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Geologic carbon dioxide sequestration entails capturing and injecting CO2 into deep

saline aquifers for long-term storage. The injected CO2 partially dissolves in groundwater

to form a mixture that is denser than the initial groundwater. The local increase in

density triggers a gravitational instability at the boundary layer that further develops into

columnar plumes of CO2-rich brine, a process that greatly accelerates solubility trapping

of the CO2. Here, we investigate the pattern-formation aspects of convective mixing

during geological CO2 sequestration by means of high-resolution three-dimensional

simulation. We find that the CO2 concentration field self-organizes as a cellular network

structure in the diffusive boundary layer at the top boundary. By studying the statistics

of the cellular network, we identify various regimes of finger coarsening over time, the

existence of a nonequilibrium stationary state, and a universal scaling of 3D convective

mixing.
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1. Introduction2

Geologic carbon sequestration refers to the capture of carbon dioxide (CO2) from3

the flue stream of large stationary sources like coal- or gas-fired power plants, and4

the compression and injection of the captured CO2 into deep geologic strata like5

deep saline aquifers for long-term storage (IPCC, 2005). It has been proposed as6

a promising technology for reducing atmospheric CO2 emissions and mitigating7

climate change (Lackner, 2003; Orr, Jr., 2009; Szulczewski et al., 2012). While8
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CO2 is less dense than water for all depths in onshore geologic reservoirs, when9

CO2 dissolves into water, the density of water increases. This phenomenon leads10

naturally to a Rayleigh–Bénard-type, gravity-driven hydrodynamic instability11

that greatly enhances the rate of dissolution of the CO2: the mixing of water and12

CO2 is controlled by convection and diffusion rather than diffusion alone (Weir13

et al., 1996; Lindeberg & Wessel-Berg, 1997; Ennis-King & Paterson, 2005; Riaz14

et al., 2006). This process of CO2 sinking away as it dissolves in brine—known15

as solubility trapping—increases the security of geological CO2 storage in deep16

saline aquifers (MacMinn et al., 2011; Szulczewski et al., 2012). Convective mixing17

may also play a role in the dissolution of halites or other soluble low-permeability18

rocks overlying groundwater aquifers (Evans et al., 1991; Van Dam et al., 2009),19

leading to high dissolution rates that can exert a powerful control on pore-water20

salinity in deep geologic formations (Ranganathan & Hanor, 1988; Garven, 1995).21

Gravity-driven convection in porous media has been studied extensively (see,22

e.g., Nield & Bejan, 2006), and has received renewed attention in the context23

of CO2 sequestration, including linear and nonlinear stability analysis of the24

onset of convection (Ennis-King et al., 2005; Riaz et al., 2006; Rapaka et al.,25

2008; Slim & Ramakrishnan, 2010), nonlinear simulations of the unstable flow26

in two dimensions (Riaz et al., 2006; Hassanzadeh et al., 2007; Hidalgo &27

Carrera, 2009; Neufeld et al., 2010) and three dimensions (Pau et al., 2010),28

and experimental systems reproducing the conditions for convective mixing in29

a stationary horizontal layer (Kneafsey & Pruess, 2010; Neufeld et al., 2010;30

Backhaus et al., 2011; Slim et al., 2013). Much of the previous work has focused31

on upscaling the dissolution flux (Pau et al., 2010; Kneafsey & Pruess, 2010;32

Neufeld et al., 2010; Backhaus et al., 2011; Hidalgo et al., 2012). Here we focus,33

instead, on the formation of intricate patterns in the diffusion boundary layer34

as a result of the gravitational instability (Pau et al., 2010; Slim et al., 2013).35

We describe the entire evolution of the convective-mixing instability in 3D, and36

the 2D emerging patterns in this boundary layer. We identify and characterize37

several regimes. We pay especial attention to the emergence of a cellular-network38

structure, and address fundamental questions on the morphology and dynamics39

of this pattern: What is the evolution that leads to this pattern morphology?40
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Does this pattern reach a pseudo steady-state characterized by a universal length41

scale? If so, how does this length scale depend on the system parameters? What42

are the mechanisms responsible for this nonequilibrium stationary state? Are43

the coarsening dynamics also universal? Here, we address these questions using44

3D high-resolution simulation of convective mixing in porous media, which—in45

addition to important visual observations—enable quantitative analysis of the46

pattern-forming process.47

2. Simulating convective mixing in 3D48

The equations governing gravity-driven convective mixing are the Darcy–

Boussinesq equations of variable-density flow in porous media, which for a

homogeneous porous medium, and in dimensionless form, are (Riaz & Meiburg,

2003; Riaz et al., 2006):

∇ · u= 0, (2.1)

u=−(∇P ′ − Cẑ), (2.2)

∂C

∂t
+∇ · (uC − 1

Ra
∇C) = 0. (2.3)

Equation (2.1) is the incompressibility constraint, Eq. (2.2) is Darcy’s law, and49

Eq. (2.3) is the advection–diffusion equation governing solute transport. The50

computational domain is the unit cube [0, 1]3, made dimensionless with respect51

to a length scale H taken here to be the depth of the porous layer. In the52

equations above, u is the dimensionless Darcy velocity, C is the normalized53

concentration of CO2 dissolved in water, P ′ is the dimensionless pressure with54

respect to a hydrostatic datum, and ẑ is a unit vector pointing in the direction of55

gravity. The density of the groundwater–CO2 mixture is a linear function of the56

CO2 concentration: ρ= ρ0 + ∆ρC, where ρ0 is the density of the ambient brine57

and ∆ρ is the density difference between CO2-saturated groundwater and CO2-58

free groundwater. The only controlling parameter of the system is the Rayleigh59

number,60

Ra =
∆ρgkH

φDµ
, (2.4)61



4

where k is the intrinsic permeability, φ is the porosity, g is the gravitational62

acceleration, µ is the fluid dynamic viscosity, and D is the diffusion–dispersion63

coefficient.64

The boundary conditions are no-flow in the z-direction and periodic in the65

x- and y-directions. We impose a fixed concentration at the top boundary of66

the cube (z = 0), C(x, y, z = 0, t) = 1, to simulate contact with buoyant free-67

phase CO2. Initially, the CO2 concentration is zero almost everywhere. We68

trigger the density-driven instability by introducing a small perturbation on the69

initial condition. For fixed (x, y) coordinates, concentrations along the vertical70

axis follow an error function, quickly approaching C = 1 and C = 0 above and71

below the front, respectively. We perturb the front by vertical shifting the72

isoconcentration contours using a small white-noise perturbation (an uncorrelated73

Gaussian random function). We have confirmed that our results are independent74

of the precise magnitude of the perturbation.75

We solve equations (2.1)–(2.3) sequentially: at each time step, we first update76

the velocities, and with fixed velocities we update the concentration field. We77

adopt the stream function–vorticity formulation of equations (2.1)–(2.2) (Tan &78

Homsy, 1988; Riaz & Meiburg, 2003). The components of the stream vector are79

solved for with an eighth-order finite difference scheme, implemented as a fast80

Poisson solver (Swarztrauber, 1977). For the transport equation (2.3), we use81

sixth-order compact finite differences (Lele, 1992) in the vertical direction, and82

a pseudo spectral (Fourier) discretization along the horizontal directions, which83

we assume to be periodic. We integrate in time using a third-order Runge-Kutta84

scheme with automatic time-step adaptation (Ruith & Meiburg, 2000).85

3. Results86

We solve the governing equations for Rayleigh numbers up to Ra = 6400 on a grid87

of 5123, for which we have approximately 400 million degrees of freedom to be88

solved at each time step. We have confirmed that the results from the simulations89

are converged results and, therefore, independent of grid size. In this section,90



5

(a)

(b) (c)

(d)(e)

Figure 1. (Online version in color.) Simulation of convective mixing with Ra =

6400 on a 5123 grid. (a) Snapshot of the concentration field at a slice near the

top boundary (z = 0.01) at t= 0.5, showing a pattern of disconnected islands of

high concentration. (b) Snapshot of the same slice at t= 1, showing a partially-

connected maze structure. (c)-(e) Snapshot of the 3D concentration field at t= 2;

(c) is a complete view of the computational domain; (d) is a view of a partial

volume (0.01< z < 0.3) from the top, illustrating the celular network structure

that emerges at the boundary layer; (e) is a view of the same volume from the

bottom, illustrating the columnar pattern of CO2-rich fingers that sink away from

the top boundary. See also Movies S1 and S2 in Supplementary Material.

we describe the 3D dynamics of the system and, in particular, the 2D emerging91

patterns at the top boundary layer.92

(a)Pattern formation93

The fixed concentration C = 1 at the top boundary leads to a Rayleigh–94

Bénard-type hydrodynamic instability, in which the initial diffusive boundary95

layer becomes unstable and gives rise to gravity-driven convection. In our96

simulations, we perturb the initial concentration with random uncorrelated97

Gaussian noise to accelerate the onset of this instability. This diffusive boundary98

layer then reflects a series of patterns that evolve in time.99
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1. Islands. During the very early stages of the instability, the minute100

perturbations of the boundary concentrations give rise to protrusions such101

that a wavy 3D isoconcentration surface develops. A cut near the top102

boundary reflects these protrusions in the form of disconnected islands103

of higher concentration, surrounded by a sea of near-zero concentration104

[Fig. 1(a)]. Our high-resolution simulations illustrate the columnar pattern105

in this initial regime of the instability, with a characteristic length that106

is in good agreement with the predictions of a linear stability analysis,107

lonset ∼Ra−1 (Riaz et al., 2006).108

2. Maze. The initial columnar pattern morphs by developing bridges between109

the islands, giving rise to an increasingly connected maze structure110

[Fig. 1(b)]. The emergence of the maze pattern observed in 3D is not111

obvious from the 2D simulations: it is unclear how the bridges between112

fingers observed in 2D would self-organize in the third dimension. Our 3D113

simulations show that the bridges connect to form a maze that later develops114

into an hexagonal cellular network.115

3. Cellular network. The maze structure evolves in two ways: making its116

walls thinner, and reorganizing itself in space to form a globally connected117

polygonal network of cells of near-zero concentration separated by sheets118

of high concentration [Fig. 1(d)]. The thinning process of cellular walls is119

controlled by the balance between vertical downward advection through120

the wall and lateral diffusion within the cell, similar to the diffusion-and-121

advection controlled boundary layer (Riaz et al., 2006). A careful analysis122

indicates that the thickness of the boundary layer and the thickness of the123

cell wall both scale with ∼Ra−1. Underneath the diffusive layer, the nature124

of this pattern is different. The vertices of the cellular network are the125

locations of maximum downward flux of CO2, and this leads to a columnar126

pattern of CO2-rich fingers that sink [Fig. 1(e)]. However, finger roots127

exhibit faster temporal dynamics (due to horizontal zipping and merging)128

than the long-lived fingers in the interior. Thus, while the boundary-129

layer network contributes to the organization of the interior region, the130
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(d)(c)

(b)(a)

Figure 2. Concentration field at t= 10 for the 3D simulation with Ra=6400, at

different depths. (a) z = 0.001, (b) z = 0.04, (c) z = 0.12, and (d) z = 0.43.

morphology and the evolution of the characteristic scale in the interior131

do not correspond to those of the network structure at the boundary layer132

(Fig. 2) (Backhaus et al., 2011; Slim et al., 2013; MacMinn & Juanes, 2013).133

(b)Coarsening dynamics134

Once it has been formed at t≈ 2, the cellular network coarsens through135

merging and collapsing of small cells while columnar fingers migrate downward136

[Fig. 1(e)]. This early-time coarsening regime persists until t≈ 8, when the137

characteristic size of the cells reaches a nonequilibrium stationary state. This138

statistical steady state lasts for an extended period of time during which two139

mechanisms act to balance the characteristic size of the cells.140
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1. Cell growth. In the first mechanism, small cells in the network progressively141

shrink and large cells expand. The shrinking cells eventually vanish from the142

network, leaving space for large cells to grow. To understand this coarsening143

process, one must consider the velocity field induced by convection. Cell144

centers correspond to upwelling currents of fresh fluid that impinge onto145

the boundary layer and deviate laterally towards the cell edges, charging146

themselves with CO2 in the process, and then migrating downwards at the147

cell edges. Cell coarsening is due to a positive feedback, in which larger cells148

promote larger vertical upward flow, which then tend to push the cell edges149

outwards, causing the cell size to increase (Fig. 3).150

2. Cell division. The inflating large cells then trigger the second mechanism,151

in which new cell boundaries are born in the middle of large cells. The152

newborn links are often immediately pushed sideways towards existing cell153

boundaries; however, past a certain cell size, some newly-born sheets persist154

to give rise to cell boundaries and permanently divide the mother cells155

(Fig. 3).156

The first mechanism promotes cell growth while the second mechanism penalizes157

oversized cells. These two mechanisms emphasize the nonequilibrium nature of158

the convective mixing process. At long-enough times (t≈ 20), the domain starts159

to become saturated with CO2, and the influence of the bottom boundary is felt160

at the top boundary. After this time, the cellular network can no longer sustain161

its characteristic size and enters a regime of late-time coarsening.162

To demonstrate quantitatively the existence of these three periods (early-163

time coarsening, nonequilibrium stationarity, and late-time coarsening), we plot164

the power spectrum density E(k) of the concentration field at a slice near the top165

boundary (z = 0.01) for the system with Ra = 6400, at various times (Fig. 4).166

We confirmed that the network patterns are isotropic by analyzing the 2D167

Fourier transform of the network images, which indeed exhibit concentric circular168

isocontours in all cases. Thus, we define the 2D isotropic horizontal wavenumber169

k as k2 = k2x + k2y, where kx and ky are the wave numbers in x- and y-directions,170

respectively. Note that from our definition of the wavenumber, the corresponding171
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Figure 3. (Online version in color.) (a) Snapshot of the velocity field at a depth

z = 0.01 at time t= 13 for Ra = 6400, showing upward flow at the cell centers

(grayscale) and downward flow at the cell edges (white), and horizontal flow from

the center to the edges of individual cells (red arrows). (b) Zoomed view of a small

area of the same slice (blue square) at different times, illustrating cell growth

and disappearance of small cells (t= 11.6 to t= 11.7), and cell division from the

emergence of sheets of high concentration within cells (t= 11.7 to t= 11.8).
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Figure 4. (Online version in color.) Evolution of the power spectrum density for

the concentration field of a horizontal slice (z = 0.01) of the simulation with Ra =

6400. The onset wave number inferred from the numerical simulations is k≈ 40,

corresponding to the maximum energy content for the solution at t= 0.2. While

this number should be understood as a plausible range rather than a hard value,

it does agree nicely with the result of a linear stability analysis (as extrapolated

from Fig. 11 in Riaz et al. (2006)).

length scale is 1/k (and not 2π/k). The power spectrum density is calculated using172

the square of the 2D Fourier transform of the concentration field. Initially, there173

is a shift in the maximum of the power spectrum towards lower wavenumbers,174

indicating an increase in the characteristic length (red curves, corresponding to175

t= 0.2 and t= 1). Later, for a wide range of times, the power spectra at different176

times exhibit perfect overlap, strongly suggesting a statistically stationary state177

(blue curves, t= 10 and t= 14). At later times, the power spectrum decays more178

rapidly at higher wavenumbers, indicating that the smaller cells are removed from179

the system (black curves, t= 16 and t= 22).180

We confirm the transition from an early-time coarsening to a statistical steady181

state by evaluating the representative cell length of a network,182

lcell =
1√
Nfing

, (3.1)183

where Nfing is the number of fingers that root within the network, which184

corresponds to the number of network joints [Fig. 5(a)]. We assume that the185

number of joints is linearly related to the number of cells in the network—an186
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Figure 5. (a) Snapshot of the concentration field at t= 10, z ≈ 0.01 for a

3D simulation with Ra=6400. (b) The dark lines mark the binary skeleton

representation of the same network shown in (a). The red circles are the network

joints identified by image processing tool. (c) Snapshot of the concentration

field near the top boundary of a 2D simulation with Ra=10000 at t= 10. The

black dotted line indicates z ≈ 0.005, the depth at which we extract the 1D

concentration. (d) The black solid line is the 1D concentration signal obtained

from (c); the red circles are the peaks identified by the peak-finding tool.

assumption that must hold during the statistical steady state, since during that187

period there are no topological changes (in a statistical sense) to the network.188

From this observation, we propose to estimate the average cell area Acell ∼ l2cell189

as proportional to the total area of the network (1× 1 square) divided by the190

number of joints (Nfing).191

A plot of lcell as a function of time illustrates the growth of the characteristic192

length scale during an initial period (t < 8), and a fluctuating, mean-reverting193

length scale during the quasi-steady period (8< t< 20) (Fig. 6). The details of194

this analysis are discussed in section (c) below.195



12

 

 

0.25

0.2

0.15

0.1

0.05

20151050

Ra=1600
Ra=2000
Ra=2400
Ra=2800
Ra=3200
Ra=3600
Ra=4000
Ra=4800
Ra=6400

t

averaging window
l c
e
ll

Figure 6. Time evolution of cell size (lcell) in 3D simulations for different Rayleigh

numbers. The two dashed lines indicate the time averaging window (10< t< 15)

used to calculate the characteristic cell length during the nonequilibrium steady

state regime of the network.

The characteristic length in the system exhibits three dynamic regimes:196

early-time coarsening, nonequilibrium steady state and late-time coarsening. It197

is natural to ask whether the coarsening regimes of the length scale near the198

boundary layer are reflected in the time evolution of dissolution flux. Indeed,199

the dissolution flux exhibits three dynamic regimes as well: diffusive, convection-200

dominated and saturation (Pau et al., 2010; Hidalgo et al., 2012; Slim et al.,201

2013; Hewitt et al., 2013). Here we compare these two quantities—characteristic202

length scale and dissolution flux—for both a 3D simulation with Ra=6400 and203

a 2D simulation with Ra=25,000 (Fig. 7). The dynamics of these two quantities204

appear to be highly correlated in time. The magnitude of the dissolution flux,205

however, is uninformative with respect to the length scale. The nondimensional206

flux is independent of Ra (Hidalgo et al., 2012), and clearly this is not the case207

for the characteristic length scale (Fig. 6).208

(c)Universality of coarsening dynamics209

The fact that the characteristic length scale of the process reaches a stationary210

value during an extended period of time raises the question of what sets that211

length scale. Our hypothesis is that, in the absence of any external length scale in212
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Figure 7. Time evolution of non-dimensional flux (blue) and cell length near

the boundary (green). (a) 3D simulation with Ra=6400. (b) 2D simulation with

Ra=25,000.
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the problem, this characteristic length is set by a balance between advection and213

diffusion, ldiff ∼D/U , where U = (∆ρgk)/(φµ) is the characteristic density-driven214

fluid velocity. From the definition of the Rayleigh number, Eq. (2.4), we have that215

ldiff ∼H/Ra. This suggests a linear scaling of cell size with the inverse of Ra,216

lcell ∼Ra−1 (3.2)217

To test this hypothesis, we perform a study of the evolution of cell sizes of the218

network. We threshold the concentration field to obtain a binary image that can219

then be reduced to a skeleton representation of the network [Fig. 5(b)], using open-220

source image processing software (Schneider et al., 2012). We count the number221

of vertices, or joints, in the skeleton network using a commercially available image222

processing tool (Matlab, 2012), and then estimate the cell length lcell defined in223

Eq. (3.1).224

In Fig. 6 we plot the time evolution of lcell for nine different Rayleigh numbers,225

ranging from 1600 to 6400. We identify the three coarsening regimes described in226

section 2(b), although finite-size effects prevent achieving the pseudo-steady state227

for the smaller values of Ra (1600 and 2000). We choose the overall characteristic228

length, denoted l̄, as the time average of lcell during the nonequilibrium stationary229

state, taken here as 10< t< 15. This average length scale l̄ exhibits a power-law230

dependence with Rayleigh number, with exponent −1 [Fig. 8(a)], supporting the231

scaling relation in Eq. (3.2).232

We recognize that it would be useful to extend the study of 3D convective233

mixing to higher Rayleigh numbers. However, the computational cost would be234

significant. Instead, we confirm the proposed scaling l̄∼Ra−1 with 2D simulations,235

where it is computationally tractable to perform simulations with Ra=40,000. In236

2D, the domain is the unit square (1× 1), Nfing is the number of finger roots in the237

boundary layer [Fig. 5(c)], and the characteristic length is the average finger root238

spacing: lcell = 1/Nfing. We use a robust peak-finding tool (Yoder, 2009) to identify239

the number of finger roots, which are the peaks in a 1D concentration signal240

[Fig. 5(d)] taken near the boundary [Fig. 5(c)]. In Fig. 8(b), we plot the time-241

averaged 2D characteristic length l̄ with Ra in log–log scale, and again observe the242
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Figure 8. Characteristic length l̄ plotted against Rayleigh number. (a) 3D

simulations; (b) 2D simulations. This characteristic length scale exhibits a power-

law dependence with Rayleigh number l̄∼Ra−1.

same −1 exponent. This strongly suggests that the scaling relation lcell ∼Ra−1 is243

universal, both in 2D and 3D, in the regime of large Rayleigh numbers.244

4. Discussion245

In this paper, we have studied the pattern-formation aspects of convective mixing246

in porous media, a phenomenon of relevance in CO2 sequestration in deep saline247

aquifers. We have analyzed the process by means of high-resolution simulations248

in a simplified geometry. Our key observation is the emergence of a cellular249

network structure in the diffusive boundary layer at the top boundary. Theoretical250

arguments and statistical analysis of the evolving pattern allowed us to discern the251

fundamental scaling properties of this pattern in space and time. In particular,252

we have identified a period of coarsening followed by a nonequilibrium steady253

state, and explained the detailed mechanisms—cell growth and cell division—254

responsible for this behavior.255

We are currently investigating how the detailed 3D simulations and theory256

presented here may guide the development of nonequilibrium 2D models of the257

pattern-forming process, in the spirit of surface-growth models (e.g., Kardar et al.,258
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1986; Barabási & Stanley, 1995). This will inform our ability to model and predict259

the properties of other pattern-forming processes that lead to cellular structures260

(Stavans, 1993), such as foams (Weaire & Hutzler, 1999), elastocapillary assembly261

(Chakrapani et al., 2004), desiccation cracks (Shorlin et al., 2000), columnar262

jointing (Goehring et al., 2006, 2009) and mantle dynamics (Tuckley, 2000).263
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