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Templated self-assembly of block copolymer (BCP) thin films can enhance the resolution and 

throughput of nanoscale lithography processes.[1-18] This method has been used to produce 

large-area defect-free lamellar, cylindrical, or spherical microdomain patterns through 

chemical[1-6] or topographical[7-15] templating. However, the formation of complex patterns 

with multiple morphologies in one BCP film (e.g. coexisting cylinders and spheres) requires 

additional process steps such as sequential cross-linking and solvent anneals.[19,20] The period 

of the patterns is determined by the BCP chain length, and sub-10-nm-period (sub-5-nm half-

pitch) patterns have been reported from low molecular weight BCPs.[8] While a hexagonal 

lattice of microdomains is readily obtained from a diblock copolymer, obtaining a square 

symmetry pattern requires 1:1 templating of a diblock copolymer[21], or use of a triblock 

terpolymer[22] or a blend of diblock copolymers[23]. We show that by using an array of 

majority-block-functionalized posts, it is possible to locally control the morphology of a 
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diblock copolymer, achieve several morphologies simultaneously on a single substrate, and 

create patterns with square or rectangular symmetry. As a side benefit of this method, because 

the topographic template features are incorporated into the final pattern, the resulting spacing 

between the template features and the minority microdomains is smaller than the BCP period, 

i.e. the areal density of features is increased. Three-dimensional self-consistent-field-theory 

(SCFT) simulations were performed to calculate equilibrium morphologies and to explore a 

wider parameter space than that of the experiments.  

 Figure 1 shows a schematic diagram of the major steps of the experimental method. In 

the first step, the templates were fabricated by means of electron-beam-lithography (EBL) 

exposure of hydrogen silsesquioxane (HSQ) resist, then chemically functionalized with the 

majority-block brush, hydroxyl-terminated-polystyrene by grafting the hydroxyl-terminated 

ends onto the silica substrate. Next, poly(styrene-b-dimethylsiloxane) (PS-b-PDMS, 45.5 kg 

mol-1) was spin-coated onto the template substrates. The BCP used in this experiment had a 

bulk morphology consisting of PDMS cylinders in a PS matrix with an equilibrium 

periodicity of ~35 nm. Annealing of the BCP thin film was done at room temperature using 

solvent vapor. A CF4 reactive-ion etch (RIE) was done to remove the top PDMS surface layer 

and immediately followed by an oxygen RIE to remove the PS matrix and leave the oxidized-

PDMS (ox-PDMS) patterns on the substrates.  

 Figure 2 shows a scanning electron micrograph (SEM) of a hybrid BCP pattern on a 

substrate. The square array of PS-functionalized posts had 27-nm diameter and 73-nm period 

in both the x- and y-directions. Two different BCP morphologies, cylinders outside the 

template region and a square symmetry perforated lamella within it, appeared on the substrate.  

 By using different template conditions, other morphologies could be achieved. Figure 

3a-h shows SEMs of the morphologies of the BCP for different post periods. By varying the 

post period from less than L0 (the equilibrium BCP period) to more than 2L0, different 

morphologies were observed, such as cylinders (Figure 3a,h), undulated cylinders (Figure 3b), 
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spheres (Figure 3c), ellipsoids (Figure 3d), periodic superstructures (Figure 3e), perforated 

lamellae with a perforation at each post (denoted by L1) (Figure 3f) and perforated lamellae 

with additional perforations between the posts (denoted by L2) (Figure 3g). Most of these 

morphologies were observed at a particular post period in the x- and y-directions; as the 

period varied around these values, the uniformity of the structures decreased. The periods 

where each of these morphologies occurred depended on the post diameters.  Figure 3i shows 

the experimental phase diagram plotted against post period Px and Py varying from 0.5L0 to 

2.5L0 for a post diameter of 10 nm to 20 nm. We label Py as the smaller period in rectangular 

lattices. In this figure, each data point represents a sample in which one morphology covering 

more than 70% of the templated area. A black triangle represents a sample with no dominant 

morphology. 

 SCFT was used to model the morphology resulting from post periods of 0.7L0 to 2.0L0. 

A phase diagram of the simulation results is shown in Figure 3j. The general trends of the 

simulations showed the same morphologies observed in experiments, including cylinders 

(yellow region in Figure 3j), spheres (blue region in Figure 3j), ellipsoids (green region in 

Figure 3j), perforated lamellae L1 (pink region in Figure 3j), and L2 (orange region in Figure 

3j), all near the same post period regimes seen experimentally. The simulations can yield both 

equilibrium and metastable structures, so if the model results differed from those observed 

experimentally, multiple simulations were performed to determine the energy minimum. The 

phase diagram shows the state with lowest energy. Additional larger unit cell simulations 

were done with a post period of Px = Py = 2.29L0 for comparison with Figure 3h. The 

simulations showed that both L2 and double cylinders had similar energies for these post 

periods (inset image in Figure 3j). 

The simulations assume periodic boundary conditions, whereas the real systems have 

a finite post lattice area and the equilibrium cylinder structures surrounding the post lattice 

boundaries might influence the morphologies in the templated region. Also, the simulation 
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does not address local film thickness changes caused by solvent annealing, and since the 

simulations only yield saddle point solutions and do not reproduce realistic kinetics, these 

structures will not correspond exactly to the experiment in cases where kinetically trapped 

structures form. Despite this, the simulations give a very good qualitative agreement with the 

experiment, and could therefore be predictively useful. Two major discrepancies occurred 

between the model and experiment. First, in cases where experimentally the cylinders 

oriented parallel to the axis with larger period with Px > L0 and Py < L0, the model predicted 

that this was a higher energy state than alignment parallel to the axis with smaller period. 

Second, the model could not reproduce the superstructures (Fig. 3e) because it included only 

one lattice period.  

 We now describe the various morphologies in more detail. When Px was similar to or 

greater than L0 and Py < L0, the PDMS cylinders oriented along the y-direction, Figure 3a. The 

cylinders in the templated region showed a small amount of necking or undulation near the 

posts, and a different width compared to those in the untemplated region: when Px > L0 the 

width of the cylinders was larger than the untemplated case.  When Px was similar to or 

greater than L0 and Py = ~L0, the PDMS cylinders oriented along the x-direction, Figure 3b. 

The cylinders showed distinct undulations caused by the PS-coated posts. These cylinder 

morphologies occurred over a wide range of Px in both experiment and model. The SCFT 

examples in Fig. 3j show only small fluctuations in the cylinder width, but cylinders with 

larger undulations oriented along the commensurate direction appeared for shorter or thinner 

posts or a thicker BCP film.   

 Figure 3c shows a spherical morphology with a square symmetry that occurred when 

Px = Py and the post period was incommensurate with L0. Figure S1 in the Supporting 

Information shows the change from a cylindrical morphology to a square lattice spherical 

morphology by increasing the post period. By increasing the post period in both directions, a 

condition was reached in which the BCP was commensurate with the lattice under a rotation 
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of 45 degrees, which resulted in an elliptical morphology for the PDMS, as seen in Figure 3d. 

Figure 3i shows that the simulated spherical and ellipsoidal morphologies occurred within a 

small range of post periods, and the ellipsoidal structures were oblate ellipsoids rather than the 

45-degree-oriented prolate ellipsoids observed in the experiment.  The higher symmetry in the 

simulation may result from the periodic boundary conditions which do not provide a 

preferential in-plane direction for the ellipsoids to orient.  

 Figure 3e shows a periodic superstructure of cylinders and ellipsoids. Periodic 

superstructures of cylinders and ellipsoids or cylinders and spheres were observed within a 

large region of post periodicity, in between template periods that generated either cylinders or 

perforated lamellae, as shown in Figure 3i.  These superstructures appear to be metastable 

combinations of the ellipsoidal and cylindrical morphologies. Such periodic patterns were 

only produced in SCFT simulations of double cells in which one of the cells was seeded with 

initial conditions consisting of a sphere of PDMS. The simulations suggest that spheres or 

ellipsoids have similar energies to cylinders (cylinders have a slightly higher energy) in this 

regime of post period, and this indicates that the superstructure represents a combination of 

these states. Formation of a cylinder may promote formation of ellipsoids in the adjacent unit 

cells, which then favors formation of another cylinder, etc., building up the superstructure. 

Energy differences between the superstructure and cylinder-only morphologies are small, for 

example the superstructure had 0.034% higher energy for Px = 1.0 L0 and Py ~ 1.5 L0 in the 

simulations.  

 Figure 3f shows a perforated lamellar morphology L1 which occurred when the post 

periods in the x-, y-, and diagonal directions were between L0 and 2L0. The volume of the ox-

PDMS between the posts was intermediate between that of one cylinder and two cylinders. 

Figure S2 in the Supporting Information shows the appearance of perforated lamellae from 

superstructures by increasing the post period.  
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 Figure 3g shows perforated lamellae with additional perforations between the posts 

(L2) which formed for Px = Py = 1.8 – 2.3 L0; for larger period, the structure transitioned to 

pairs of cylinders lying between the posts, Figure 3-h. The SCFT simulations showed 

perforated lamellae L2 for Px = Py > 1.7L0, but the model did not reproduce the gradual 

transition between morphologies. Larger multi-cell simulations may show such transitional 

structures.  Larger unit cells (e.g. Px = Py = 2.29L0) generated either double parallel cylinders 

or perforated lamellae L2, Figure 3j (inset), and these two structures had degenerate energies.   

 Considering that both the HSQ template features and the ox-PDMS are silica-based 

structures with high etch resistance, they both constitute the final pattern produced by the 

templated BCP. The areal density of HSQ plus ox-PDMS features in the final pattern was 

therefore higher compared to the density of ox-PDMS features in an untemplated film. For 

example, the feature spacing along the x-axis in Figure 2a, or the y-axis in Figure 2b, is 17 nm, 

half of L0. This process therefore achieves not only control over the film morphology and 

formation of square and rectangular symmetry patterns, but a denser set of etch-resistant 

features than is possible from the BCP alone.  

The morphological control was further illustrated by templating a PS-PDMS BCP 

with low molecular weight (16 kg mol-1). This material formed in-plane cylinders with 

spacing 17 nm on a smooth substrate, but a square array of posts with 25 nm period templated 

a square symmetry pattern of ox-PDMS spheres between the posts, Figure 4. The ox-PDMS 

spheres and the posts together formed a square pattern with feature spacing of 25/√2 = 17 nm, 

similar to Figure 2c but smaller in dimensions. 

 We next show how the size of the ox-PDMS microdomains can be predicted 

analytically based on the geometry of the template and volume fraction of the BCP [for 

further details of the calculations, see Supporting Information]. Consider first a film, which 

forms a single layer of cylindrical PDMS microdomains with radius R0 on a smooth substrate. 
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When templated into spherical microdomains of radius Rs by an array of posts (as in Figures 

2c or 4), 

Rs = (
3R0

2

4L0

[PxPy -p (r+T )2 ])
1

3                      (1) 

where r is the radius of the posts, and T the thickness of the PS brush layer on the posts.   

For the case of a bilayer BCP film which forms two layers of cylinders on a smooth 

substrate, if R01 and R02 are the radii of the ox-PDMS cylinders in the top and bottom layers of 

microdomains, then in cases where post templating forms a monolayer of spheres of radius Rs,   

Rs = (
3p (R01

2 +R02

2 )

4L0

[PxPy -p (r+T )2 ])
1

3  .         (2) 

 These results show that the radius Rs of the templated spherical PDMS microdomains 

depends on both the volume fraction of PDMS (which determines R0 for a given L0) and the 

geometry of the template. Figure 5a-c shows the experimental verification of this analysis for 

three different conditions, in which different post geometries, film thicknesses and molecular 

weights (45 kg/mol and 16 kg/mol) are used. Figure 5a shows a film consisting of a 

monolayer of cylinders on a smooth substrate, and Figures 5b and 5c are from bilayers of 

cylinders. In Figures 5a-c, the square post lattice yielded PDMS spheres whose predicted 

diameters from Eq. 1 and 2 were 24 nm, 11 nm and 33 nm respectively, which compares well 

with the measured values of 24 nm, 11 nm, and 32 nm. The agreement supports the 

interpretation of the templated morphologies as consisting of a monolayer of PDMS spheres, 

consistent with the SCFT model. Figure 5d shows a non-square post lattice in which resulted 

in ellipsoids rather than spheres.  

The central result of this article is the use of an array of majority-block-functionalized 

topographical posts to control the self-assembly of a BCP, allowing a variety of morphologies 

to be produced, including arrays of spheres, ellipsoids, cylinders, undulating cylinders, 

perforated lamellae and superstructures, by varying the geometrical parameters of the post 



 

 8 

array. This is useful for generation of complex patterns, which is an objective for nano-device 

fabrication. The total density of the ox-PDMS and HSQ features in the etched structure is 

higher than the density of ox-PDMS features in an untemplated film, and the process therefore 

increases areal density by placing HSQ features within the PS majority domains. Three-

dimensional SCFT simulations of morphology vs. template geometry gave a good agreement 

with the observed cases for most post periods.  

 

Experimental Section 

Template fabrication: The templates were fabricated by EBL of HSQ (Dow Corning XR-1541 

2% solids), a negative-tone electron resist. HSQ was spin-coated on Si (100) wafers at 

different thicknesses (21nm, 27 nm, and 38 nm) depending on the BCP being used. The 

thickness of the spin-coated HSQ was measured using an ellipsometer. A Raith 150 EBL tool 

at 30 kV acceleration voltage and 300 pA beam current was used for the exposure of the resist. 

Arrays of HSQ posts with diameters ranging from 10 nm to 30 nm (measured by image 

processing software) were obtained by using different doses ranging from 10 fC to 70 fC. 

After exposure, samples were developed in a salty developer [24] for 4 minutes followed by a 

rinse in de-ionized water for 2 minutes. Subsequently, oxygen plasma asher (50w, 0.35 Torr) 

was used to remove possible organic residues and to change the HSQ patterns to silica. 

Block copolymer self assembly: The templates were chemically functionalized with a 

hydroxyl-terminated PS brush (3 kg mol-1 and 1 kg mol-1 for high and low molecular weight 

of BCPs, respectively) by first spinning the PS solution onto the templates and then placing 

them in a vacuum oven (~20 torr) at 170oC for 16 hours and subsequently rinsing with toluene 

to remove ungrafted polymer chains. Then poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) 

(high MW: 45.5 kg mol-1, fPDMS = 32% or low MW: 16kg mol-1, fPDMS = 31%)  was spun onto 

the HSQ templates to a thickness of 29 nm or 25 nm, respectively. Annealing of the high MW 

BCP thin film was done by placing the samples in a chamber in the presence of a cosolvent 
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vapor resulting from a mixture of heptane and toluene liquids (VTol/VHep = 5) which swelled 

both blocks of the copolymer and improved the kinetics of self-assembly [25]. After 3 hr 

anneal followed by quenching in air and etching, the film period was around 35 nm. For the 

low MW BCP, a saturated vapor of acetone was used in a closed dish for 5 hr resulting in a 

BCP period of around 17 nm. A 5 s (high MW) or 2 s (low MW) CF4 RIE (50 W, 15 mTorr) 

was done to remove the top PDMS surface wetting layer, immediately followed by a 22 s 

(high MW) and 12 s (low MW) oxygen RIE (6 mTorr, 90 W) to remove the PS matrix and 

leave the ox-PDMS patterns. Scanning electron micrographs (SEMs) were obtained using a 

Raith 150 scanning electron microscope operated with an acceleration voltage of 10 kV. 

Simulation methods:Using the same methods as presented by Mickiewicz et.al [26], three-

dimensional SCFT simulations were done to compare the equilibrium morphologies found in 

the experiment with those in the simulations. The simulations were used to explore a wider 

parameter space than allowed in the experiments in order to predict the commensurability 

conditions for the various morphologies. In the simulations, the system was modeled using 

three dimensional unit cells with periodic boundary conditions in the x- and y-directions as 

schematically depicted in Figure S4. The posts were modeled by constraining the fields in the 

region of the posts to a large value that prevents polymer density from evolving in that region. 

The brush layer was modeled using a field constraint around the boundary of the post region 

that was attractive to the majority block (PS) and repulsive to the minority block 

(PDMS).  The top air interface was modeled similar to the brush layer but preferentially 

attractive to the PDMS as experimental observation shows PDMS to have a lower surface 

energy with air than PS. To match experimental parameters, the model used a value of N = 

30.0 and fPDMS = 0.32 where N in the simulation is the number of coarse-grained statistical 

monomers.  The system was evolved starting with random initial field conditions until a 

saddle point solution to the field equations was obtained that was either an equilibrium or 

metastable morphology. 
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Figure 1. Schematic diagram showing the major steps of the fabrication process. Step 1: defining the 

post template by EBL and chemically functionalizing with a PS brush; step 2: spin-coating and 

annealing of the BCP; step 3: removing the PDMS top wetting layer by CF4 RIE and then the PS 

matrix by oxygen RIE, then imaging in SEM. The height of the oxidized PDMS cylinders in step 3 is 

expected to be lower than that of the as-annealed PDMS cylinders in step 2 due to the etch process.  

 

                                                         
 

Figure 2. SEM of a hybrid BCP pattern on a substrate. White and light grey shades represent HSQ and 

ox-PDMS, respectively. Inside the templated region, the ox-PDMS formed a perforated lamella and 

outside of it, it formed cylinders.  
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Figure 3. (a-h) SEMs of different morphologies of PDMS microdomains. The HSQ appears white and 

the ox-PDMS light grey. The observed morphologies are: (a) cylinders, (b) undulated cylinders, (c) 

spheres, (d) ellipsoids, e) periodic superstructures, (f) perforated lamellae L1, (g) perforated lamellae 

L2, (h) double cylinders. (i) A phase diagram showing a summary with each data point representing 

one sample. (j) Phase diagram using 3D SCFT modeling. The horizontal axis is the reduced post 

spacing distance in the x-direction Px/L0 and the vertical axis is the reduced post spacing distance in 

the y-direction Py/L0. The structures are shown from the top after removing the PDMS surface layer, 

with only the  = 0.5 surfaces shown in green. (k) 3D SCFT simulation results showing contours of  

= 0.5 (green), 0.6 (yellow) and 0.7 (red), where  represents the normalized density of the PDMS. 

 

                                                     
 

Figure 4. SEM of a high-resolution hybrid BCP pattern on a substrate. White and light grey colors 

represent HSQ and ox-PDMS, respectively. In the template region, ox-PDMS microdomains are 

spheres and outside of it, they are cylinders. (Insets: Zoomed-in images of areas inside and outside the 

template) 
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Figure 5. SEMs illustrating the change of the morphology of ox-PDMS cylinders to spheres using a 

PS-functionalized template. White and light grey colors indicate HSQ posts and ox-PDMS 

microdomains, respectively. The unit of numbers in all images is nm and for images (a-c), a square 

lattice template was used. These images are the results of (a) a single layer BCP with a molecular 

weight of 45 kg mol-1 (b) a bilayer BCP with a molecular weight of 16 kg mol-1 and (c) a bilayer BCP 

with a molecular weight of 45 kg mol-1 d) a single layer BCP with a molecular weight of 45 kg mol-1 

and a rectangular lattice template. 

 


