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Quantum key distribution (QKD) enables participants to exchange secret information over long distances with
unconditional security. However, the performance of today’s QKD systems is subject to hardware limitations,
such as those of available nonclassical-light sources and single-photon detectors. By encoding photons in
high-dimensional states, the rate of generating secure information under these technical constraints can be
maximized. Here, we demonstrate a complete time-energy entanglement-based QKD system with proven security
against the broad class of arbitrary collective attacks. The security of the system is based on nonlocal dispersion
cancellation between two time-energy entangled photons. This resource-efficient QKD system is implemented
at telecommunications wavelength, is suitable for optical fiber and free-space links, and is compatible with
wavelength-division multiplexing.
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I. INTRODUCTION

Symmetric encryption schemes, such as the one-time pad
[1], can provide perfect secrecy if the users, Alice and Bob,
share some secret key. Quantum key distribution (QKD) is
presently the only demonstrated and provably secure way to
generate such keys between multiple parties at a distance [2].
However, the rate of key generation is limited by instrumental
constraints, most importantly the rate of generating and
detecting nonclassical states of light. To address this problem,
there has been growing interest in developing large-alphabet
QKD schemes [3] that exploit high-dimensional degrees of
freedom of photons to generate multiple bits of information
per detection event. Such large-alphabet QKD schemes can
also increase resilience to noise and photon loss [4].

Among the various photonic degrees of freedom considered
for high-dimensional QKD, including position-momentum
[5,6], time-energy [7–16], and orbital angular momentum
(OAM) [17–20], the time-energy basis is particularly appeal-
ing for implementations in today’s telecommunications in-
frastructure. Bright time-energy-entangled photon pair sources
[21] and fast, efficient detectors [22] have been developed for
the telecom band. Additionally, the time-energy correlations
are compatible with wavelength division multiplexing (WDM)
systems and robust in transmission through both fiber and
free space, allowing for versatile, heterogeneous quantum
communication networks.

High-dimensional time-energy entanglement-based (TEE-
based) QKD schemes have recently been experimentally
demonstrated [23], but they have not provided security against
the broad case of arbitrary collective attacks, in which an
eavesdropper, Eve, can make an arbitrary joint quantum
measurement on all of the signals she captured [24]. Recently,
theoretical studies have introduced new techniques to bound
Eve’s information and thus provide provable security for
TEE-based QKD schemes, combining elements of discrete
and continuous-variable (CV) security proofs [13,14]. Here,

we report an experimental demonstration of provably secure
high-dimensional TEE-based QKD with security against
arbitrary collective attacks. Our system relies on measurements
in the mutually unbiased time-frequency bases, which are
implemented by the quantum mechanical phenomenon of
nonlocal dispersion cancellation [25]. Because of the reliance
on dispersive optics for measurements in the frequency basis,
we termed this protocol dispersive-optics QKD, or DO-QKD
[13]. Here, we demonstrate a full system implementation of
DO-QKD in the telecommunications band, including error
correction, privacy amplification, and finite-key analysis.

II. EXPERIMENT

The DO-QKD scheme is illustrated in Fig. 1. Alice pro-
duces wavelength-degenerate time-energy-entangled photon
pairs by type-II spontaneous parametric down-conversion
(SPDC) in a periodically poled potassium titanyl phosphate
(PPKTP) waveguide source pumped at 780.64 nm, producing
a high rate (9 × 106 pairs/s per mW of pump) of orthogonally
polarized photon pairs in the telecommunications band, at
1561.28 nm. A polarizing beam splitter separates Alice’s
photon for her local measurement and feeds the other into the
quantum channel toward Bob. A passive 50:50 beam splitter
routes Alice’s photons for detection in the time basis (TB) or
frequency basis (FB). The TB corresponds to direct detection
of photon arrival time; the FB is implemented by direct
detection after a normal group-velocity dispersive element.
Bob performs similar conjugate-basis measurements, except
for using anomalous group-velocity dispersion. The absolute
group delays of the dispersive elements are matched such that
the group-velocity dispersion (GVD) is nonlocally canceled
when Alice and Bob both measure in the FB [13,25]. In this
demonstration, Alice (Bob) employs a dispersion emulator
(compensator) consisting of a chirped fiber Bragg grating
with a group-velocity delay slope of D = 600 ps/0.4 nm
(D = −600 ps/0.4 nm) of dispersion [26]. The dispersive
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FIG. 1. (Color online) Schematic of the system. Alice pumps the
PPKTP waveguide to produce wavelength-degenerate, orthogonally
polarized entangled photon pairs. A half-wave plate (HWP) adjusts
the pump polarization before the waveguide, and a dichroic mirror
(DM) blocks the pump beam after the waveguide. The entangled
photons are fiber coupled (FC) and separated by a polarizing beam
splitter (PBS). Alice and Bob each use a 50:50 beam splitter to
randomly switch between the time and frequency bases. ND: normal
GVD; AD: anomalous GVD.

elements permit spectral measurements with a single detector,
rather than an array of detectors commonly employed in
spectroscopy. Alice and Bob time-tag photons using a total
of four tungsten-silicide (WSi) superconducting nanowire
single-photon detectors (SNSPDs) with system efficiencies
in excess of 85%, full width at half maximum (FWHM)
timing jitters TJ ∼ 80–120 ps, and maximum count rates on
the order of 106 counts per second (values vary based on
the specific detector channel). The photon detection efficiency
from source to detector was 3.3% and 0.77% for Alice and
Bob, respectively, including all coupling losses.

Figure 2 plots photon coincidences recorded between Alice
and Bob’s four possible combinations of measurements in
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FIG. 2. (Color online) Photon coincidence measurements by Al-
ice and Bob, using all possible combinations of detector pairs. The
detection events are divided into 128 coincidence bins of Tbin =
20 ps each. This Tbin was chosen to enhance the resolution of the
timing correlations.

the TB and FB. They sift their coincidence data into frames
of duration d × Tbin, comprised of d bins of duration Tbin.
Retaining only the frames during which they both detected
photons, Alice and Bob convert each detection event into a
log2 d-bit symbol, based on the position of the event within
the frame. The start time for each frame is determined by a
shared clock. If Alice and Bob both record photons in the TB,
they obtain narrow arrival-time correlations ∼110 ps FWHM,
corresponding to the timing jitter of Alice and Bob’s detectors
and time-tagging electronics. If Alice and Bob measure in
different bases, the correlations are broadened to ∼630 ps, as
expected for the dispersive elements. If Alice and Bob both
record photons in the FB, they recover narrow correlations
of 140 ps, as expected for nonlocal dispersion cancellation in
the limit of long pump laser coherence time. The dispersion
stretches the ∼1 ps photon envelope to ∼640 ps. The stretched
photon envelope exceeds the ∼100 ps temporal resolution of
the SNSPDs, enabling precise spectral correlation measure-
ments. Although this GVD-based approach does not offer
information about the absolute frequency of each individual
photon, the measured two-photon spectral correlation, derived
from the arrival-time correlations in the FB, yields a tight upper
bound on the information accessible to Eve [13].

Alice and Bob use TB measurements for generating
cryptographic keys and FB measurements for bounding Eve’s
maximum accessible information about the TB measurements,
quantified as the Holevo information χ (A; E) for arbitrary
collective attacks [27,28], and corrected here for a finite-length
key [29,30]. Alice and Bob’s information advantage over
Eve per detected photon coincidence [24,31] can then be
described as

r = βI (A; B) − χ (A; E) − �FK, (1)

where 0 � β � 1 quantifies the efficiency of error correction,
I (A; B) is Alice and Bob’s Shannon information, i.e., the
information shared after making their arrival-time measure-
ments, and �FK accounts for the information penalty due
to the finite-key length [29,30,32,33]. Thus, r represents the
secure-key capacity in terms of bits per coincidence (bpc).

To upper-bound Eve’s Holevo information about Alice’s
measurements in the TB, Alice and Bob use their experimen-
tally measured excess spectral noise factor, ξω = σ 2

ω/σ 2
ω0

− 1,
where σ 2

ω = 〈(ωA − ωB)2〉 quantifies the spectral correlation
between Alice and Bob’s detected photons, and σ 2

ω0
represents

the noiseless correlation (i.e., excluding Eve’s intrusion or
excess channel noise), which is determined by the SPDC pump
coherence time, σcoh (or, equivalently, the pump linewidth). To
measure ξω, Alice pumps the SPDC source using Gaussian
pulses of width σcoh to produce pulsed entangled pairs with
a spectral correlation σω0 set by the time-bandwidth product.
Alice and Bob’s time-frequency covariance matrix (TFCM)
contains ξω. The calculation of χ (A; E) then follows from the
symplectic decomposition of the TFCM [13,14]. In the limit
where the two-photon correlation time after applying GVD,
σt , is much greater than the two-photon correlation σcor, deter-
mined by the phase-matching bandwidth of the SPDC source,
the frequency uncertainty is inversely proportional to the GVD,
σω = σt/|D|: i.e., the greater the dispersion, the more precise
the frequency measurement becomes. We note that taking the

062331-2



ENTANGLEMENT-BASED QUANTUM COMMUNICATION . . . PHYSICAL REVIEW A 90, 062331 (2014)

difference between the time and the dispersed time effectively
eliminates the effect of the original correlation time.

The discussion thus far assumed an infinite-key length,
which is an unrealistic assumption that we now relax. A proto-
col with finite-key length can be only εs secure, where εs is the
tolerated failure probability of the entire protocol [32]. We re-
cently analyzed the finite-key effects for the DO-QKD protocol
[29]. Choosing εs = 10−5, as in Ref. [33], and including the
finite-key effects on parameter estimation, we obtain an upper
bound on the Holevo information of χ (A; E) = 1.56 bpc.

To convert their time-tagged data to secure keys, Alice
and Bob sift their time-tagged sequences into d × Tbin-long
frames, where d × Tbin ∼ σcoh. Each frame is converted into
a log2 d-bit symbol, based on the position of the detection
event within the frame, relative to a shared clock. Only
measurements made in the TB are used to generate keys; the
FB measurements are used for the security check. Errors in
the sifted keys are reconciled using a multilayer low-density
parity-check (LDPC) code [34], which performs efficient
large-alphabet error correction from the least significant to
the most significant bit. The multilayer code is particularly
effective at correcting errors caused by timing jitter, which are
the vast majority of errors in the sifted keys. We experimentally
achieved an efficiency β > 90% for all d (see Fig. 3). Finally,
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FIG. 3. (Color online) (a) Multilayer reconciliation scheme. Al-
ice generates a message R by applying a binary Slepian-Wolf code
to each bit layer Xi, 1 � i � d , for each character in her sifted key
X. Bob receives R and tries to recover each layer Xi, based on R
and his sifted key Y [34]. (b) Experimentally obtained symbol-error
rate (SER) and corresponding reconciliation efficiency β for different
values of d at a photon pair generation rate of 0.28 pairs/pulse.

to eliminate Eve’s information about the reconciled keys, Alice
and Bob implement privacy amplification using hash functions
based on multiplication by random Toeplitz matrices [35].

III. RESULTS AND DISCUSSION

For σcoh = 1.49 ns and d = 64, we obtain a maximum
secure-key capacity of 0.83 bpc after subtracting the finite-key
penalty, �FK. This value is below the theoretical maximum
of log2 s = 6, where s ≡ σcoh/Tbin is the Schmidt number,
i.e., the number of possible information eigenstates in the
system, because (i) we subtract Eve’s Holevo information of
1.56 bpc; (ii) we subtract the finite-key correction of 0.20 bpc;
(iii) detector jitter, dark counts, and multiple SPDC pairs per
frame reduce Alice and Bob’s Shannon information I (A; B) to
2.82 bpc; and (iv) the experimentally obtained reconciliation
efficiency was 92%. The key length was N ∼ 3 × 105.

In this demonstration, the SPDC pump repetition rate was
8.3 MHz, and the average number of photon pairs generated
was 0.28 pairs/pulse. The maximum observed secure-key rate
was 456 bits per second (bps). Since the secure-key rate
depends directly on the SPDC pump rate, a more useful figure
of merit is the secure information generated per pump pulse,
measured in bits per pulse (bpp). We obtained a maximum of
5.5 × 10−5 bpp.

It is clear that the secure-key rate can be increased by a
higher SPDC pump pulse rate. A higher pump power leads to
a greater entangled photon flux and also a potentially higher
secure-key rate; however, increasing the SPDC pump power
decreases r because the probability of multipair emissions per
frame increases. An alternate strategy to raise the secure-key
rate is to increase r; this is the benefit of a high-dimensional
QKD protocol. By lengthening the SPDC pump pulse, we
increase the maximum possible amount of information that
can be generated in each frame. Care must be taken to
choose the proper combination of pump power and pulse
duration that keeps the multipair emission probability per
frame sufficiently low while maximizing r . The optimal key
generation rate occurs approximately when the detectors
are close to saturation and we maximize the bpc by using
the longest possible frame length that keeps the multipair
emission probability per frame sufficiently low.

We can further increase the secure-key rate while maintain-
ing the security with simple improvements to the system. If
Alice and Bob preferentially choose the time basis, increasing
the probability of key generation [36], we expect a rise
in the secure-key rate without compromising security for a
sufficiently long key [29]. As the probability of detection in the
TB approaches 1, we anticipate a factor of four increase in the
secure-key rate. Additionally, there is room for improvement
in the coupling efficiency of the SPDC source.

We note that the finite-key correction, �FK = 0.20 bpc, is
large because our key length, N ∼ 105, is relatively short. With
only an order-of-magnitude increase in N , we can more than
halve the finite-key correction to 0.07 bpc, and when N � 108,
�FK < 0.01 bpc. We can easily increase N by using a longer
integration time and/or asymmetric basis selection.

In conclusion, we have demonstrated a complete high-
dimensional entanglement-based QKD system with security
against arbitrary collective attacks. By extending recent results
in CV-QKD security proofs [37–39], it may be possible
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to expand the security of DO-QKD to include coherent
attacks. The DO-QKD scheme is compatible with existing
telecommunications equipment and makes efficient use of
a limited photon budget. The security of the system is
guaranteed by the quantum mechanical phenomenon of non-
local dispersion cancellation, which allows Alice and Bob to
measure the high-dimensional spectral correlations with one
detector each. Measuring both time and frequency requires
as few as two single-photon detectors per party, making the
resource demands similar to those of any two-dimensional
entanglement-based QKD protocol. It is also possible to
implement the system using commercial indium gallium
arsenide (InGaAs) avalanche photodiodes (APDs), which can
operate in free-running mode with efficiencies up to 40% and
timing resolution comparable to that of the WSi SNSPDs used
in this demonstration [40]. Alternatively, the protocol could
be run at near-infrared wavelengths, where efficient, low-noise
silicon-based APDs are commercially available, or frequency
up-conversion could be used to convert telecommunications
photons to wavelengths detectable by silicon APDs [41].

The results reported here are for short fiber links with
negligible loss. A longer fiber link would introduce propa-
gation loss; the loss in standard single-mode telecom fiber
is 0.2 dB/km at the wavelength used in this demonstration.
A longer fiber link will lower the secure-key rate (bps),
since more photons going toward Bob will be lost. How-
ever, the secure-key capacity (bpc) should not be affected
because Alice and Bob generate shared information only
from detected photon coincidences. Since the time-energy
correlations are preserved over transmission through optical
fiber, the amount of information generated by each coincidence
is unaffected. We note that significant lengths of fiber would
introduce unwanted chromatic dispersion; the dispersion co-
efficient for standard single-mode telecommunications fiber is
17 ps/(nm km) at the wavelength used in this demonstra-
tion. The unwanted dispersion can be compensated using
either dispersion-compensating fiber or specialized dispersion
compensating devices (such as the fiber Bragg grating-based
dispersive elements used to implement the FB measurements).
The dispersion compensation will introduce additional loss,
but this has the same effect as propagation loss: the secure-key
rate will decrease, but the secure-key capacity should not be
affected. Since the time-energy correlations are robust over
transmission through both optical fiber and free space, our
results show promise for an efficient and secure high-capacity,
heterogeneous QKD network, with increased channel capacity
by virtue of high-dimensional encoding.
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APPENDIX A: NONLOCAL DISPERSION
CANCELLATION AND BASIS TRANSFORMATION

The state of the entangled pair produced by the spontaneous
parametric down-conversion (SPDC) source can be approxi-

mated as

|	〉 =
∫∫

dtAdtBf (tA,tB)e−iωp(tA+tB )/2|tAtB〉, (A1)

where

f (tA,tB) ∝ e−(tA+tB )/16σ 2
cohe−(tA−tB )/4σ 2

cor , (A2)

|tAtB〉 = â
†
A(tA)â†

B(tB)|0〉, and â
†
A,B(tj ) denotes the photon

creation operator for Alice or Bob, respectively, at time tj .
Alice and Bob transform between the time basis (TB)

and the frequency basis (FB) using group-velocity dispersion
(GVD). Each frequency state acquires a phase φ ∝ β2ω

2. Here,
β2 = ∂2/∂ω2|ω0 (neffω/c), where neff is the effective index of
the mode, ω is the detuning from the mode’s center frequency
ω0, and c is the speed of light in vacuum. Physically, β2 is
proportional to the linear change in the group velocity as a
function of frequency.

Classically, when traveling through a dispersive medium,
a transform-limited pulse spreads out in time because its
frequency components move out of phase. However, Ref.
[25] showed that if the entangled photons from Eq. (A2) pass
through dispersive media, in the limit of large coherence time
σcoh, the correlation time σcor becomes

σ ′2
cor ≈ 1

σ 2
cor

[
σ 4

cor + (β2ALA + β2BLB)2
]
, (A3)

where β2A (β2B) is the GVD introduced by Alice (Bob) over
length LA (LB). Let LA = LB = L and βtot = β2A + β2B .
As βtot increases, the temporal correlation between Alice’s
and Bob’s photons degrades. However, σ ′

cor = σcor if β2A =
−β2B ≡ β2. Thus, if Alice applies normal dispersion on
her photon, Bob can apply anomalous dispersion of equal
magnitude on his photon to recover the temporal correlation
between their photons. In the text, we defined |D| ≡ β2L for
notational simplicity.

APPENDIX B: TWO-PHOTON SPECTRAL CORRELATION
AFTER APPLICATION OF GVD

The original two-photon correlation time is

σ 2
cor =

∫
dtdu(t − u)2〈Ê†

S(t)Ê†
I (u)ÊI (u)ÊS(t)〉, (B1)

where ÊS(t) (ÊI (t)) is the positive-frequency field operator
for the signal (idler) field at time t . When applying GVD, the
field operators are described in the frequency domain as

ÊS(t) =
∫

dω

2π
ÂS(ω)e−iωt eiβ2Lω2/2, (B2)

ÊI (t) =
∫

dω

2π
ÂI (ω)e−iωt e−iβ2Lω2/2, (B3)

where ω is defined as the detuning from ωp/2, and ωp is the
pump frequency of the SPDC source.
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The two-photon correlation time after Alice applies normal GVD and Bob applies anomalous GVD is then

σ 2
t =

∫
dtdu

dωdξdω′dξ ′

(2π )4
(t − u)2〈Â†

S(ω′)Â†
I (ξ ′)ÂI (ξ )ÂS(ω)〉e−it(ω−ω′)−iu(ξ−ξ ′)eiβ2L(ω2−ξ 2−ω′2+ξ ′2)/2. (B4)

Let t± ≡ t ± u. Then,

σ 2
t =1

2

∫
dt+dt−

dωdξdω′dξ ′

(2π )4
t2
−〈Â†

S(ω′)Â†
I (ξ ′)ÂI (ξ )ÂS(ω)〉e−i(ω−ω′)(t++t−)/2−i(ξ−ξ ′)(t+−t−)/2eiβ2L(ω2−ξ 2−ω′2+ξ ′2)/2. (B5)

Let 
± ≡ ω ± ξ and 
′
± ≡ ω′ ± ξ ′. Using

1

2

∫
dt+e−it+(ω−ω′+ξ−ξ ′)/2 = 2πδ(ω − ω′ + ξ − ξ ′), (B6)

Eq. (B5) becomes

σ 2
t = 1

4

∫
dt−

d
+d
−d
′
+d
′

−
(2π )4

t2
−

〈
Â

†
S

(

′

+ + 
′
−

2

)
Â

†
I

(

′

+ − 
′
−

2

)
ÂI

(

+ − 
−

2

)
ÂS

(

+ + 
−

2

)〉

×2πδ(
+ − 
′
+)e−it−(
−−
′

−)/2eiβ2L(
+
−−
′
+
′

−)/2. (B7)

Since

1

4

∫
dt−t2

−e−it−(
′
−−
−)/2 = −4π

d2

d(
′−)2
δ(
− − 
′

−), (B8)

evaluating Eq. (B7) requires integration by parts twice. Doing so, and carrying out the integral over 
′
+, yields

σ 2
t = −2

∫
d
+d
−d
′

−
(2π )3

[
d2

d(
′−)2

〈
Â

†
S

(

+ + 
′

−
2

)
Â

†
I

(

+ − 
′

−
2

)
ÂI

(

+ − 
−

2

)
ÂS

(

+ + 
−

2

)〉

×eiβ2L
+(
−−
′
−)/2

]
2πδ(
− − 
′

−). (B9)

To differentiate the expectation value in Eq. (B9), the operators are rewritten in the time domain as

Â(ω) =
∫

dtÊ(t)eiωt , (B10)

giving us ∫
d
+d
−d
′

−
(2π )3

〈
Â

†
S

(

+ + 
′

−
2

)
Â

†
I

(

+ − 
′

−
2

)
ÂI

(

+ − 
−

2

)
ÂS

(

+ + 
−

2

)〉

=
∫

d
+d
−d
′
−

(2π )3
dtdudt ′du′〈Ê†

S(t ′)Ê†
I (u′)ÊI (u)ÊS(t)〉e−i
+(t ′+u′−u−t)/2e−i
−(u−t)/2e−i
′

−(t ′−u′)/2. (B11)

After differentiating Eq. (B11) twice with respect to 
′
−, the right-hand side (RHS) becomes

d2

d(
′−)2
RHS = −1

4

∫
d
+d
−d
′

−
(2π )3

dtdudt ′du′2πδ(
− − 
′
−)(t ′ − u′)2〈Ê†

S(t ′)Ê†
I (u′)ÊI (u)ÊS(t)〉

×e−i
+(t ′+u′−u−t)/2e−i
−(u−t)/2e−i
′
−(t ′−u′)/2. (B12)

After combining the result of Eq. (B12) with Eq. (B9),

σ 2
t = (β2L)2

2

∫
d
+d
−

(2π )2

2

+

〈
Â

†
S

(

+ + 
−

2

)
Â

†
I

(

+ − 
−

2

)
ÂI

(

+ − 
−

2

)
ÂS

(

+ + 
−

2

)〉

+1

2

∫
d
+d
−

(2π )2
dtdudt ′du′(t ′ − u′)2〈Ê†

S(t ′)Ê†
I (u′)ÊI (u)ÊS(t)〉ei
+(−t ′+u′−u−t)/2e−i
−(t ′−u′−+u−t)/2. (B13)

Since 
± ≡ ω ± ξ ,

σ 2
t =(β2L)2

∫
dωdξ (ω + ξ )2〈Â†

S(ω)Â†
I (ξ )ÂI (ξ )ÂS(ω)〉 +

∫
dtdu(t − u)2〈Ê†

S(t)Ê†
I (u)ÊI (u)ÊS(t)〉. (B14)
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Because the frequency-domain field operators were de-
fined in terms of the detuning from ωp/2, ω and ξ

have opposite signs. The first term of Eq. (B14) is
therefore σ 2

ω, the two-photon spectral correlation after

applying GVD. Thus, according to Eq. (B14), σ 2
t =

(β2L)2σ 2
ω + σ 2

cor. In the limit when σt 	 σcor, the two-
photon spectral correlation is given by σω = σt/(|β2|L) =
σt/|D|.
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