing
L = 0. The singular parts Asing

i
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and Bsing
i of the functions in eq. (4.4) are given by

Asing
q,g = 0 , (4.8a)

Bsing
q =

∑
f

Q2
f

{
fq(x)

[
1

2
− αsCF

4π

(
9

2
+
π2

3
+ 3 ln τ + 2 ln2 τ

)]

+
αsCF

4π

∫ 1

x

dz

z
fq(x/z)

[
L1(1− z) (1 + z2) + (1− z) + Pqq(z) ln

Q2τ

µ2

]}
,

(4.8b)

Bsing
g =

∑
f

Q2
f

αsTF
2π

∫ 1

x

dz

z
fg(x/z)

[
1− Pqg(z) + Pqg(z) ln

Q2τ(1− z)
µ2

]
. (4.8c)

The sum of eqs. (4.5) and (4.8) gives the complete fixed-order O(αs) result for the DIS
1-jettiness structure functions. When we take values of τ beyond the physical maximum,
where Θ0 terms are turned off, the result reproduces the standard inclusive structure
functions in x and Q2, which are given by (e.g. [48])

F1(x,Q2) =
∑
f

Q2
f

∫ 1

x

dz

z

{[
δ(1− z)

2
+
αsCF

4π
Cq(z)

] [
fq
(
x
z

)
+ fq̄

(
x
z

)]
+
αsTF

2π
Cg(z)fg

(
x
z

)}
,

(4.9a)

FL(x,Q2) = 4x
∑
f

Q2
f

∫ 1

x

dz

{
αsCF

4π

[
fq
(
x
z

)
+ fq̄

(
x
z

)]
+
αsTF
π

(1− z) fg
(
x
z

)}
, (4.9b)

where we have defined the two functions

Cq(z) ≡ −
(

9

2
+
π2

3

)
δ(1− z)− 3

2
L0(1− z) + 2L1(1− z) (4.10a)

+ 3− (1 + z) ln(1− z) + Pqq(z) ln
Q2

µ2 z
,

Cg(z) ≡ 1 + Pqg(z)

[
− 2 + ln

(
Q2

µ2

1− z
z

)]
. (4.10b)

In this section we have presented the complete O(αs) results for the fixed-order struc-

ture functions in the DIS 1-jettiness cross section. The expressions eq. (4.5) for the non-

singular contributions to the structure functions in eq. (4.4) are the primary new results

of this paper.

5 Numerical results

In this section, we present numerical results for the structure functions F1,L that appear

in the differential 1-jettiness cross section in eq. (2.15) and the corresponding F1,L in

eq. (4.2) that appear in the integrated cross section eq. (4.1). We computed these structure

functions to O(αs) in section 4 and appendix C. We also present predictions for the τ cross

sections themselves. For structure functions, we show the fixed-order O(αs) results for the

singular part (in τ), the nonsingular part and their sum. For the cross section, we show

resummed results at NLL′+O(αs) accuracy as well as the pure fixed-order results. At this

order of accuracy we have the fixed-order parts of the hard, jet, beam, and soft functions
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Figure 2. Fixed order components of structure function F1(x,Q2, τ) (left) in the integrated τ

cross section and F1(x,Q2, τ) (right) in the differential τ cross section at Q = 80 GeV and x = 0.2

and 0.7. Full (red solid), singular (blue dashed), and nonsingular (green dotted) contributions.

Horizontal dashed line in left plots indicates total F1(x,Q2) in eq. (4.9a).

in the singular part eq. (E.1) at the same order in O(αs) as in the nonsingular part.4

For our numerical results plotted here, we set the collision energy to be
√
s = 300 GeV,

which corresponds to the H1 and ZEUS experiments, and choose Q = 80 GeV. We adopt

MSTW2008 PDF sets at NLO [52] with five light quark and antiquark flavors and run

αs(µ) with the 2-loop beta function in eq. (E.5) starting at the values αs(mZ) = 0.1202

used in NLO PDFs.

4Resummation of the singular terms in the τ cross section is in fact available up to NNLL accuracy [28].

For simplicity, we choose to illustrate results only at NLL′ resummed accuracy in this paper (see [14, 49] for

definition of primed accuracy). As described in ref. [49], formulae for resummed differential and integrated

cross sections at unprimed orders of accuracy may suffer from a mismatch in the actual logarithmic accuracy

achieved, depending on how the formulae are written. One can ensure that the differential distribution at

NkLL matches the accuracy of the corresponding integrated cross section by differentiating the integrated

cross section including the τ dependence in the scales µi(τ). However, in the large τ (“far tail”) region,

ref. [14] observed that this procedure leads to unrealistically large uncertainties, and recommends that the

τ dependence in µi(τ) not be differentiated in going from the integrated to the differential cross section. It

is possible to write the differential cross section in a way that interpolates between the two approaches for

small and large τ , but this task does not lie within the scope of this paper. As observed in [49], equivalent

accuracy between differential and integrated cross sections is in fact maintained if one works at primed

orders, whether one differentiates µi(τ) or not. Thus we will work here at NLL′ accuracy and evaluate the

differential cross section by not differentiating µi(τ) in the integrated cross section, see eq. (E.19). This

avoids the potential negative issues pointed out in both [14] and [49]. Some recent progress (e.g. [50]) has

been made in obtaining ingredients needed for NNLL′ or N3LL accuracy [51] for the related version of

1-jettiness τa1 defined in [28, 30].
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Figure 3. Longitudinal structure function FL(x,Q2, τ) (left) for the integrated τ cross section and

FL(x,Q2, τ) (right) for the differential τ cross section, divided by the total FL(x,Q2) in eq. (4.9b)

at Q = 80 GeV and x = 0.1, 0.2 and, 0.7.

Figure 2 shows the components of the fixed-order results for the structure function

F1(x,Q2, τ) in the integrated cross section, given by eqs. (4.4a), (4.5), and (4.8), and of

the F1(x,Q2, τ) in the differential distribution, given by eqs. (C.3), (C.5), and (C.6), at

two values x = 0.2 and 0.7. We set all scales to be µ = Q = 80 GeV. In the integrated

structure function F1, the sum of singular (dashed line) and nonsingular (dotted line)

contributions give the full result (solid line). The full result approaches the total result

F1(x,Q2) (horizontal dashed line) in eq. (4.9a) as τ approaches 1. For x = 0.2, the singular

part alone undershoots the total, and the nonsingular part makes up the difference. For

x = 0.7, the singular part overshoots the total, and the corresponding nonsingular part

is mostly negative. Although it is imperceptible in figure 2, there is actually a small

discontinuity in the x = 0.2 plot at τ = 1, and the total (solid red) F1 does not reach the

full result (dashed black) until above τ = 1. We will zoom in on this feature in figure 4.

For the differential F1 in figure 2, we plot the absolute value on a log scale. The

results illustrate that there is a large cancellation between the singular and nonsingular

pieces in the large τ region. This same cancellation was discussed for e+e− thrust in

ref. [14], and appears in various other cross sections that have singular and nonsingular

components. The tail falls faster for larger x because τ dependence enters into PDFs in a

form like fq(x(1 + τ)), as seen in eq. (C.6), which falls faster as x increases. The overall

normalization also becomes smaller for larger x due to the PDFs falling off.

Figure 3 shows the fixed-order results for the longitudinal structure function FL(x,Q2, τ)

for the integrated cross section, given by eqs. (4.4b) and (4.5), and FL(x,Q2, τ) for the

differential distribution, given by eqs. (C.3) and (C.6), at x = 0.1 , 0.2, and 0.7. These

are purely nonsingular in τ . The plots are normalized to the total FL(x,Q2) in eq. (4.9b).

Note that FL is finite at τ = 0 at O(αs). The distribution monotonically decreases with τ .

For the left plot at x = 0.1, 0.2, there is a perceptible gap from the total (straight dashed

line) at τ = 1 before the curves reach the value 1. This jump is explored in figure 4.

Figure 4 illustrates the discontinuities in the cumulative F1 and FL near τmax. The

jump is smaller than 1% in F1 and is about a few percent in FL. These discontinuities are

reduced for increasing x and disappear at x = 1/2 and beyond. As described in section 4,
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Figure 4. Discontinuities of normalized cumulants F1 and FL at Q = 80 GeV and x = 0.1, 0.2, 0.7.

these discontinuities are associated with events where the jet hemisphere is empty and

the beam hemisphere contains all final-state particles as seen in the Breit frame, so whole

regions of phase space end up contributing to the same fixed value of τ (see figure 1). Such

events do not occur in the observables defined in the partonic CM frame such as e+e−

thrust. This discontinuity is infrared safe, and though its magnitude is very small, it is in

principle measurable.

The cross section in eq. (1.1) with all the scale dependencies made explicit in singular

and nonsingular parts can be written

σfull(τ ;µH , µJ , µB, µS , µns) = σsing(τ ;µH , µJ , µB, µS) + σns(τ ;µns) , (5.1)

and is given in eq. (E.1). The singular part depends on the scales µH , µJ , µB, µS associated

with hard, jet, beam, and soft radiation, respectively, and the nonsingular part depends

on µns as in conventional fixed-order results. For the full calculation, all scales should

be specified. In the region τ � 1, there are large logarithms in the singular part and

the logarithms can be resummed by RG evolution of the functions between µ and their

individual canonical scales: µH ∼ Q, µB,J ∼
√
τQ, µS ∼ τQ. (For more details on

resummation of the singular part, see [28]. Basic results are reviewed in appendix E.)

However, µS cannot be arbitrary small and it should freeze above the nonperturbative

regime that lives below 1 GeV. On the opposite end, where τ ∼ O(1) and logs of τ are not

large, the resummation should be turned off by setting all µi ≈ Q. In [28] we used profile

functions µi(τ) satisfying the above constraints and estimated perturbative uncertainties by

varying parameters in the profile functions [14, 53, 54]. However, the profile defined in [28]

has scales that are close to but not precisely equal to canonical scales in the resummation

region where τ � 1 and was optimized for x < 1
2 . Here we use improved profiles given in

appendix D, which do match the canonical scales in the resummation region, including the

case when x > 1
2 where τmax 6= 1. Figure 5 shows the soft scale µS(τ) as a function of τ at

x = 0.2 and 0.7 as well as the canonical choice τQ (dashed line).

For the central values of µns and its variations, we make the same choice as [14],

µns = µJ , µns =
[µJ + µs

2
, µH

]
. (5.2)
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Figure 5. Profile µS(τ) for x = 0.2 and 0.7 for Q = 80 GeV. Uncertainty bands are sum of all

variations in eq. (D.5) in quadrature. The dashed line indicates the canonical choice µs(τ) = τQ

and the vertical arrow implies that the scale µ is varied up and down by a factor of 2.
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Figure 6. Cumulant and differential cross section at NLL′+O(αs) for Q = 80 GeV and x = 0.2 and

0.7. The uncertainty bands for the resummed results are obtained by summing all scale variations

described in eqs. (5.2) and (D.5) in quadrature.
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The scales are chosen to estimate theory uncertainties from un-resummed subleading log-

arithms in the nonsingular part.

Figure 6 shows resummed integrated and differential cross sections at NLL′+O(αs) as

well as the purely fixed-order result at O(αs). We plot normalized cross sections defined as

σ̂c(x,Q2, τ) =
σc(x,Q2, τ)

σ0
, τ

dσ̂

dτ
=

τ

σ0

dσ

dx dQ2 dτ
. (5.3)

where σ0 = 2πα2[1 + (1− y)2]/Q4. We multiply the differential distribution by τ for ease

of displaying the whole τ region.

The uncertainty bands for the resummed results are obtained by summing all scale

variations described in eqs. (5.2) and (D.5) in quadrature. The uncertainty bands for the

fixed-order results are obtained from varying the central scale µ = Q up and down by

factors of 2. As seen in figure 2 the tail of the distribution becomes shorter with increasing

x. Relative uncertainties about the central value are larger for larger x because of slower

convergence of the perturbative corrections associated with the PDF for increasing x (as

can be seen from the fact that the residual scale dependence of the PDF increases with x).

Figure 6 only includes purely perturbative results. Nonperturbative effects in 1-

jettiness are power suppressed by ΛQCD/(τQ) for τ � ΛQCD/Q, and the leading power

correction can be expressed in terms of a single nonperturbative parameter Ω1. The pa-

rameter is universal for different versions of 1-jettiness in DIS defined in [28], and even

appears in the power corrections for certain jet observables in pp→ H/Z+jet with a small

jet radius [55]. Alternatively, a shape function that takes nonperturbative behavior into

account in the nonperturbative region as well as the power correction region [56], can be

used as in [28]. In this paper, we omit implementing these nonperturbative effects.

6 Conclusions

Events with one or more jets plus initial state radiation dominate the population of final

states in DIS for typical values of x. These events can be further probed by the inclusive

event shape 1-jettiness τ . Events with small values of τ contain only one non-ISR jet, while

multiple jets populate the large τ region. In this paper, we obtained analytically the O(αs)

cross section for all values of τ , and combined it with NLL′ resummation of the singular

terms at small τ to obtain results accurate over the entire range of τ . This is the first

analytic calculation of a DIS event shape at this order.

We wrote the results in terms of structure functions F1(x,Q2, τ) and FL(x,Q2, τ) which

generalize the usual DIS structure functions F1,L(x,Q2). We gave structure functions for

both the cumulative or integrated τ distribution as well as the differential τ distribution.

Our predictions for the cumulative distribution agree with the total F1,L(x,Q2) for τ >

τmax.

The cumulative cross section displays an interesting feature, a small discontinuity at

τ = 1, which is a consequence of asymmetric initial momentum that can lead to one of

hemispheres (in the Breit frame) being empty in the final state. This does not happen in

e+e− thrust defined in the partonic CM frame.
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We presented numerical results with perturbative uncertainties by varying scales at

the HERA energy. In general the uncertainties grow with x due to the convergence of

perturbative corrections in the cross section that are connected with the PDFs through

their scale dependence. The tail of the τ distribution falls off faster as x grows. The size

of the nonsingular terms is consistent with our expectations from [28] where we compared

the resummed singular cross section with the total QCD cross section at x,Q2.

Our results represent a significant improvement in precision in the prediction of DIS

event shape cross sections. The groundwork is in place to go to higher resummed [51]

and fixed-order accuracy which we will pursue in the near future, and bring the science of

event shapes in DIS to the same level of precision as has been achieved in e+e−. These

predictions can be tested with existing HERA data and future EIC data, which should yield

determinations of the strong coupling and hadron structure to unprecedented accuracy.
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A Plus distributions

In this section, we define plus distributions that we use and collect some useful identities

involving them. The standard set of plus distributions Ln(z) are defined by (see, e.g., [53])

Ln(z) ≡ lim
ε→0

d

dz

[
θ(z − ε) lnn+1 z

n+ 1

]
=

[
θ(z) lnn(z)

z

]
+

. (A.1)

Integrating against a well-behaved test function g(z) gives the familiar rule,∫ z

0
dz′Ln(z′)g(z′) =

∫ z

0
dz′

lnn z′

z′
[g(z′)− g(0)] + g(0)

lnn+1 z

n+ 1
. (A.2)

We also define a distribution function with two arguments, which can be used when the

presence of the divergence in a variable z is controlled by the value of a second variable z0,

Ln(z, z0) ≡ lim
ε→0

d

dz

[
θ(z − z0 − ε) lnn+1 z

n+ 1

]
z0 ≥ 0 , (A.3)∫ z

0
dz′Ln(z′, z0)g(z′) =

∫ z

z0

dz′
lnn z′

z′
[g(z′)− g(z0)] + g(z0)

lnn+1 z

n+ 1
, (A.4)
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where g(z) is a test function. In the standard distribution Ln(z) the subtraction of the

singularity occurs at the singular point z = 0, while in L(z, z0) the subtraction occurs at

z = z0 even if there is no singularity when z0 6= 0. L(z, z0) reduces to L(z) at z0 = 0.

Evaluating phase space or loop integrals at O(αs) or higher in dimensional regulariza-

tion, we encounter singular terms like

θ(z)

z1+ε
= −δ(z)

ε
+ L0(z)− εL1(z) +O(ε2) , (A.5)

which have been expanded in powers of ε making use of the plus distributions in eq. (A.1).

We also encounter more complicated doubly-singular expressions, e.g. in eqs. (B.16)

and (B.18), which can be expanded in ε using both eqs. (A.1) and (A.3), such as:

θ(τ)

τ1+ε

θ
(
z − τ

1+τ

)
z1+ε

=
δ(z)δ(τ)

2ε2
− δ(τ)L0(z)

ε
+ Is(τ, z) + Ins(τ, z) +O(ε) , (A.6)

where the O(ε0) terms are

Is(τ, z) = δ(τ)L1(z) + L0(z)L0(τ)− L1(τ)δ(z) , (A.7)

Ins(τ, z) = −
[
δ
(
z − τ

1+τ

)
− δ(z)

]θ(τ) ln τ

τ
+
[
L0

(
z, τ

1+τ

)
− L0(z)

]θ(τ)

τ
+ δ
(
z − τ

1+τ

) ln(1 + τ)

τ

−
δ′
(
− τ + z

1−z
)

(1− z)2
θ(τ)

[
− Li(z) + Li

( τ

1 + τ

)
+

ln2(1 + τ)

2
− ln2(z/τ)

2

]
, (A.8)

where Li(z) is the dilogarithm, defined by

Li(z) = −
∫ z

0
dz′

ln(1− z′)
z′

. (A.9)

The function Is(τ, z) is singular both in τ and z, depending on both L(τ) and L(x), while

Ins(τ, z) is not singular in τ (though still singular in z). Note that the term on the last

line of eq. (A.8), which has a δ′
(
− τ + z

1−z
)
, will not contribute to any of our perturbative

structure functions because the expression in brackets that it multiplies and its derivative

with respect to τ are both zero at τ = z
1−z .

B Hadronic tensor at parton level

In this section we calculate the hadronic tensor Wµν defined in eq. (2.12) where the proton

initial state is replaced with a partonic (quark or gluon) state. Such a computation allows us

to extract the short-distance matching coefficients wq,gµν in eq. (3.1) onto PDFs, as described

in section 3.1. We denote the tensor for a quark initial state as W q
µν and for a gluon initial

state as W g
µν . Up to O(αs), W

q
µν involves a tree-level contribution and the one-gluon

diagrams in figure 7, and can be decomposed into

W q
µν = W (0)

µν +W vir
µν +W real

µν . (B.1)

Meanwhile, W g
µν is given just by tree-level real diagrams at O(αs), shown in figure 8.

The partonic tensor W i
µν can be computed from eq. (3.12), which is a phase space

integral over the squared amplitude. In this section we compute the squared amplitudes;
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Figure 7. Virtual and real diagrams for γ∗ + quark processes at O(αs). They contribute to the

virtual amplitudes in eqs. (B.4) and (B.5) and the real amplitudes in eqs. (B.7) and (B.8). There

are also corresponding diagrams for incoming antiquarks.

in the next section we will evaluate the complete phase space integrals. Figures 7 and 8

represent the O(αs) amplitudes for initial quark and initial gluon states. In appendix B.1

and appendix B.2 we evaluate the squared amplitudes built from these diagrams. The real

diagrams have two-body final states with momenta p1 and p2 and as described in figure 1,

they can enter two back-to-back hemispheres in four different ways, and the formula for

the 1-jettiness τ in terms of p1,2 in each configuration differs.

B.1 Squared amplitudes for γ∗ + q

For the process γ∗(qµ) + q(Pµ) → q(pµ1 ) at tree level, the amplitude is ū(p1)γµu(P ). To

obtain the structure functions eq. (2.16) one needs projected squared amplitudes as

−gµνM(0)
µ M(0) ∗

ν = 4Q2
f Q

2 , (B.2)

PµP νM(0)
µ M(0) ∗

ν = 0 , (B.3)

where we have also summed over all quark spins. The projection in eq. (B.3) is zero because

of the Dirac equation P/u(P ) = 0. Here, Qf is the electromagnetic charge of quark with

flavor f . We do not sum over flavors for the quark tensors until we convolve with PDFs.

The virtual contribution can be extracted from the literature, see, e.g., eq. (14.19)

in [57]. At O(αs) we obtain the cross terms between the tree-level and the virtual diagram

shown in figure 7:

− gµν
[
Mvir

µ M(0) ∗
ν +M(0)

µ Mvir ∗
ν

]
=− 8Q2

αsCFQ
2
f

2π
(1− ε)

(
4πµ2

Q2

)εΓ(1 + ε)Γ(1− ε)2

Γ(1− 2ε)

(
1

ε2
+

3

2ε
+ 4

)
,

=4Q2
αsCFQ

2
f

2π
(1− ε)

[
− 2

ε2
− 1

ε

(
2 ln

µ2

Q2
+ 3

)
− ln2 µ

2

Q2
− 3 ln

µ2

Q2
+
π2

6
− 8

]
, (B.4)

PµP ν
[
Mvir

µ M(0) ∗
ν +M(0)

µ Mvir ∗
ν

]
= 0 , (B.5)

again summed over all quark spins. We have kept the factor (1 − ε) out front because it

is to be cancelled by the same factor in eq. (2.16). In the second step of eq. (B.4), we

converted to the MS scheme, making the replacement:

µ2 → µ2eγE

4π
. (B.6)
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Figure 8. Diagrams for γ∗ + gluon processes at O(αs). They contribute to the real amplitudes in

eqs. (B.9) and (B.10). We sum the two diagrams that are related by interchanging the quark and

antiquark to obtain eqs. (B.9) and (B.10), thus it is necessary only to sum over the five light flavors

u, d, s, c, b once, not twice.

Note that the finite part in eq. (B.4) is the αs term of the hard function, which already

appeared in our discussion in ref. [28]. For discussion of the hard function in SCET see [38,

58]. Eq. (B.5) is zero again by the Dirac equation P/u(P ) = 0.

The real contribution to W q
µν in eq. (B.1) at O(αs) comes from two diagrams for

γ∗(qµ) + q(Pµ) → q(pµ1 ) + g(pµ2 ) shown in figure 7. The projected amplitudes for the

diagrams, summed over quark spins and gluon polarizations, are given by

−gµνMreal
µ Mreal ∗

ν = 32παsCFQ
2
f (1− ε)

(
µ2eγE

4π

)ε
×
[
(1− ε)

(
1− x
v

+
v

1− x

)
+ 2

x

1− x
1− v
v

+ 2ε

]
, (B.7)

PµP νMreal
µ Mreal ∗

ν = 16παsCFQ
2
fQ

2(1− ε)
(
µ2eγE

4π

)ε 1− v
x

, (B.8)

where v = p−2 /Q as in eq. (3.18) or figure 1. Eq. (B.7) can be found from eq. (14.23) in [57].

B.2 Squared amplitudes for γ∗ + g

The tree-level process with an initial gluon γ∗(qµ) + g(Pµ)→ q(pµ1 ) q̄(pµ2 ) starts at O(αs),

illustrated in figure 8. The projected amplitudes for the process, summed over gluon

polarizations and quark spins, are given by

−gµνMreal
µ Mreal ∗

ν = 32παsTF
∑
f

Q2
f (1− ε)

(
µ2eγE

4π

)ε
×
[
(1− ε)

(
1− v
v

+
v

1− v

)
− 2

x(1− x)

v(1− v)
− 2ε

]
, (B.9)

PµP νMreal
µ Mreal ∗

ν = 32παsTF
∑
f

Q2
fQ

2(1− ε)
(
µ2eγE

4π

)ε 1− x
x

. (B.10)

Note that these are symmetric under v → 1− v, which just switches the final-state quark

and antiquark in figure 8. Note also that the projection in eq. (B.10) is independent of v,
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making the phase-space integral in eq. (3.18) particularly simple. Here we go ahead and

include the sum over quark flavors f ∈ {u, d, s, c, b} since the gluon PDF with which we

will convolve these results is independent of quark flavors produced in the final states in

figure 8. Since both possibilities of the photon interacting with the quark or the antiquark

are already included in the sum of the two diagrams in figure 8, we need sum over the five

light flavors only once, and not repeat the sum for antiquark flavors f̄ .

B.3 Projected hadronic tensor

In this subsection we obtain hadronic tensors by integrating the squared amplitudes ob-

tained in appendix B.1 and appendix B.2 using the phase space integrations in eqs. (3.15)

and (3.18). The latter goes over the four regions in figure 1 with a different formula for

τ(x, v) depending on which hemispheres the two final-state particles enter.

B.3.1 Quark tensor

For PµP νW q
µν , only the real emission contribution eq. (B.8) is nonzero, and it contains no

IR divergence, so we can safely set ε = 0. Using eq. (3.18) to integrate eq. (B.8) over the

four regions in figure 1, we obtain the contributions

PµP νW (a)
µν = αsCFQ

2
fQ

2 1− 2x

2x
θ
(1

2
− x
)
δ(τ − 1) , (B.11a)

PµP νW (b)
µν = αsCFQ

2
fQ

2xτ Θ0(τ, x) , (B.11b)

PµP νW (c)
µν = αsCFQ

2
fQ

2(1− xτ) Θ0(τ, x) , (B.11c)

PµP νW (d)
µν = αsCFQ

2
fQ

2 2x− 1

2x
θ
(
x− 1

2

)
δ
(
τ − 1− x

x

)
, (B.11d)

where the generalized theta function Θ0 is defined in eq. (4.6). The sum of the four

contributions in eq. (B.11) gives the result:

PµP νW q
µν = αsCFQ

2
f w

q
P , (B.12a)

wqP = Q2 Θ0(τ, x)

[
1 + δ

( 1

1 + τ
− x
) 1− τ

2(1 + τ)2
+ δ(τ − 1)

1− 2x

2x

]
, (B.12b)

where in the middle term of eq. (B.12b) we rescaled variables in the delta function in

eq. (B.11d). This result gives the matching coefficient wqP in eq. (3.11).

The tree-level and virtual contributions to −gµνW q
µν are given by inserting eqs. (B.2)

and (B.4) into the formula for a one-body final-state phase space in eq. (3.15):

−gµν(W (0)
µν +W vir

µν ) =

{
4πQ2

f + 2αsCFQ
2
f (1− ε)

[
− 2

ε2
− 1

ε

(
2 ln

µ2

Q2
+ 3

)
− ln2 µ

2

Q2
− 3 ln

µ2

Q2
+
π2

6
− 8

]}
δ(1− x)δ(τ) .

(B.13)

The contribution from the real diagrams in eq. (B.7) is more involved. We must integrate

eq. (B.7) over the two-body phase space using eq. (3.18). We consider in turn the four

contributions −gµνW real (a,b,c,d)
µν corresponding to the four regions in figure 1.
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In region (a), where x < v < 1 − x and x < 1/2, the integrand in eq. (B.7) is finite

and we can set ε = 0 in eqs. (3.18) and (B.7), giving

−gµνW real (a)
µν = 2αsCFQ

2
f δ(τ − 1) θ

(1

2
− x
)[(1− 2x)(1− 4x)

2(1− x)
+

1 + x2

1− x ln
1− x
x

]
.

(B.14)

In region (b), v > x and v > 1 − x and v = 1 − xτ . Because the Θ0(τ, x) in eq. (4.6) sets

x < 1/(1 + τ) the term 1/(1− x) in eq. (B.7) is finite for the region of x. So, ε can be set

to zero in eqs. (B.7) and (3.18) and we have

−gµνW real (b)
µν = 2αsCFQ

2
fΘ0(τ, x)x

(
1− x
1− xτ +

1− xτ
1− x + 2

x2

1− x
τ

1− xτ

)
. (B.15)

In region (c), where v < x and v < 1− x and v = xτ , there are two IR divergent terms in

eq. (B.7) that go like 1/τ and 1/[τ(1− x)], which can be expanded by using the identities

in eqs. (A.5) and (A.6). Then, we have

−gµνW real (c)
µν = 2αsCFQ

2
f

(
µ2

Q2

)ε
(1− ε)Θ0(τ, x)

×
[(

1

ε2
+

3

2ε

)
δ(τ)δ(1− x)− δ(τ)Pqq(x)

ε
+ Es(τ, x) + Ens(τ, x)

]
,

(B.16)

where we converted to the MS scheme using eq. (B.6), and the singular and nonsingular

parts of the finite terms are given by

Es(τ, x) = −2L1(τ)δ(1− x) + L0(τ)[Pqq(x)− 3

2
δ(1− x)]

+ δ(τ)

[
(1 + x2)L1(1− x)− π2

12
δ(1− x) + 1− x

]
, (B.17)

Ens(τ, x) = −(2− τ)
x2

1− x + 2x Ins(τ, 1− x) , (B.18)

where Ln and Ins(τ, 1− x) are given above in eqs. (A.1) and (A.8). The splitting function

Pqq(x) is given by eq. (4.7).
In region (d), where 1− x < v < x and τ = (1− x)/x, the term 1/(1− x) in eq. (B.7)

is IR divergent because the condition Θ0(τ, x) becomes θ(x − 1/2)θ(1 − x). Integrating
eq. (B.7) by using eq. (3.18) and expanding in ε by using eq. (A.5), we obtain in MS,

− gµνW real (d)
µν = 2αsCFQ

2
f (1− ε)

(
µ2

Q2

)ε
δ

(
1

1 + τ
− x
)
θ(x− 1/2) (B.19)

×
[
δ(τ)

(
1

ε2
+

3

2ε
+

7

2
− 5π2

12

)
− 3

2
L0(τ)− 2L1(τ) +

(3τ2 + 8τ + 13) + 2(2τ2 + 5τ + 4) ln τ

2(1 + τ)3

]
.

Now we collect all pieces contributing to −gµνW q
µν and sum them together. The IR

divergent 1/ε2 and 1/ε terms appear with δ(1 − x)δ(τ) which are all canceled when the
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virtual part from eq. (B.13) and real parts in eqs. (B.16) and (B.19) are added together.

There is one additional IR divergence with Pqq(x)δ(τ)/ε that is associated with the one-loop

quark PDF, and hence remains uncancelled when adding virtual and real contributions.

Summing all the terms in eqs. (B.14), (B.15), (B.16), and (B.19) together with the tree-level

and virtual contributions from eq. (B.13), we obtain the final result

−gµνW q
µν = 4πQ2

fδ(1− x)δ(τ) + 2αsCFQ
2
f (1− ε)

[
− Pqq(x)

ε
δ(τ) + wqG

]
, (B.20a)

wqG = Θ0(τ, x)

[
δ(τ)Sq−1(x) + L0(τ)Sq0(τ, x) + L1(τ)Sq1(τ, x)

+Rq(τ, x) + δ(τ − 1) ∆q
1(x) + δ( 1

1+τ − x) ∆q
2(τ)

]
. (B.20b)

Here we separately write IR divergent and finite terms in eq. (B.20a) in order to clearly

show the structure of the result, which we anticipated above in eq. (3.7). From this result

we extract the matching coefficient wqG in eq. (3.11). The functions Sqi are coefficients of

singular terms in τ , Rq is regular in τ , and ∆i are coefficients of delta functions. They are

given by

Sq−1(x) = −Pqq(x) ln

(
µ2

Q2

)
+ (1 + x2)L1(1− x)−

(
9

2
+
π2

3

)
δ(1− x) + 1− x ,

Sq0(τ, x) = 2xL0

(
1− x, τ

1+τ

)
− 3

2
δ
(

1
1+τ − x

)
+ (1− x) ,

Sq1(τ, x) = −2
2 + τ

1 + τ
δ
(

1
1+τ − x

)
,

Rq(τ, x) = x

[
1− x
1− xτ +

1− xτ
1− x + 2

x2

1− x
τ

1− xτ

]
− (2− τ)

x2

1− x ,

∆q
1(x) =

(1− 2x)(1− 4x)

2(1− x)
+

1 + x2

1− x ln
(1− x

x

)
,

∆q
2(τ) =

(3τ2 + 8τ + 13) + 2(2τ2 + 5τ + 4) ln τ

2(1 + τ)3
+

2

τ

ln(1 + τ)

1 + τ
. (B.21)

B.3.2 Gluon tensor

The calculation of the hadronic tensor for the gluon state follows the same steps as for the

quark state. For the projection PµP νW g
µν , we insert eq. (B.10) into the two-body phase

space integral eq. (3.18), and obtain

PµP νW g
µν = αsTF

∑
f

Q2
f w

g
P , (B.22a)

wgP = 2Q2Θ0(τ, x)
1− x
x

[
2x+ δ(τ − 1)(1− 2x) + δ(τ − 1−x

x )(2x− 1)
]
. (B.22b)

The integration in eq. (3.18) for this projection is particularly simple since the squared

amplitude in eq. (B.10) is independent of v. So we do not give the individual contributions

in regions (a)–(d) in figure 1 separately. From the result eq. (B.22b) we obtain the matching

coefficient wgP in eq. (3.11).
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For the projection −gµνW g
µν , we insert eq. (B.9) into eq. (3.18), and obtain in the four

different regions in figure 1,

−gµνW g(a)
µν = 4αsTF

∑
f

Q2
fδ(τ − 1)θ

(
1

2
− x
)
Ia(x) , (B.23a)

−gµνW g(b,c)
µν = 2αsTF

∑
f

Q2
f

(µ2eγE

Q2

)ε 1− ε
Γ(1− ε)Θ0(τ, x)Ib(τ, x, ε) , (B.23b)

−gµνW g(d)
µν = 4αsTF

∑
f

Q2
fδ

(
τ − 1− x

x

)
θ

(
x− 1

2

)
Id(x) , (B.23c)

where

Ia(x) = −Id(x) ≡ 2(2x− 1) + 2Pqg(x) ln
1− x
x

, (B.24a)

Ib(τ, x, ε) = Pqg(x)
{[
−1

ε
− 1 + ln(1− x)

]
δ(τ) + L0(τ) +

x

1− xτ
}

+ δ(τ)− 2x . (B.24b)

We see that contributions (a), (d) in eqs. (B.23a) and (B.23c) are finite while contributions

(b, c) in eq. (B.23b) contain an IR divergent term associated with the gluon PDF. In

eq. (B.23b) we work in the MS scheme, see eq. (B.6). Summing contributions (a)-(d) in

eqs. (B.23a), (B.23c), and (B.23b), we obtain the result

−gµνW g
µν = 4αsTF

∑
f

Q2
f (1− ε)

[
− Pqg(x)

ε
δ(τ) + wgG

]
, (B.25a)

wgG = Θ0(τ, x)

{[
1 + Pqg(x)

(
− 1 + ln(1− x)− ln

µ2

Q2

)]
δ(τ) + Pqg(x)L0(τ)

+Rg(τ, x)−
[
δ(τ − 1)− δ(τ − 1−x

x )
]
∆g(x)

}
, (B.25b)

where we again separately write the IR divergent and finite terms to reflect the structure

anticipated in eq. (3.7). This result gives the matching coefficient wgG in eq. (3.11). The

functions Rg and ∆g are defined by

Rg(τ, x) = −x
(

2− Pqg(x)

1− xτ

)
,

∆g(x) = 1− 2x− Pqg(x) ln
1− x
x

. (B.26)

C Separating singular and nonsingular parts of hadronic tensor

Here, we isolate the singular and nonsingular parts of the projections of the hadronic

tensor for quark and gluon initial states computed in appendix B. The tensor is obtained

by convolving short distance coefficients determined by perturbative matching in section 3.1

with PDFs as in eq. (3.1). The nonsingular part is obtained by subtracting singular part

of the Wµν tensor that has been already calculated by using SCET in [28].

One can also separate singular and nonsingular parts by isolating the structures δ(τ)

and Ln(τ) that encode the most singular terms in the τ → 0 limit in eqs. (B.20a)
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and (B.25a). The nonsingular part is then obtained by subtracting these terms from

eqs. (B.20a) and (B.25a). There is no singular term in eqs. (B.12a) and (B.22a). We

can separately carry out perturbative matching for singular part and nonsingular part and

determine the short distance coefficients of each part.

We write hadronic tensors in terms of three pieces associated with PDFs for q, q̄, g

PµP νWµν =
2πQ2

x2

(
Aq +Aq̄ +Ag

)
, (C.1)

−gµνWµν = 8π(1− ε)
(
Bq + Bq̄ + Bg

)
. (C.2)

In eq. (C.1) the factor 1/x2 is factored out to clarify that it comes from the product of proton

momenta PµP ν . The differential structure functions Fi in eq. (2.15) can be expressed in

terms of Ai and Bi by using eq. (2.16) in similar pattern to eqs. (4.4a) and (4.4b),

F1 =
∑

i∈{q,q̄,g}

(Ai + Bi) , FL =
∑

i∈{q,q̄,g}

4xAi . (C.3)

As we promised we present the results in terms of singular and nonsingular parts

Ai = Asing
i +Ans

i , Bi = Bsing
i + Bns

i . (C.4)

The singular parts Asing
i and Bsing

i can be extracted from the calculation of the singular
cross section in [28], giving

Asing
q,g = 0 , (C.5a)

Bsing
q =

∑
f

Q2
f

{
fq(x)

δ(τ)

2
− αsCF

4π
fq(x)

[(
9

2
+
π2

3

)
δ(τ) + 3L0(τ) + 4L1(τ)

]
(C.5b)

+
αsCF

4π

∫ 1

x

dz

z
fq

(
x

z

)([
L1(1− z) (1 + z2) + (1− z) + Pqq(z) ln

Q2

µ2

]
δ(τ) + Pqq(z)L0(τ)

)}
,

Bsing
g =

∑
f

Q2
f

αsTF
2π

∫ 1

x

dz

z
fg

(
x

z

)[(
1− Pqg(z) + Pqg(z) ln

Q2(1− z)
µ2

)
δ(τ) + Pqg(z)L0(τ)

]
,

(C.5c)

where Pqq and Pqg are given in eq. (4.7). The antiquark contributions Asing
q̄ and Bsing

q̄ are

obtained by simply replacing q → q̄ in eqs. (C.5a) and (C.5b). We now include the sum

over flavors in both the quark and gluon contributions.
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The nonsingular parts Ans
i and Bns

i are given by

Ans
q =

∑
f

Q2
f

αsCF
4π

{
Θ0

[ ∫ 1
1+τ

x
dz 2z fq

(
x

z

)
+

1− τ
(1 + τ)3

fq
(
x(1 + τ)

)]
(C.6a)

+ δ(τ − 1)

∫ 1/2

x
dz(1− 2z)fq

(
x

z

)}
,

Ans
g =

∑
f

Q2
f

αsTF
π

{
Θ0

[ ∫ 1
1+τ

x
dz 2z(1− z)fg

(
x

z

)
+
τ(1− τ)

(1 + τ)4
fg
(
x(1 + τ)

)]
(C.6b)

+ δ(τ − 1)

∫ 1/2

x
dz (1− z)(1− 2z)fg

(
x

z

)}
,

Bns
q =

∑
f

Q2
f

αsCF
4π

{
N1(τ, x) +N0(τ, x) + δ(τ − 1)

∫ 1/2

x

dz

z
fq

(
x

z

)
∆q

1(z) (C.6c)

+ Θ0

[ ∫ 1
1+τ

x

dz

z
fq

(
x

z

)
Rq(τ, z) + (1 + τ) fq(x(1 + τ))∆q

2(τ)

]}
,

Bns
g =

∑
f

Q2
f

αsTF
2π

{
Θ0

[
− 1

τ

∫ 1

1
1+τ

dz

z
fg

(
x

z

)
Pqg(z) +

∫ 1
1+τ

x

dz

z
fg

(
x

z

)
Rg(τ, z)

− δ(τ − 1)

∫ 1/2

x

dz

z
fg

(
x

z

)
∆g(z) +

fg(x(1 + τ))

1 + τ
∆g( 1

1+τ )

]
− Θ1 + Θ2

τ

∫ 1

x

dz

z
fg

(
x

z

)
Pqg(z)

}
, (C.6d)

and the antiquark contributions Ans
q̄ and Bns

q̄ are given by the replacement q → q̄ in

eqs. (C.6a) and (C.6c). Recall that Θ0 = θ(τ)θ(1 − τ)θ[(1 − x)/x − τ ]. In eq. (C.6) we

defined two additional theta functions

Θ1 = θ(−x+ 1/2) θ(τ − 1) , Θ2 = θ(x− 1/2) θ(τ) θ(τ − 1−x
x ) . (C.7)

These theta functions turn on only beyond the physical region of τ defined by eq. (2.9),
and multiply terms that cancel the part of the singular terms beyond τmax. The functions
N0,1 in eq. (C.6c) are the nonsingular parts of the functions Sq0,1(τ, x) in eq. (B.21)

N1(τ, x) = −4
ln τ

τ

{
Θ0

[
(1 + τ/2)fq

(
x(1 + τ)

)
− fq(x)

]
− (Θ1 + Θ2) fq(x)

}
,

N0(τ, x) =
Θ0

τ

{
− 3

2

[
(1 + τ)fq

(
x(1 + τ)

)
− fq(x)

]
+ 2 ln

τ

1 + τ

[
fq
(
x(1 + τ)

)
− fq(x)

]
−
∫ 1

1
1+τ

dz

[
2
fq
(
x
z

)
− fq(x)

1− z + fq

(
x

z

)
1− z
z

]}

− Θ1 + Θ2

τ

{[
− 3

2
+ 2 ln(1− x)

]
fq(x) +

∫ 1

x

dz

[
2
fq
(
x
z

)
− fq(x)

1− z + fq

(
x

z

)
1− z
z

]}
.

(C.8)

Note that the terms with 1/τ and (ln τ)/τ are multiplied by a term proportional to τ in

the limit τ → 0 or by Θ1,2 which turn off for small τ , thus N0,1 is not singular. For the
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same reason, the term with a 1/τ in eq. (4.5d) is nonsingular. The functions Rg,q and ∆q,g

are given in eqs. (B.21) and (B.26). The δ(τ − 1) terms in eq. (C.6) correspond to the

events where all final particles go to the beam hemisphere as described in section 4.

The cumulative version Ai and Bi of Ai and Bi can be defined in the same way as

eqs. (C.1) and (C.2) by integrating both sides over τ . Their explicit expressions are given

in eqs. (4.5) and (4.8) and the delta functions in eq. (C.6) give rise to discontinuities in the

cumulative versions at the maximum value of τ in eq. (4.5), as illustrated in figure 4.
Eqs. (4.5c) and (4.5d) for Bq,g can be re-expressed as sums of terms which are all

individually explicitly nonsingular by writing:

Bns
q =

∑
f

Q2
f

αsCF
4π

(
Θ0

{∫ 1
1+τ

x

dz

z

fq(x/z)

1− z
[
(1− 4z)zτ − (1 + z2) ln(1− zτ)

]
(C.9a)

+

∫ 1

1
1+τ

dz

z

1

1− z

[
fq(x/z)

(1− 4z

2
− (1 + z2) ln zτ

)
+ fq(x)

(3

2
+ 2 ln τ

)]}
+ (Θ1 + Θ2)

{∫ 1

x

dz

z

1

1− z

[
fq(x/z)

(1− 4z

2
− (1 + z2) ln zτ

)
+ fq(x)

(3

2
+ 2 ln τ

)]
+ fq(x)

(3

2
+ 2 ln τ

)
ln

τx

1− x

})
,

Bns
g =

∑
f

Q2
f

αsTF
2π

(
−Θ0

{∫ 1
1+τ

x

dz

z
fg(x/z)[2zτ + Pqg(z) ln(1− zτ)] (C.9b)

+

∫ 1

1
1+τ

dz

z
fg(x/z)

[
1 + Pqg(z) ln(zτ)

]}
− (Θ1 + Θ2)

∫ 1

x

dz

z
fg(x/z)

[
1 + Pqg(z) ln(zτ)

])
.

These forms can be more useful for numerical evaluation.

D Profile function

The concept of profile functions was introduced in refs. [14, 53]. An additional complication

in DIS is that the transition between regions encoded in the profile functions also involves

dependence on x. Here we present the profile function for DIS that are used for the jet,

beam, and soft scales to obtain the resummed τ cross section that is discussed in section 5.

The scales µH,B,J,S are parameterized in terms of the overall renormalization scale µ

and and a function µrun(τ) as

µH = µ ,

µB,J(τ) = [1 + eB,J g(τ)]
√
µµrun(τ) ,

µS(τ) = [1 + eS g(τ)]µrun(τ) . (D.1)

The parameters eB,J,S in eq. (D.1) are used to perform variations of the scales µB,J,S
to estimate uncertainties from omitted higher-order corrections to beam, jet, and soft

functions. By default eB,J,S = 0, and are varied away from zero according to eq. (D.5)

below. The function g(τ) = θ(t3 − τ) (1 − τ/t3)2 is designed to go to zero beyond τ = t3,

where the resummation is turned off with µH = µB = µJ = µS = µns, and it no longer
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makes sense to have an individual variation of the scales µB,J,S . This parameterization

maintains the relations µJ =
√
µHµS and µB =

√
µHµS for the default values (eB,J,S = 0).

Theoretically the function µrun(τ) must be chosen to satisfy several key properties to

ensure the proper treatment of different regions of τ :

1. In the region ln τ & α−1
s where logs of τ need to be resummed, it follows “canonical”

scaling µS ∼ Qτ and µB,J ∼ Q
√
τ .

2. For very small τ ∼ ΛQCD/Q it reaches a plateau at a constant value µ0 where

µ0 & 1 GeV (above ΛQCD). This is the nonperturbative regime where a shape function

becomes necessary.

3. For larger τ ∼ 1 (where τ < 1) it becomes equal to a constant value µ independent of

τ . This is the region where the resummation is turned off and the prediction reverts

to fixed-order.

4. It must smoothly interpolate between each pair of regions.

Various parameters are varied to account for the residual ambiguity in satisfying these

criteria. One choice that satisfies these criteria is the profile function,

µrun(τ) =


µ0 + ατβ µ τ ≤ t1 ,
r τµ t1 ≤ τ ≤ t2 ,
ζ(τ, t2, t3)µ t2 ≤ τ ≤ t3 ,
µ τ > t3 .

(D.2)

This is what we use in the singular part of the cross section in eq. (5.1), with the cor-

responding µS(τ) illustrated in figure 5. Other choices for the profile function are also

possible, see, e.g., [28]. The function µrun(τ) in eq. (D.2) is linear in τ with a slope r from

t1 to t2 so that the value of µrun sets µB,J,S to be canonical via eq. (D.1). The function ap-

proaches µ0 below t1, and µ above t2 via a smoothly rising function ζ. The requirement of

continuity for µrun(τ, µ) and its first derivative at t1, t2, and t3, determine the parameters

α, β and constrain the function ζ(τ, t2, t3) at t2 and t3, for which we choose two connected

quadratic polynomials:

β =

(
1− µ0

rt1µ

)−1

, α =
r

βtβ−1
1

,

ζ(τ, t2, t3) =

{
a+ b τ + c τ2 t2 ≤ τ ≤ (t2 + t3)/2 ,

a′ + b′ τ + c′ τ2 (t2 + t3)/2 ≤ τ ≤ t3 ,

c = 2
1− r(t2 + 3t3)/4

(t3 − t2)2
, b = r − 2ct2 , a = (r − b)t2 − ct22 ,

c′ = −2
1− r(3t2 + t3)/4

(t3 − t2)2
, b′ = −2c′t3 , a′ = 1− b′t3 − c′t23 , (D.3)
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The default central values of the parameters that we choose are:

µ = Q , µ0 = 2 GeV , r = 1 , eB,J,S = 0 ,

t1 =
3 GeV

µ
, t2 = 0.1(1− ln(x+ a2)) , t3 = 0.8 τmax .

(D.4)

The central values of structure function and cross section results plotted in section 5 corre-

spond to the use of these parameters. Above t2 the resummation effect is being gradually

turned off, and near t3 the fixed order contribution dominates. We choose t3 to be roughly

the size of τmax. For t2 we require that it well separated from t3 for smooth turn-off of

the resummation, and that it be close to the region where the nonsingular and fixed-order

singular parts are of the same size. The value of t2 determined in this way depends on x,

and is well approximated for a wide range of x with the logarithmic fit in eq. (D.4). The

constant a2 is chosen to ensure t2 → 1 for x→ 0. The default value is a2 = 1.234× 10−4.

To estimate theoretical uncertainties in the cross section eq. (5.1) due to missing higher

order terms in fixed-order and resummed perturbation theory, the scales µH , µB,J , and µS
are varied by changing µ and eB,J,S eq. (D.1). We also vary the points t1, t2, and t3 and µ0.

Each parameter is separately varied one by one while keeping the others at their default

values. The variations we perform around the central values are as follows:

δµ = (2±1 − 1)Q , δµ0 = ±0.5 GeV , δeB,J = ±1

3
,±1

6
, δeS = ±1

3
,±1

6
, (D.5a)

δt1 = ±0.8 GeV/µ , δt2 = ±0.02 (1− ln(x+ a2)) , t3 = ±0.1 τmax . (D.5b)

As in [28], we choose four values for δeB,J,S because the cross section at a given value of

τ may not vary monotonically with these parameters, so we sample four values instead

of two as a more complete scan over a range of values for δeB,J,S . The deviations in the

cross section eq. (5.1) due to each of the variations in eq. (D.5) and the nonsingular scale

variation in eq. (5.2) are summed in quadrature to obtain the uncertainty bands in figure 6.

E Resummed singular cross section

Here, we collect expressions for the resummed singular part of the cross section in eq. (5.1)

that were obtained in [28] using SCET. We provide the expressions that are necessary to

obtain the resummed results in section 5 at NLL′ accuracy. For further details on the

factorization and resummation procedure see ref. [28].

The factorization theorem for τ � 1 has been derived in [28] and is expressed in terms

of hard, jet, beam and soft functions. Those functions depend on the factorization scale

µ and contain large logs of µ2/Q2, µ2/(τQ2), or µ2/(τ2Q2). The large logarithms, ln(τ),

can be resummed by evolving the functions from their natural scale µH,J,B,S where the

logs are minimized, to the scale µ. The result of this procedure, which gives the resummed

singular part of the cross section in eqs. (1.1) and (5.1), can be written for the cumulative
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distribution as:

σ̂csing(x,Q2, τ ;µH , µJ , µB, µS)

=
eK−γEΩ

Γ(1 + Ω)

(
Q

µH

)ηH(µH ,µ)(τ Q2

µ2
B

)ηB(µB ,µ)(
τ Q2

µ2
J

)ηJ (µJ ,µ)(
τ Q

µS

)2ηS(µS ,µ)

×
[∑

j

Q2
f

∫ 1

x

dz

z
fj(x/z, µB) [Wqj(z, τ) + ∆Wqj(z)] + (q ↔ q̄)

]
, (E.1)

where the cross section is normalized as in eq. (5.3). Here j sums over quark flavors and

gluons, and the +(q ↔ q̄) includes the term for photon coupling to an antiquark. In

eq. (E.1), the exponential and gamma functions on the first line on the right-hand side

contain the RG evolution kernels K,Ω, and the terms Wqj and ∆Wqj on the last line are

fixed-order factors arising from convolution of the jet, beam, and soft functions. For NLL′

accuracy, we need the evolution kernels at NLL accuracy and the fixed-order factors at

O(αs).

The evolution kernels K and Ω are the sum of kernels for each function.

K ≡ K(µ, µH , µJ , µB, µS) = KH(µH , µ) +KJ(µJ , µ) +KB(µB, µ) + 2KS(µS , µ) (E.2a)

Ω ≡ Ω(µJ , µB, µS) = ηJ(µJ , µ) + ηB(µB, µ) + 2ηS(µS , µ) , (E.2b)

where the individual evolution kernels KH , KJ = KB, KS , ηJ = ηB, and ηS are obtained

by solving RG equations for hard, jet/beam, and soft functions and are given by integrals

over their anomalous dimensions. Their explicit expressions can be obtained from [32, 38,

53, 58–61],

Ki(µ0, µ) = niKΓq(µ0, µ) +Kγi(µ0, µ) ,

ηi(µ0, µ) = mi ηΓq(µ0, µ) , (E.3)

where ni = {−4, 4, 4,−2} and mi = {4,−2,−2, 2} for i = {H,B, J, S} and the subscripts

Γq and γi indicate cusp and non-cusp parts of the anomalous dimensions. The evolution

kernels in eq. (E.3) at NLL are given by the expressions

KΓ(µ0, µ) = − Γ0

4β2
0

{
4π

αs(µ0)

(
1− 1

r
− ln r

)
+

(
Γ1

Γ0
− β1

β0

)
(1− r + ln r) +

β1

2β0
ln2 r

}
,

ηΓ(µ0, µ) = − Γ0

2β0

[
ln r +

αs(µ0)

4π

(
Γ1

Γ0
− β1

β0

)
(r − 1)

]
,

Kγ(µ0, µ) = − γ0

2β0
ln r . (E.4)

Here, r = αs(µ)/αs(µ0), and αs is evaluated using the two-loop running coupling,

1

αs(µ)
=

X

αs(µ0)
+

β1

4πβ0
lnX , (E.5)

where X ≡ 1 + αs(µ0)β0 ln(µ/µ0)/(2π). The kernels in eq. (E.4) are written in terms of

the coefficients in the expansion of the anomalous dimensions and beta function,

Γq(αs) =

∞∑
n=0

Γqn

(αs
4π

)n+1
, γi(αs) =

∞∑
n=0

γi n

(αs
4π

)n+1
, β(αs) = −2αs

∞∑
n=0

βn

(αs
4π

)n+1
.

(E.6)
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At NLL, we only need γi to one loop and Γq to two loops [62], as well as the two-loop beta

function β. In the MS scheme the coefficients in eq. (E.6) used in eq. (E.4) are given by

β0 =
11

3
CA −

4

3
TF nf , Γq0 = 4CF , γqH 0 = −2γqB 0 = −2γqJ 0 = −12CF

β1 =
34

3
C2
A −

(20

3
CA + 4CF

)
TF nf , Γq1 = 4CF

[(67

9
− π2

3

)
CA −

20

9
TF nf

]
. (E.7)

The anomalous dimension for the soft function is obtained from the consistency relation

γS = −γqH/2− γ
q
B.

In the cross section eq. (E.1), individual factors on the right-hand side depend on the

overall factorization scale µ, but in the combination of all terms, this depends cancel out

completely at any fixed order in either fixed-order or resummed perturbation theory. In

contrast, the dependence of eq. (E.1) on µH , µB, µJ , and µS only cancels out order-by-

order in resummed perturbation theory. So at any given order there is always residual

dependence on these four variables that is cancelled by higher-order terms. This residual

dependence is utilized as a measure of the remaining theoretical uncertainty.

When all these scales are set to be same µH = µJ = µB = µS , eq. (E.2) reduces to

zero, the resummation factors on the first line of the right-hand side of eq. (E.1) become

unity, and eq. (E.1) reduces to the fixed-order singular part which is given in eq. (4.8). The

fixed-order parts in eq. (E.1) are given by

Wqj(z, τ) = H(Q2, µH)

1∑
n1,n2,
n3=−1

Jn1

[
αs(µJ),

τQ2

µ2
J

]
Iqjn2

[
αs(µB), z,

τQ2

µ2
B

]
Sn3

[
αs(µS),

τQ

µS

]

×
n1+n2+1∑
`1=−1

`1+n3+1∑
`2=−1

V n1n2
`1

V `1n3
`2

V `2
−1(Ω) , (E.8a)

∆Wqj(z) =
αs(µB)

2π
[δjqCFPqq(z) + δjgTFPqg(z)] ln z , (E.8b)

where H(Q2, µH) is hard function and Jn, Iqqn , Iqgn , Sn are the coefficients of jet, beam, and

soft functions and we need the function and coefficients at O(αs). Note that the coefficient

functions contain logarithms of their last argument and the hard function also depends on

the logarithm ln(Q2/µ2
H). The logs in these fixed-order factors are minimized by choosing

the canonical scales

µH = Q , µJ = µB = Q
√
τ , µS = Qτ . (E.9)

Large logs of ratios of the above scales are then resummed to all orders in αs by RG

evolution to the scale µ, given by the evolution kernels K and Ω in eq. (E.2). The choices

in eq. (E.9) are appropriate in the tail region, and correspond to the result used with the

profile eq. (D.2) in the region between t1 and t2.

The hard function at O(αs) [38, 58] is given by

H(Q2, µ) = 1 +
αs(µ)CF

2π

(
− ln2 µ

2

Q2
− 3 ln

µ2

Q2
− 8 +

π2

6

)
.
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The soft, jet, and beam functions can be decomposed into a sum of plus distributions Ln,

G(t, µ) =
1

µnG

1∑
n=−1

Gn[αs(µ)]Ln
(

t

µnG

)
. (E.10)

where G(t, µ) represents the soft function S(k, µ), the jet function J(t, µ), or the matching

coefficient Iqq,qg(t, z, µ) onto PDFs in the beam function [47, 63]. The index nG = {1, 2, 2}
for G = {S, J, I}. Thus the variable t has dimension +2 for J and I, and has dimension

+1 for S. The coefficients Gn in eq. (E.10) for the three functions are Sn, Jn, and Iqq,qgn .

These coefficients are given at order αs by

S−1(αs) = 1 +
αsCF

4π

π2

3
, S0(αs) = 0 , S1(αs) =

αsCF
4π

(−16) , (E.11a)

J−1(αs) = 1 +
αsCF
π

(
7

4
− π2

4

)
, J0(αs) = −αsCF

π

3

4
, J1(αs) =

αsCF
π

, (E.11b)

and

Iqq−1(αs, z) = L−1(1−z) +
αsCF

2π

[
L1(1−z)(1+z2)− π

2

6
L−1(1−z) + θ(1−z)

(
1−z− 1+z

1−z ln z
)]
,

Iqq0 (αs, z) =
αsCF

2π
θ(z)

(
Pqq(z)−

3

2
L−1(1− z)

)
, Iqq1 (αs, z) =

αsCF
2π

2L−1(1− z) ,

Iqg−1(αs, z) =
αsTF

2π
θ(z)

[
Pqg(z) ln

1−z
z

+2θ(1−z)z(1−z)
]
, Iqg0 (αs, z) =

αsTF
2π

θ(z)Pqg(z) , (E.12)

where coefficients not listed above are zero at O(αs).

The argument of the plus distributions Ln in eq. (E.10) can be rescaled by λ and

rewritten as

G(t, µ) =
1

λµnG

1∑
n=−1

Gn[αs(µ), λ]Ln
(
λ−1t

µnG

)
, (E.13)

where the coefficients Gn(αs, λ) are expressed in terms of Gn(αs) in eq. (E.10) as

G−1(αs, λ) = G−1(αs) +

∞∑
n=0

Gn(αs)
lnn+1 λ

n+ 1
,

Gn(αs, λ) =
∞∑
k=0

(n+ k)!

n! k!
Gn+k(αs) lnk λ , (E.14)

where Gn = {Sn, Jn, Iqq,qgn }. Explicit expressions for Sn(αs, λ), Jn(αs, λ), and Iqq,qgn (αs, λ)

are obtained by inserting eqs. (E.11) and (E.12) into eq. (E.14).

The coefficients V mn
k and V n

k (Ω) in eq. (E.8) are produced by convolutions of plus

distributions in jet, beam, and soft functions. The coefficients V n
k (a) and V mn

k are obtained

from the Taylor series expansion of V (a, b) around a = 0 and a = b = 0, where V (a, b) is

defined by

V (a, b) =
Γ(a)Γ(b)

Γ(a+ b)
− 1

a
− 1

b
, (E.15)
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which satisfies V (0, 0) = 0. The V n
k (a) for n ≥ 0 are

V n
k (a) =



a dn

dbn
V (a,b)
a+b

∣∣∣∣
b=0

, k = −1 ,

a
(
n
k

)
dn−k

dbn−k
V (a, b)

∣∣∣∣
b=0

+ δkn , 0 ≤ k ≤ n ,

a
n+1 , k = n+ 1 .

(E.16)

The V mn
k are symmetric in m and n, and for m,n ≥ 0 they are

V mn
k =



dm

dam
dn

dbn
V (a, b)

a+ b

∣∣∣∣
a=b=0

, k = −1 ,

m∑
p=0

n∑
q=0

δp+q,k

(
m

p

)(
n

q

)
dm−p

dam−p
dn−q

dbn−q
V (a, b)

∣∣∣∣
a=b=0

, 0 ≤ k ≤ m+ n ,

1

m+ 1
+

1

n+ 1
, k = m+ n+ 1 .

(E.17)

For the cases n = −1 or m = −1,

V −1
−1 (a) = 1 , V −1

0 (a) = a , V −1
k≥1(a) = 0 ,

V −1,n
k = V n,−1

k = δnk .
(E.18)

The resummed differential distribution can be written in similar pattern to eq. (E.1),

which we do not write out explicitly here. Alternatively, the differential distribution can

be obtained by numerically differentiating the cumulant in eq. (E.1)

dσ̂sing

dτ
= lim

ε→0

σ̂csing(τ + ε;µi(τ))− σ̂csing(τ − ε;µi(τ))

2ε
, (E.19)

which corresponds to differentiating the explicit τ dependence in σ̂c but not the dependence

inside µi(τ). See footnote 4 on why we choose this procedure.
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