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ABSTRACT 

Semi-crystalline polyethylene is composed of three domains: crystalline lamellae, the compliant 

amorphous phase, and the so-called “interphase” layer separating them. Among these three constituents, 

little is known about the mechanical properties of the interphase layer. This lack of knowledge is chiefly 

due to its mechanical instability as well as its nanometric thickness impeding any property measuring 

experiments. In this study, the Monte Carlo molecular simulation results for the interlamellar domain (i.e. 

amorphous+ interphases), reported in (in ‘t Veld et al. 2006) are employed. The amorphous elastic 

properties are adopted from the literature and then two distinct micromechanical homogenization 

approaches are utilized to dissociate the interphase stiffness from that of the interlamellar region. The 

results of the two approaches match perfectly, which validates the implemented dissociation 

methodology. Moreover, a hybrid numerical technique is proposed for one of the approaches when the 

recursive method poses numerical divergence problems. Interestingly, it is found that the dissociated 

interphase stiffness lacks the common feature of positive definiteness, which is attributed to its nature as 

a transitional domain between two coexisting phases. The sensitivity analyses carried out reveal that this 

property is insensitive to the non-orthotropic components of the interlamellar stiffness as well as the 

uncertainties existing in the interlamellar and amorphous stiffnesses. Finally, using the dissociated 

interphase stiffness, its effective Young’s modulus is calculated. The evaluated Young’s modulus compares 

well with the effective interlamellar Young’s modulus for highly crystalline polyethylene, reported in an 

experimental study. This satisfactory agreement along with the identical results produced by the two 

micromechanical approaches confirms the validity of the new information about the interphase elastic 

properties in addition to making the proposed dissociation methodology quite reliable to be applied to 

similar problems.  

Keywords: semi-crystalline polyethylene; interphase layer; micromechanical homogenization, sensitivity 

analysis. 

 

1. Introduction  

Semi-crystalline polyethylene (PE) of different grades is reputed to be the most widely 

used/produced plastic worldwide. Its widespread use is due to excellent resistance to chemical agents 

and physical shocks as well as reasonable mechanical properties at ambient temperature and at an 

economic price. Its mechanical performance is due primarily to its microscale composite structure. 

Microstructurally, PE is composed of two major components: crystalline lamellae, also known as 

crystallites, and the amorphous interlamellar phase, also known as the noncrystalline phase.  

Upon crystallization from melt, the regular arrangement of chains in an orthorhombic crystalline 

system 1,2 forms the crystalline lamellae whose radial array, in turn, contributes to the spherulitic 

morphology of PE in a larger scale 3,4. The mechanical properties of the crystalline phase have been well 
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established during the recent decades 5-10. On the other hand, the noncrystalline, interlamellar phase 

entrapped between the crystallites has no predefined structure. Therefore, researchers used to name this 

interlamellar phase as “amorphous phase” hence describing PE as a two-phase composite. However, the 

sharp transition from crystalline to amorphous state is hypothetically impossible. By relying on 

experimental observations and theoretical arguments 11-13 a broad consensus has been created among 

researchers that the non-crystalline domain itself can be viewed as a two-component sandwich: a central, 

compliant, amorphous core with two more rigid, amorphous layers at the sides. Accordingly, the two 

composing phases of the non-crystalline interlamellar region are amorphous in structure but the central 

phase is less rigid than the side/intermediate layers. In the literature the former is referred to as the 

amorphous phase and the latter as the “interphase”. The term “interphase” was first employed by Flory 14 

to define an interfacial zone between two immiscible phases. The term “rigid amorphous phase” has also 

been used to describe a noncrystalline component that remains immobilized even above the glass 

transition point of the polymer, possibly as a consequence of proximity to the crystalline lamellae 13. A 

schematic diagram of the composing phases of PE is illustrated in Fig. 1. The recognition of the interphase 

is due in large part to the stronger anchorage to the adjacent crystallite rendering this separating layer 

stiffer than the central amorphous phase, which is rather liquid-like at temperatures above 
gT . Therefore, 

in three-component micromechanical modeling of PE, the mechanical properties of this less-known third 

component are requisite.  

 

Fig. 1 Schematic diagram of the crystalline and noncrystalline (interphase + amorphous) domains in PE 

In their three-component micromechanical modeling of PE, Sedighiamiri et. al. 15 took the 

interphase layer to be isotropic whereas its true symmetry, as will be discussed next, is monoclinic. 

Additionally, they chose an average interphase bulk modulus, ipκ , of 5000 MPa, which is an intermediate 

value between the crystalline and amorphous bulk moduli, and left the average interphase shear 

modulus, ipG , as the fitting parameter. In a similar study on the three-phase micromechanical modeling 

of PET, Gueguen et. al. 16 took the associated interphase stiffness to be 1.6 times that of the amorphous 

phase, i.e ip am1.6=C C . They assert that by this specific selection, some “best fit” is observed, which 

indicates that they have treated the coefficient as an adjustable parameter. In similar studies concerning 

filler/polymer composites where some intermediate or interphase layer around the fillers is incorporated 

into the modeling, the properties of this third phase have been treated alike 17-19. Although several studies 

have been devoted to the mechanical characterization of the central amorphous phase, to date no 

rigorous attention has been paid to the systematic, methodological elastic characterization of the 

interphase as is presented in this work. At the molecular simulation level, Hütter et. al. 1 employed the 

concept of a sharp Gibbs dividing surface in order to define a set of interfacial properties corresponding 

to the interphase; they obtained interfacial stresses and interfacial internal energies, but were not able to 
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extract a value for interfacial tension due to significant contributions from its dependence on interfacial 

strain. 

Here, two independent micromechanical homogenization approaches are tailored to extract the 

interphase stiffness from that of the interlamellar domain. Then they are applied to the Monte Carlo (MC) 

molecular simulation results by in ‘t Veld et. al 20 who reported the variation of the interlamellar stiffness 

components, 
il

ijC , with temperature for the range of 350-450 K. First, the findings and observations of 

different pertinent theoretical and experimental investigations are exploited to establish a plausible 

temperature-dependent amorphous stiffness. Then, the two known stiffnesses, i.e. 
ilC  and 

amC , along 

with their associated thicknesses 20, are fed into the dissociation algorithms. Due to the absence of 

experimental measurements on the mechanical properties of the interphase, which have remained 

elusive as yet, direct verification of the calculated interphase stiffness components is not possible. 

Nonetheless, we could successfully compare the average effective Young’s modulus of the dissociated 

interphase with the available experimental results on the average interlamellar Young’s modulus at high 

crystallinity 21. In the present study, two agreements are observed which corroborate the validity of the 

results as well as the efficiency of the presented methodology: Firstly, an excellent agreement is observed 

between the results of the two deployed micromechanical homogenization techniques whose origins are 

totally different; Secondly, a good agreement is observed between the interphase average Young’s 

modulus, which is evaluated using the results of this study, and the interlamellar average Young’s 

modulus at high crystallinity, which is offered in the experimental study by Crist et al. 21. 

The following sections are organized as follows: Section  2 details the reasoning behind the adopted 

amorphous elastic constants and then introduces the two micromechanical approaches, which are 

tailored for the dissociation purpose. Section  3 is devoted to discussing the results and diagrams of the 

dissociated interphase stiffness, including Subsection  3.3 where the results are verified by comparing 

with the observations of another experimental study. A concise summary along with the conclusions 

drawn are brought in Section  4. To enhance the readability of the paper, the analytical details of one of the 

micromechanical models are moved to  Appendix A.  Appendix B is devoted to the details of the sensitivity 

analyses that were carried out to examine the robustness of the non-positive definiteness of the 

interphase stiffness to the uncertainties of the amorphous and interlamellar stiffnesses, and the impact of 

the small components of the interlamellar and interphase stiffnesses on one another.  

 

2. Methodology 

As illustrated in Fig. 1, the interlamellar domain in PE consists of an amorphous phase surrounded by 

two interphase layers. The elastic stiffness of this interlamellar domain, 
ilC , is a function of the 

amorphous and interphase elastic stiffnesses, 
amC  and 

ipC , as well as their respective volume 

fractions, amη  and ipη . As dissociating tools, two distinct analytical, micromechanical homogenization 

techniques, namely the double-inclusion method (DIM) and the extended composite inclusion model 

(ECIM), are applied in reverse mode to the MC molecular simulations of in ‘t Veld et al. 20 for the elastic 

characterization of the interphase layer. The components of 
ilC  together with amorphous and 

interphase thicknesses, from which amη  and ipη  are calculable, are already available from MC molecular 

simulations for the temperature range of 350-450 K. Here, the simulation results up to 400 K, which is 

close to the melting point of bulk PE, i.e. 407 K, are taken advantage of.  

If the final homogenization formulae for the interlamellar effective stiffness, which are obtained from 

the micromechanical homogenization techniques, are viewed as equations with the following general 

functional form:  
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 ( )il am ip
am ip, , , , 0F η η =C C C  (1) 

then there is one equation from which only one unknown can be determined. In most homogenization 

problems encountered in the literature, the homogenization relations are utilized in direct mode to find 

the effective properties of some inhomogeneous medium using the properties and concentrations of the 

composing phases. Here, two of such homogenization techniques are employed in the reverse mode to 

find the unknown property of one of the constituents. But for the problem at hand, there are two 

unknowns: 
amC  and 

ipC . As to 
amC , no suitable value is currently available from molecular 

simulations. Therefore, in the following subsection, first various relevant studies are surveyed  to find an 

estimate for the amorphous elastic constants at room temperature using which 
amC  is established and 

consequently 
ipC  will be the only remaining unknown.  

 

2.1. Amorphous elastic constants 

The elastic constants of the amorphous PE have been the subject of research for decades 21-24. Since 

obtaining fully amorphous PE samples at relevant temperatures is nearly impossible, the reported elastic 

values are either based on theoretical arguments or extrapolation to zero crystallinity of measurements 

made at non-zero crystallinities. Using the theoretical relationship for the plateau shear modulus  

 0
N

e

=
RT

G
M

ρ  (2) 

and an amorphous bulk modulus of am 3000 MPaκ = , Bédoui et. al. 25 and Sedighiamiri et. al. 15 

estimated the amorphous Young’s modulus and Poisson’s ratio to be am 4.5 MPaE =  and 

am 0.49975υ = , respectively. In Eq.(2) ρ  is the amorphous phase density, T  the absolute temperature, 

R  the ideal gas constant, and eM  the molecular mass between entanglements. Krigas et. al. 22 conducted 

several tests on different PE samples at different crosshead speeds ( ≤ 0.1 in/min) and observed that their 

curve-fit of PE Young’s modulus and the one estimated from the rubbery plateau modulus intersect at a 

crystallinity of =0.03ξ . From the intercepts of the two graphs, they concluded that at room temperature 

am 3.5 0.5 MPaE = ± . Hellwege et. al. 23 reported that at room temperature am 1800MPaκ = , where in 

combination with the results of Krigas et. al. 22 there obtains am 0.4994υ ∼ . Using the same technique of 

extrapolation to zero crystallinity, Crist et. al. 21 reported a value of am 2 MPaE = . Again by 

extrapolation from melt properties at room temperature, Fetters et. al. 26 reported am 3.8 MPaG =  from 

which the corresponding elastic modulus is slightly less than am3G , meaning that am 11.4MPaE ≃ . 

Finally, Janzen 24 estimated am 4.1MPaE =  and am =0.4998υ  after running quite a few tests on different 

PE samples. 

Obviously, there is a fairly good agreement between different studies on the elastic properties of 

the amorphous phase at room temperature. The average of the above Poisson’s ratios is ~ 0.4996 which 

is very close to the limit value of 0.5. The proximity of amυ  to 0.5 is due to the rubbery state of the 

amorphous phase at room temperature and a fortiori at higher temperatures. Therefore, it is totally 

reasonable to assume that amυ  remains nearly constant for the temperature range of interest with 

possibly negligible fluctuations around its mean value. For amE , the average of the values reported in the 

previous studies for room temperature is ~ 5 MPa, which matches the mean value adopted by Humbert et 

al. 27 for the amorphous phase of polyethylene at room temperature. According to Eq.(2), which has been 
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introduced in the context of the kinetic theory of rubber elasticity, the elastic modulus of the amorphous 

phase is a linear function of temperature in the rubbery region. Moreover, using the first and second laws 

of thermodynamics and based on the probabilistic discussions, it is demonstrated that the elastic 

modulus of a single chain in an amorphous polymer in the rubbery state is proportional to 

 
2

3kT

nl
  (3) 

where k  is the Boltzmann constant and n is the number of links in the chain each having an average 

length l  28. It is therefore quite justifiable to assume that amE  is a linear function of temperature across 

the temperature range of interest where the amorphous phase of PE is rubbery 29. Accordingly, the 

following linear function is adopted for the temperature dependence of amE  for 350 K 400 KT≤ ≤    

 ( )am 5 MPa
293

T
E =   (4) 

But it should be noted that amE  is a weak function of temperature (for instance ( )am 400 K 6.8MPaE = ) 

and one may take amE  to remain almost constant for the entire rubbery zone; this assumption would be 

consistent with the diagrams of the storage modulus vs. temperature for typical amorphous polymers in 

the rubbery regime. Additionally, the two adopted amorphous elastic constants, namely amυ  and amE , do 

not exhibit substantial changes within the considered temperature range to demand more precise 

estimations. Nevertheless, as demonstrated in Appendix B, using an ad hoc sensitivity analysis the impact 

of the possible uncertainties available in the adopted amorphous elastic constants on the generality of 

conclusions is evaluated. Based on careful examinations carried out, we believe that the basic conclusions 

remain essentially unaltered if more accurate forms of temperature dependence for amυ  and amE  were 

available. At any rate, the proposed methodology and dissociating tools presented herein remain 

applicable even if other forms of dependence are employed.  

 

2.2. Micromechanical homogenization approaches of DIM and ECIM 

Two distinct micromechanical homogenization techniques of DIM and ECIM are invoked to 

dissociate the interphase stiffness from that of the interlamellar domain. Although the primary function of 

multiscale homogenization methods is to calculate the effective properties of nonhomogeneous media, 

here two of such methods are reversely employed to find the elastic stiffness of one of the constituents in 

a two-phase heterogeneous medium.  

Developed by Hori and Nemat Nasser 30, DIM proposes an Eshelby-based formulation for 

evaluating the homogenized stiffness of an ellipsoidal inclusion encapsulating another ellipsoid with the 

entire double-inclusion being embedded in a reference medium. In the MC molecular simulations, the 

periodic boundary conditions are imposed in a way that the interlamellar region can be treated as an 

inner, thin, disk-like ellipsoid, namely the core amorphous phase, wrapped by another hollow, thin, disk-

like ellipsoid, namely the side interphase layers. Therefore, the problem under discussion fits the double-

inclusion model if the Eshelby tensor of disk-like ellipsoids (i.e. an ellipsoid with a very small aspect ratio) 

is used. After some mathematical manipulation, the DIM relationship for the interphase stiffness is 

rendered into  

 ( )( ) ( )( )
111 11 11 1ip ref ref ref il ref amam

ip ip

1 η
η η

−−− −− −− −∞ ∞ ∞
      = − − − − − − +     

       

C C C I C C S I C C S S   (5) 
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Here, I  represents the fourth order identity tensor and 
∞S  stands for the Eshelby tensor of a disk-

like inclusion inserted in a reference medium whose stiffness is 
refC . The details of the assumptions and 

derivation of DIM formulations are available in the work of Hori and Nemat-Nasser 30.  

Formulated first by Ahzi et. al. 31,32, the composite inclusion model (CIM) is an attempt to find a 

compromise between the Voigt and Reuss mixture formulae for a layered composite inclusion by 

introducing strain and stress concentration tensors which serve also as weight functions. In this 

approach, the composite inclusion is made by stacking together two layers whose thicknesses are much 

less than two other dimensions. The weight functions are established through the simultaneous 

enforcement of the continuity of deformation and equilibrium at the interface of the two composing 

layers. Here, the idea is extended to a three-layer composite inclusion, hence the designation extended 

composite inclusion model (ECIM). Again, owing to the nature of the periodic boundary conditions 

imposed in molecular simulations, the interlamellar region can be thought of as two thin interphase 

layers with one thin amorphous layer inserted in between. With reference to the notation defined in 

Appendix A, the dissociative analogue of Eq.(1) yielding the unknown 
ipC  is given by either of the 

following two equivalent equations:  

 ( ) ( ) ( )
( )( )

11 1ip ip il am am
am am

1ip il am am ip
am am

1 or

- 1

η η

η η

−− −

−

 = − −
  

 = − 

C R C C R

C C C Q Q

 (6) 

where 
ipR , 

amR , ipQ  and amQ  are certain weight coefficients which are functions of amη , 
ipC  and 

amC . For further details on the derivation of the ECIM relationships, see Appendix A. 

As compared to DIM, the distinguishing feature of ECIM is that in its formulation, there is no trace of 

the Eshelby tensor, Green’s function, the concept of reference medium or triple volume integrations, all 

being the indispensable elements to DIM derivation. One strength of the presented methodology lies in 

the perfect agreement between the solutions of the two approaches of DIM and ECIM, despite the fact that 

their origins are totally different.    

Furthermore, a quick comparison between the DIM and ECIM relationships reveals that in DIM 

relation there appear 
∞S  and 

refC  in addition to the other independent variables appearing in ECIM 

relations. It is reminded that 
∞S  is a function of 

refC  as well as the aspect ratios (or geometry) of the 

ellipsoidal inclusion. Apart from the geometry of the problem, which has been taken into account during 

the derivation of the ECIM formulae, there’s no need to resort to the concept of some “reference medium” 

in the ECIM. It is, therefore, anticipated that for this specific case where the ellipsoidal inclusion is disk-

like, the DIM results will be independent of the choice of 
refC . Although it looks too difficult to 

demonstrate it mathematically due to the nonlinear dependence of 
∞S  on 

refC  in addition to the 

nonlinear dependence of 
ipC  on both 

∞S  and 
refC , it seems to be a true conjecture. Strictly speaking, a 

large number of different 
refC s were picked as input for Eq.(5) and it was observed that the dissociated 

ipC s are exactly identical indicating the independence of the dissociated 
ipC  from 

refC . 

 

3. Results and discussion 

As suggested by in ‘t Veld et. al. 20 the interlamellar stiffness obtained from MC simulations has the 

following form of monoclinic symmetry 
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il il il
11 12 13
il il il
12 22 23
il il il

il 13 23 33

0 180 0

0 240 0

0 50 0
MPa

0 0 0 0 100 0 200

180 240 50 0 220 60 0

0 0 0 200 0 570 60

C C C

C C C

C C C

 −
 − 
 

=  
± − 

 − − ±
 

− ±  

C
 (7) 

The numerical values of the non-tensile elements, i.e. the elements of ilC  other than the upper left 3 3×  

submatrix, were reported by in ’t Veld et. al. 20 only at 435 K and are taken here to be virtually 

temperature independent, for lack of any better information. These values are provided explicitly in 

Eq.(7). It should be noted that the uncertainties associated with the shearing stiffnesses, which are 

reported on the right side of the mean values, are the result of MC simulations. On the contrary, the values 

of the tensile elements of ilC  were calculated over a range of temperature and this temperature 

dependency is adopted here as well; for this reason, the temperature-dependent tensile elements of 
ilC  

are represented symbolically in Eq.(7). The reported uncertainty of these tensile components is 30MPa± . 

The output of the dissociation approaches, i.e. DIM and ECIM, at the typical temperature of 370 K 

is given in Table 1. As explained in the previous section, the DIM involves the Eshelby tensor for a disk-

shaped inclusion, which must be evaluated numerically since it has no closed-form solution in the general 

case where the reference medium is anisotropic. Therefore, in the developed numerical code, a very small 

aspect ratio of 1µ ≪  has been assumed for the calculation of the Eshelby tensor. It was also observed 

that due to the recursive nature of the ECIM in the dissociation mode (see Appendix A), the method has 

shown numerical divergence despite deploying several stabilizing strategies. Therefore, the following 

numerical alternative was invoked. First, 
ilC  was symbolically calculated by ECIM relations and using an 

unknown 
ipC . A system of 13 coupled equations with 13 unknowns is thus obtained for the solution of 

which a hybrid optimization algorithm has been employed. The two-step, hybrid optimization algorithm 

consisted of combining the Genetic Algorithm with another non-linear optimization technique called 

Nelder-Mead (or simplex search) method. In the first step, a ballpark estimate for the solution is found 

using the Genetic Algorithm which is used as the initial guess for the Nelder-Mead method in the second 

step. The dissociated 
ipC  attributed to ECIM in Table 1 is the result of this combinatory numerical 

method.  

A quick comparison reveals that the results of the two methods agree perfectly. From a practical 

point of view, however, the ECIM formulation is fairly straightforward and simpler than the DIM 

formulation but is less efficient in the dissociation mode in terms of CPU time. Interestingly, and as 

discussed in Appendix B, when the non-orthotropic elements of the interlamellar stiffness are neglected, 

the combination of the dual ECIM formulae (6) converges to the solution using the recursive method, 

which is much faster than the hybrid optimization technique. In contrast, the DIM is very fast in both of 

the dissociation and homogenization modes but maybe its major drawback is the development of the 

rather complicated numerical code for calculating the Eshelby tensor.  

In the direct/homogenization mode, however, when the dissociated 
ipC  is used in combination 

with 
amC  to produce the initial 

ilC , the ECIM and the DIM produce the correct solution quite fast. In 

view of the details provided in  Appendix A, the ECIM formulation in the homogenization mode takes the 

following explicit form 

 
( )

( ) ( )( ) ( )

il ip ip am am
am am

1 1 1il ip ip am am
am am

1 or

1

η η

η η
− − −

= − +

= − +

C C Q C Q

C C R C R
 (8) 
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Table 1: Output of dissociation approaches at the typical temperature of 370 K. 

at T=370 K: am 6.31MPaE = , am 2.10MPaG = , 
am 0.66η = , 

ip 0.34η =  

( )am MPaC  
 ( )il MPaC (taken from 20) 

3097.9 3093.7 3093.7 0 0 0 1749.9 1613.6 1092.9 0 -180 0 

3093.7 3097.9 3093.7 0 0 0 1613.6 2569.3 1150 0 -240 0 

3093.7 3093.7 3097.9 0 0 0 1092.9 1150 1249.6 0 50 0 

0 0 0 2.1 0 0 0 0 0 90
* 0 -200 

0 0 0 0 2.1 0 -180 -240 50 0 220 0 

0 0 0 0 0 2.1 0 0 0 -200 0 570 

Then: 

( )ip MPaC  output by the DIM  

1972.2 1307.4 427.7 0 3.05 0 

1307.4 3824.3 524.2 0 3.92 0 

427.7 524.2 567.3 0 -0.33 0 

0 0 0 -1.11 0 7.31 

3.05 3.92 -0.33 0 -1.08 0 

0 0 0 7.31 0 320.5 

( )ip MPaC  output by the ECIM (using the 

hybrid optimization algorithm) 

1972.2 1307.4 427.7 0 3.05 0 

1307.4 3824.3 524.2 0 3.92 0 

427.7 524.2 567.3 0 -0.33 0 

0 0 0 -1.11 0 7.31 

3.05 3.92 -0.33 0 -1.08 0 

0 0 0 7.31 0 320.5 

*This particular shearing stiffness was taken to be 90 MPa, as a safe value other than its mean value reported in 

the molecular simulation study, for the reasons explained in subsection 3.2. 

 

and the DIM in the direct mode of two-component homogenization takes the following form of 

mathematical representation  

 ( )( ) ( )( )
111 11 1il ref am ref ref ip ref ref

am ipη η
−−− −− −∞ ∞ ∞

    = + + − + + − −       

C C I S C C C S C C C S  (9) 

Therefore, once 
ipC , 

amC  and their volume fractions are known, the ECIM and the DIM directly return 

the solution, namely 
ilC , in a single step without requiring any specific numerical technique. Finally, it 

should be underlined that the interphase stiffness components shown in boldface in Table 1 indicate that 

ipC  is not positive definite. This finding has been discussed in depth in the following subsections.  

 

3.1. A probe into the shearing components of 
ilC   

Due to their critical role in the dissociation analysis, shearing stiffnesses in 
ilC  are examined more 

closely. The most controversial elements of 
ilC  are 

il
44C , with an uncertainty of 100 MPa± , and 

il
55C , 

with an uncertainty of 60 MPa± . According to the sensitivity analyses carried out, the following 

observations were made:  

• Variation of 
il
44C  within its uncertainty interval brings about the variation of 

ip
44C , 

ip
46C  and 

ip
66C , 

while the other components of 
ipC  are robust to this variation.  

• All components of 
ilC , except for 

il
44C , were allowed to vary within their interval of uncertainty 

and were observed to affect the value of 
ip
44C  only in the tenth decimal place. Similarly, holding 

il
55C  fixed and varying the other components of 

ilC  within their uncertainty intervals was 

observed to affect the value of 
ip
55C  only in the sixth decimal place. It can therefore be concluded 
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that 
ip
44C /

ip
55C  is only affected by the uncertainty in the corresponding 

il
44C /

il
55C  and is very 

robust to the uncertainty of the other components of 
ilC .  

• Variation of 
il
66C  only varies 

ip
66C , with the other components of 

ipC  remaining robust to the 

fluctuations in 
il
66C . 

Accordingly, the diagrams of 
ip
44C , 

ip
46C  and 

ip
66C  vs. the uncertainty interval of 

il
44C  at several 

temperatures are plotted in Fig. 2, Fig. 3 and Fig. 4, respectively. As is qualitatively evident from the 

diagrams and as demarcated by vertical dashed lines, there are intervals of 
il
44C  for which the dependent 

variables become unbounded, which is unacceptable. Therefore, these intervals must be excluded from 
il
44100MPa 100MPaC− ≤ ≤ . Specifically, Fig. 2, Fig. 3 and Fig. 4 suggest that the imprecise intervals 

( )2.2, 4 , ( )2.5,4  and ( )15.5,16−  must be excluded from the initial interval of 
il
44C . Therefore, the rough 

interval il
4415.5MPa 16 MPaC− ≤ ≤ , within which 

ip
66 10000MPaC > , is excluded from the initial 

uncertainty interval of 
il
44C . On the other hand, within [ ]100, 15.5− − , ip

66 4000MPaC >  which might be 

considered incomparable with the shearing components of 
ilC . Additionally, it looks rather unusual to 

assume that the admissible interval of 
il
44C  consists of two separate intervals, i.e. 

[ ] [ ]il
44 100, 15.5 16,100C ∈ − − ∪ . Therefore, if one sets the criterion for the admissibility of 

il
44C  to 

ip
66 4000MPaC < , then the allowable interval of 

il
44C  shrinks to il

4426.5MPa 100 MPaC≤ ≤  since for 

il
4416 MPa < 26.5 MPaC < , 

ip
66C  takes values less than -4000 MPa. 

 

Fig. 2 (color figure) Diagrams of 
ip
44C  vs. 

il
44C . Within the approximate interval ( )2.2,4  delineated by 

dashed lines, 
ip
44C  takes incomparably large value.   
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Fig. 3 (color figure) Diagrams of 
ip
46C  vs. 

il
44C . Within the approximate interval ( )2.5, 4  delineated by 

dashed lines, 
ip
46C  takes incomparably large value. 

 

 

Fig. 4 (color figure) Diagrams of 
ip
66C  vs. 

il
44C . Within the approximate interval ( )15.5,16−  delineated 

by dashed lines, 
ip
66C  takes incomparably large value. 

 

The shearing stiffness 
ip
55C  as a function of 
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55C  behaves similar to 

ip
44C  as a function of 

il
44C . In 

other words, for all temperatures within the considered range, 
ip
55C  shows a weak dependence on the 

uncertainty of 
il
55C  but is not as robust as it is to the uncertainties of the other components of 

ilC . The 

common feature between 
ip
44C  and 

ip
55C  is that within the temperature range of interest, they robustly 

take negative values close to zero and exhibit an almost plateau dependence on 
il
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55C , 
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respectively. As demonstrated in Appendix B, this property is insensitive to both the uncertainties of the 

adopted amorphous elastic parameters and the uncertainties of 
ilC .  

3.2. Deviation of the interphase stiffness from positive definiteness  

Positive definiteness of the stiffness tensor for stable materials found in nature is demonstrated 

based on the first law of thermodynamics and the positivity of the elastic strain energy. If the stiffness 

tensor is represented in 6 6×  matrix form, positive definiteness requires positivity of the diagonal 

elements. Here, this requirement is violated at least for 
ipC  since 

ip
44C  and 

ip
55C , although too close to 

zero, robustly take negative values at least in the temperature range of 350-400 K. It is worth noting that 

unlike either the crystalline or amorphous phases, the interphase and interlamellar domains are not 

necessarily thermodynamically stable phases that can ever exist in the absence of the stabilizing influence 

of the adjoining crystalline lamellae. Thus there is no compelling reason to require their mechanical 

stability in isolation either. Here, in our example, the negative shear stiffnesses are only observed in the 

transversal plane of the interphase layer, whose thickness is ~ 1 nm and plays the role of the transition 

region between the crystallites and the amorphous phase. Moreover, negativity of the shear modulus has 

been observed earlier for nanoscale domains within an amorphous matrix 33. Other examples of the 

studies available in the open literature on the heterogeneous materials containing at least one component 

with non-positive definite stiffness include 34-38.  

It is worth noting that although 
ip
44C  and 

ip
55C  are negative, they are very close to zero in magnitude, 

compared to the other stiffnesses. The closeness to zero is such that they can be taken independent of 

both temperature or the corresponding component in 
ilC . But the situation for 

ip
66C  is totally different 

(see Fig. 4); since within the interval of 
il
4426.5MPa 73MPaC< < , 

ip
66C  takes incomparably negative 

values that are at least three orders of magnitude larger than 
ip
44C  or 

ip
55C  without displaying any 

asymptotic behavior. It is reminded that negativity of the shear stiffnesses imply that upon imposition of 

positive corresponding shear strains, negative stresses will be produced. Then, one may reason that the 

negligible negativity of 
ip
44C  or 

ip
55C  produces negligible negative shear stresses, which may be tolerated 

by the surrounding media. However, the negativity of 
ip
66C  is comparatively so large that, even with 

relatively small positive shear strains, it produces such large negative shear stresses that are not deemed 

to be balanced by the surrounding media. Additionally, when 
il
44C  approaches the right extreme of its 

allowable interval, the plateau-like behavior of 
ip
66C  is observed, supporting the speculation that, contrary 

to 
ip
44C  and 

ip
55C , negative values are not allowed for 

ip
66C ; this suggests that the allowable interval for 

il
44C  should shrink to ( ]73,100 . It might also be argued that since 

ip
44C  and 

ip
55C  are shearing resistances 

in the planes normal to the interface but 
ip
66C  is the shearing resistance in the plane parallel to the 

interface, the dissimilarity between their behaviors could be expected.  

The sensitivity analysis of 
ip
66C  has revealed that this shearing stiffness is robust to the uncertainties 

of all components of 
ilC  except for the uncertainties of 

il
44C  and 

il
66C . Accordingly, the diagrams of Fig. 5 

are plotted as follows: at different temperatures and across the interval of 
il
4440MPa 100MPaC< < , 

il
66C  is varied within its uncertainty interval to find the minimum values of 

ip
66C  at each temperature. 

Based on the reasoning made in the preceding paragraph vis-à-vis the inadmissibility of negative values 
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for 
ip
66C , the admissible interval of 

il
44C  will be further reduced to 

il
44 82MPaC > . This is the reason why 

in Table 1 the value of 90 MPa is assigned to 
il
44C  instead of its mean value calculated from MC molecular 

simulations. Consequently, for the rest of the calculations, the mean value and the uncertainty interval of 
il
44C  are taken to be 90 MPa and (82,100) MPa, respectively. It is worth noting that the dissociation 

analysis has the unintended but useful by-product of confining the most uncertain component of 
ilC .  

 

Fig. 5 Diagrams of the minimum values of 
ip
66C  vs. 

il
44C  at different temperatures. The arrow indicates the 

threshold value 
il
44 82 MPaC =  above which 

ip
66 0C > .     

 

3.3. Verification of our results 

Crist et. al 21 reported their measurements for different samples of PE, linear HPB, 3S HPB and 4S HPB 

spanning a crystallinity range of 0.35 0.68ξ< < , which they were able to describe with a linear fit on a 

semilogarithmic scale with the correlation coefficient of 0.974. Assuming essentially only a two-

component model comprising crystalline and noncrystalline (which they call amorphous) phases, they 

argue that in semi-crystalline PE, the average Young’s modulus of the noncrystalline phase is nearly 

constant (~ 300 MPa) for 0.7ξ > , but drops appreciably as crystallinity is lowered below 70%. Therein, 

they proposed the following double-argument dependence for the average Young’s modulus of the 

noncrystalline phase at room temperature  

 ( ) ( )
am

2exp 7.158 0.7
= MPa

300 0.7
E

ξ ξ
ξ

ξ
 ≤
 ≥

 (10) 

Given that Crist and co-workers did not consider the presence of a third component, i.e. the transitional 

interphase separating crystallites and the central amorphous phase, it is reasonable to equate amE  in 

their two-component model with ilE . Indeed, ilE  is calculable form 
ilC  which is, according to Eq.(1), a 

function of the properties and volume fractions of its constituents. Therefore, mathematically speaking  

 ( )ip am
il ip= , ,E ψ η C C  (11) 
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which is in agreement with the suggestion made by Crist et. al. 21 since ipη , which denotes the interphase 

volume fraction within the interlamellar domain, is in its turn a function of crystallinity. In other words, 

for an interlamellar region of arbitrary thickness one can write  

 
ip ip

ip
ip am ip am

2 2

2 + 2 +

V t

V V t t
η = ≃  (12) 

where ipt / ipV  denotes the thickness/total volume of each interphase layer in a layered, “sandwich” 

model of the interlamellar domain. There is evidence that the interphase thickness is invariant with 

crystallinity, whereas the amorphous thickness varies to accommodate changes in interlamellar 

separation 39. Consequently amt  or equally ipη  is a function of crystallinity: 

 ( )ip =hη ξ  (13) 

For the hypothetical state of no crystallinity, PE is composed of pure amorphous phase and there is no 

interphase which means:  

 
ip am ip

PE il am

0 1 1
as 0

= =E E E

η η η
ξ

→ ⇒ = − →→ 


 (14) 

where at room temperature amE  takes values between 2-11.4 MPa, as elaborated in subsection  2.1. On 

the other hand, at high crystallinities, the amorphous phase disappears and the interlamellar domain will 

be dominated by the interphase layers, meaning that  

 
ip am ip

il ip

1 1 0
as 1

=E E

η η η
ξ

→ ⇒ = − →→ 


 (15) 

In summary, by increasing the crystallinity from zero, the interphase layers start to appear and the 

amorphous phase shrinks, implying that ipη  is a positive and monotonically increasing function of 

crystallinity up to some critical crystallinity, crξ . Since ipη  cannot exceed unity in the interval of 

0 1ξ< <  and eventually it has to go to unity as 1ξ → , the most likely dependence form of ipη , which is 

in accord with the observation by Crist et. al. 21, is that:  

ipη  increases monotonically from zero at the hypothetical 0ξ =  to reach a maximum at the critical 

cr0 0.7 1ξ< <∼  and then plateaus quickly but smoothly such that ( ) ( )ip cr ip cr>η ξ ξ η ξ≃ . 

Consequently and in light of Eq.(11), the average Young’s modulus of the interlamellar domain, ilE , 

becomes a function of crystallinity similar to that suggested by Crist et. al. 21, while the constitutive 

properties of the constituents, namely 
ipC  and 

amC , remain essentially independent of crystallinity. In 

other words, using a two-phase sandwich model to represent the interlamellar region in which the 

constitutive properties of the phases are independent of crystallinity, the form of dependence in Eq.(10) 

proposed by Crist et. al. 21 can be justified.  
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Finally, to use the empirical Eq.(10) for verification purposes, one can reason that according to 

Eq.(15), at high crystallinity il ipE E≃ , therefore the average Young’s modulus of the interphase layer at 

room temperature must be comparable to that of the interlamellar domain at high crystallinity, which is 

offered by the empirical relation (10). Following the idea presented by Counts et al. 40, Hill’s estimate 41 is 

utilized to find an estimate for ipE  from 
ipC . In the work of Counts et al. 40 the problem of estimating the 

overall shear and Young’s moduli of a polycrystalline BCC Mg-Li, which takes non-positive definite 

stiffnesses for some compositions of Mg-Li, is treated similarly. In fact, their FEM and self-consistent 

results for the average elastic moduli, when extrapolated to unstable regions, agree very well with the 

Hill’s estimate for any composition. Therefore, in order to estimate the interphase average bulk and shear 

moduli using Hill’s method, the bulk and shear moduli of the Voigt and Reuss approaches, calculable from 

ipC  and 
1 1

ip − −
C  where  indicates the orientational (volume) averaging, are required. Thus, 

Hill’s estimates of the interphase bulk and shear moduli are obtained as follows: 

 

( )

( )
ip-Hill ip-V ip-R

ip-Hill ip-V ip-R

1
= +

2
1

= +
2

G G G

κ κ κ
 (16) 

from which the average Young’s modulus of the interphase reads 

 
ip-Hill ip-Hill

ip-Hill
ip-Hill ip-Hill

9
=

3 +

G
E

G

κ
κ

 (17) 

In the temperature range studied here, the closest to the room temperature is 350 K at which ip-HillE  

is calculated to be 347 MPa, which compares well to the plateau value of 300 MPa proposed by Crist et. al. 
21 noting that the Young’s modulus of amorphous polymers increases with temperature if the polymer is 

in the rubbery state. Furthermore, Ding et al. 42 conducted a molecular simulation study on the Young’s 

modulus change in a semi-crystalline polymer and observed that the Young’s modulus of the interlamellar 

region increases with temperature in the rubbery state. It is therefore expected that the analogue of the 

empirical relation (10) at higher temperatures gives higher ilE  for the same crystallinity. As a result, ipE  

at 350 K ought to be greater than 300 MPa. Additionally, keeping in mind that the components of 
ipC  

have uncertainty intervals inherited from the uncertainties of 
ilC components, the calculated ip-HillE  will 

definitely have its own uncertainty interval. By means of a simple Monte Carlo analysis sampling 109 

times the uncertainty space of 
ilC  and then calculating new 

ipC s and new ip-HillE s at 350 K, the 

following uncertainty interval for ip-HillE  is obtained: 

 ip-Hill 350K
207 MPa 465MPaE< <   (18) 

This result is in accord with our expectation that the values higher than 300 MPa fall within the 

uncertainty interval of ip-HillE . It is reiterated that for calculating the mean value of ip-HillE  and its 

uncertainty interval, it was assumed that il
4482MPa 100 MPaC< ≤  with a means value of il

44 90 MPaC = .   
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4. Summary and Conclusion  

In this study, a methodology is presented for the mechanical characterization of the interphase layer 

in semi-crystalline PE, which is based on applying micromechanical homogenization techniques to the 

data from the Monte Carlo molecular simulations of the noncrystalline domain in PE. To this end, two 

micromechanical homogenization approaches of DIM and ECIM were reversely applied to the molecular 

simulation results of the interlamellar region across the temperature range of 350K-400K. The outputs of 

both approaches are identical despite their nonidentical contexts; confirming the outputs of the 

implemented dissociation methodology.    

As a requirement for implementing the dissociation analysis, the stiffness tensor of the amorphous 

phase has been estimated by relying on the findings of several independent experimental studies. The 

dissociation analysis revealed that the interphase shearing stiffnesses in planes normal to the interface, 

i.e. 
ip
44C  and 

ip
55C , robustly take small but negative values, leading to the non-positive definiteness of the 

interphase stiffness tensor, at least, for the temperature range of interest. We believe that this non-

positive definiteness is a valid outcome whose origin lies in the fact that the interphase is a transitional 

domain whose existence is always accompanied by neighboring crystalline and amorphous phases that 

mechanically stabilize the interphase. Contrary to the two other shearing stiffnesses, 
ip
66C  shows a 

different behavior, due possibly to its resistance in the plane parallel to the interface. After running a 

specific sensitivity analysis (given in Appendix B), we could ascertain the insensitivity of the non-positive 

definiteness of 
ipC  from the uncertainties of the adopted amorphous elastic constants, for the 

temperature range of 350 K-400 K. 

The dissociation analysis has had the favorable advantage of constraining the most uncertain 

component of the initial interlamellar stiffness, 
il
44C . As another finding, it has been found that for 

dissociation purposes the DIM works perfectly without posing any numerical problems while the ECIM is 

either prone to numerical divergence problems if the recursive method is used or demands time-

consuming optimization algorithms. In the homogenization mode, however, both approaches are equally 

fast and devoid of any numerical problems.  

Finally, using the proposed two-component sandwich model a plausible explanation has been 

suggested for an empirical relation that describes the interlamellar average Young’s modulus as a 

function of crystallinity. In the explanation provided, the constitutive properties of the composing phases 

are invariant with crystallinity while only the volume fractions vary with crystallinity. On the other hand, 

since at high crystallinities the interlamellar region is dominated by the interphase layer, the average 

Young’s modulus of the interphase should be comparable to that of the interlamellar domain at high 

crystallinities. Without taking the impact of uncertainties into account, Hill’s estimate of the interphase 

average Young’s modulus at 350 K is 347 MPa. This mean value compares well with the empirical value of 

300 MPa in addition to being consistent with the established fact that the elastic modulus of a rubbery 

amorphous polymer increases with temperature. This good agreement endorses the tailored 

methodology and the dissociation results. 
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Appendix A  

The extended version of the composite inclusion model (ECIM) 

The original version of the composite inclusion model (CIM) was an effort to attain a more 

realistic estimation of the effective stiffness of a two-layer composite inclusion than those suggested by 

Voigt and Reuss models 31,32. In light of the notion presented therein, this approach is extended to 

calculate the effective stiffness/compliance of a three-layer composite inclusion.  

The schematic of a three-layer composite inclusion is depicted in Fig. B.1. From the average 

theorems, the average stress and strain of this composite inclusion, 
I
σ  and 

I
ε , are expressed as 

 
I 1 2 3

1 2 3η η η= + +σ σ σ σ  (A.1) 

 
I 1 2 3

1 2 3η η η= + +ε ε ε ε  (A.2) 

where iη , 
i
σ  and 

i
ε  stand respectively for the volume fraction, average stress and average strain of the 

ith layer/phase, with i 1,2,3= . Let us assume that the governing linear elastic constitutive law for each 

phase follows as  

 ( ) 1i i i i i i i ior with
−

= = =ε σ σ εS C S C  (A.3) 

where 
iS  and 

iC  are, respectively, the compliance and stiffness of the ith phase. If the effective 

compliance and stiffness of the three-layer inclusion are defined as coefficients correlating 
I
σ  and 

I
ε  as 

follows: 

 ( ) 1I I I I I I I Ior with
−

= = =ε σ σ εS C S C
,
 (A.4) 

then substitution of (A.3) and (A.4) into (A.1) and (A.2) yields  

 
I 1 1 2 2 3 3

1 2 3η η η= + +C CQ C Q CQ  (A.5) 

 
I 1 1 2 2 3 3

1 2 3η η η= + +S SR SR SR
,
 (A.6) 

where the weight functions 
iQ  and 

iR , called strain and stress concentrations, respectively, are 

defined as 

 
i i I=ε εQ  (A.7) 

 
i i I=σ σR  (A.8) 

Therefore, once the stress or strain concentrations are determined, the effective stiffness/compliance of 

the composite inclusion is calculable. An important auxiliary assumption of CIM that is not explicitly 

stated in 31,32 but is invoked implicitly is that the stress and strain in each phase are assumed to be 

uniform. This assumption, in conjunction with the enforcement of the equilibrium conditions at the two 

interfaces, gives rise to  

 
1 2 3 I
β β β β= = =σ σ σ σ  (A.9) 
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where β 3,4,5= . In Eq. (A.9) the Voigt contracted notation is used in addition to the assumption that, in 

conformity with the convention adopted in 20,31,32, the interfaces are parallel to the 12-plane, consequently 

the 3-axis is normal to the interfaces (see Fig. B.1). By substitution of (A.9) into (A.8) there obtains 

 
i i I I i
β βj j β βj βj= = → =σ σ σR R δδδδ  (A.10) 

where δδδδ  denotes the extended Kronecker delta. Compatibility conditions at the interfaces, along with the 

assumption of uniformity of strains in each phase, require that if α 1, 2, 6=  then  

 
1 2 3 I
α α α α= = =ε ε ε ε  (A.11) 

or equally  

 1 1 2 2 3 3
α j j α j j α j j= =σ σ σS S S  (A.12) 

where in combination with (A.1) results in 

 
( )1 1 2 I 1 3

αj j αj j 1 j 3 j
2

1 1 2 1 2 3 2 I
2 αj j 1 αj j 3 αj j αj j

1 η η
η

η η η

= − −

+ + =

σ σ σ σ

σ σ σ σ

S S

S S S S

 (A.13) 

 

 

 

 

 

 

 

 

Further decomposition of (A.13) gives  

 
( ) ( ) ( )

( ) ( )
1 1 1 1 2 1 2 1 2 3 2 3 2 I

2 αα α αβ β 1 αα α αβ β 3 αα α αβ β αj j

1 2 1 1 2 1 2 3 2 3 2 I
2 αα 1 αα α 2 αβ 1 αβ β 3 αα α 3 αβ β αj j

η η η

η η η η η η

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′

+ + + + + =

+ + + + + =

σ σ σ σ σ σ σ

σ σ σ σ σ

S S S S S S S

S S S S S S S
 (A.14) 

where α =1,2,6′  and β 3, 4, 5′ = . To eliminate 
3
α′σ  from Eq.(A.14), Eqs.(A.2) and (A.3) are exploited to 

obtain 

 

( ) ( )( )
1 1 1 1 3 3 3 3
αα α αβ β αα α αβ β

13 3 1 1 1 3 1
α αα αα α αβ αβ β

′ ′ ′ ′ ′ ′ ′ ′

−

′ ′ ′ ′ ′ ′ ′

+ = +

= + −

σ σ σ σ

σ σ σ

S S S S

S S S S
 (A.15) 

Simultaneous use of Eqs.(A.14) and (A.15) yields  

Fig. B.1 (color figure) Schematic of a three-layer composite inclusion along with the relative orientation of the 
selected reference frame 
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( ) ( )
( ) ( ) ( )

( )( ) ( ) ( )( )

1 2 1 1 2 2 1
2 αα 1 αα α 2 αβ 1 αβ 3 αβ β

1 12 3 1 1 2 3 1 3 1
3 αα αα αα α 3 αα αα αβ αβ β

1 11 2 2 3 1 1 1 2 2 2 3 1 3 1 2
2 αα 1 αα 3 αα αα αα α 2 αβ 1 αβ 3 αβ 3 αα αα αβ αβ β αj

η η η η η

η η

η η η η η η η

′ ′ ′ ′ ′ ′ ′

− −

′ ′ ′ ′ ′ ′ ′ ′ ′

− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

+ + + + +

+ − =

+ + + + + + − =

σ σ

σ σ

σ σ

S S S S S

S S S S S S S

S S S S S S S S S S S S S I
jσ

(A.16) 

or equally 

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

1 11 2 2 3 1 1 1 2 2 2 3 1 3 1 2 I
2 αα 1 αα 3 αα αα αα α 2 αβ 1 αβ 3 αβ 3 αα αα αβ αβ β αj j

11 11 1 2 2 3 1 2 1 2 2 2 3 1 3
2 αα 1 αα 3 αα αα αα αj 2 αβ 1 αβ 3 αβ 3 αα αα αβ αβ βα

η η η η η η η

η η η η η η η

− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

−− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

+ + + + + + − =

= + + − + + + −

σ σ σ

σ

S S S S S S S S S S S S S

S S S S S S S S S S S S S δδδδ I
j j

 
  

σ

(A.17) 

Accordingly,  

( )( ) ( ) ( )( )11 11 1 2 2 3 1 2 1 2 2 2 3 1 3
αj 2 αα 1 αα 3 αα αα αα αj 2 αβ 1 αβ 3 αβ 3 αα αα αβ αβ β jη η η η η η η

−− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′
 = + + − + + + −
  

R S S S S S S S S S S S S S δδδδ (A.18) 

In a similar way, the two other stress concentrations are obtained as follows  

( )( ) ( ) ( )( )11 12 2 1 1 3 2 1 2 1 1 1 3 2 3
αj 1 αα 2 αα 3 αα αα αα αj 1 αβ 2 αβ 3 αβ 3 αα αα αβ αβ β jη η η η η η η

−− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′
 = + + − + + + −
  

R S S S S S S S S S S S S S δδδδ (A.19) 

( )( ) ( ) ( )( )11 13 3 2 2 1 3 2 3 2 2 2 1 3 1
αj 2 αα 3 αα 1 αα αα αα αj 2 αβ 3 αβ 1 αβ 1 αα αα αβ αβ β jη η η η η η η

−− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′
 = + + − + + + −
  

R S S S S S S S S S S S S S δδδδ (A.20) 

The elements of the six-by-six stress concentrations are now determined and can be substituted 

in Eq.(A.6) for the calculation of the effective compliance. A similar procedure can be followed for the 

derivation of the strain concentrations, leading to  

 
i
αj αj=Q δδδδ  (A.21) 

( ) ( ) ( ) ( )
11 11 2 1 2 3 1 2 1 2 2 3 1 3

βj 1 ββ 2 ββ 3 ββ ββ ββ ββ βj 2 βα βα 3 ββ ββ βα βα αjη η η η η
−− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′
    = + + − − + −

        
Q C C C C C C C C C C C Cδ δδ δδ δδ δ (A.22) 

( ) ( ) ( ) ( )
11 12 1 2 1 3 2 1 2 1 1 3 2 3

βj 2 ββ 1 ββ 3 ββ ββ ββ ββ βj 1 βα βα 3 ββ ββ βα βα αjη η η η η
−− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′
    = + + − − + −

        
Q C C C C C C C C C C C Cδ δδ δδ δδ δ (A.23) 

( ) ( ) ( ) ( )
11 13 2 3 2 1 3 2 3 2 2 1 3 1

βj 3 ββ 2 ββ 1 ββ ββ ββ ββ βj 2 βα βα 1 ββ ββ βα βα αjη η η η η
−− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′
    = + + − − + −

        
Q C C C C C C C C C C C Cδ δδ δδ δδ δ (A.24) 

It is worth mentioning that the Gueguen et al. 16 have also tried to derive similar relationships for the 

stress and strain concentrations but made errors, ending up with erroneous relationships.  

In our example of the interlamellar region, the properties of phase 1 and phase 3 are identical as 

they represent the side interphase layers. Therefore, Eq.(A.6) is rewritten as follows:  

 ( ) ( ) ( )1 1 1I I 1 1 2 2
1 22η η

− − −
= = +C S C R C R  (A.25) 
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In the above equation, the unknown is 
1 ip=C C . On the other hand, 1R  and 2R  are non-linear 

tensorial functions of 
1C , 

2 am=C C  as well as the associated volume fractions. Rearrangement of (A.25) 

yields  

 
( ) ( )

( ) ( ) ( )

11 11 1 I 2 2
1 2

11 1ip ip il am am
am am

2 or

1

η η

η η

−− −

−− −

 = −
  

 = − −
  

C R C C R

C R C C R

 (A.26) 

Similar treatment of Eq.(A.5) yields  

 ( )( ) 1ip il am am ip
am am1η η

−
 = − − C C C Q Q  (A.27) 

Obviously, Eqs.(A.26) and (A.27) have the familiar form of  

 ( )=X f X  (A.28) 

where f  is a non-linear tensorial function of X . Apart from the arguments around the existence and 

uniqueness of the solution for Eq.(A.26) or (A.27), which are beyond the scope of this survey, the very 

first solution method which looks to suit the equation at hand is the numerical recursive method. In other 

words, some initial 
ip

initial
C  is inserted into the right hand side of Eq.(A.26) or (A.27) whose result is fed 

into itself as many times as required until a certain convergence criterion is satisfied. For the problem 

examined in this study, it was observed that when 
ilC  is of orthotropic symmetry, Eq.(A.28) converges 

to the solution using the recursive method while convergence problems is very likely when 
ilC  has 

monoclinic symmetry. In the latter case, optimization techniques are certain alternatives although they 

may entail high computational cost.    
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Appendix B  

Sensitivity/uncertainty analyses 

To examine the sensitivity of the non-positive definiteness of the calculated 
ipC  within 

350K 400KT< < , to the uncertainties available in 
ilC  and 

amC , the following Monte Carlo sensitivity 

analysis has been performed. First, the following uncertainty intervals were considered for the amorphous 

Poisson’s ratio, amυ , and the amorphous Young’s modulus, amE , for the temperature range of 350K-400K.   

 
am

am

0.49 0.49999

2 MPa 11.4 MPaE

υ< <
< <

 (B.1) 

Then in a total of 109 Monte Carlo cycles, at random temperatures, random amE  and amυ  are sampled from 

their assigned uncertainty intervals. Accordingly, a random 
amC  is picked from its uncertainty space. 

Afterwards, at the same random temperature, a random 
ilC  is picked from its uncertainty space based on 

the uncertainty intervals obtained from the MC molecular simulations, except for 
il
44C  which is picked from 

( ]82,100 . Finally, using the DIM dissociation relationship, the new 
ipC  and its eigenvalues are calculated. 

By carrying out this sensitivity analysis, none of the calculated interphase stiffnesses fulfilled the condition of 

positive definiteness. Given the extremely large number of the Monte Carlo cycles, it is very unlikely that one 

can find some temperature from 350K 400KT< <  and some 
amC  and 

ilC , as explained above, that can 

produce a positive definite 
ipC . Therefore, one can conclude, with a high degree of certainty, that the non-

positive definiteness of 
ipC  within 350K 400KT< <  is an established fact and insensitive to the 

uncertainties of 
amC  and 

ilC .   

Furthermore, the uncertainty intervals of 
ipC  components originated from the uncertainties of 

ilC  

components are calculated via the same Monte Carlo procedure: at a given temperature, the uncertainty 

space of 
ilC  is randomly sampled, 

ipC s associated with each temperature are calculated, and finally the 

bounds of each component of 
ipC  at each temperature are obtained (see Figs. B.1-B.3). Of the tensile 

components of 
ipC , 

ip
33C  is the less sensitive and 

ip
11C  is the most sensitive component. Additionally, the non-

orthotropic elements of 
ipC  take small values close zero and exhibit a weak dependence on temperature.   
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Fig. B.1 (color figure) Uncertainty intervals of normal components of 
ipC  vs. temperature. 

 

 

Fig. B.2 (color figure) Uncertainty intervals of 
ip
12C , 

ip
13C  and 

ip
23C  vs. temperature. 
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Fig. B3 (color figure) Uncertainty intervals of non-orthotropic elements 
ip
15C , 

ip
25C , 

ip
35C  and 

ip
46C  vs. 

temperature. 

As an insightful examination, let us see what happens to the homogenized 
ilC  if the components of 

ipC  beyond orthotropic symmetry are neglected. The omission of these elements may look reasonable as 

their absolute values are at least two orders of magnitude lower than the other elements of 
ipC , except for 

the negative shearing stiffnesses. As reflected in Table B1, the newly homogenized 
ilC  is once calculated 

with a 
ipC  of orthotropic symmetry and again with an orthotropic 

ipC  excluding the small negative 

shearing stiffnesses 
ip
44C  and 

ip
55C . The tensile components of the two newly calculated effective 

ilC s are 

identical and close to their corresponding components in the initial 
ilC  appearing in Table 1. On the other 

hand, the non-orthotropic components of 
ipC  have no impact on 

il
44C , a weak impact on 

il
55C  and a strong 

impact on 
il
66C , which may be viewed as another evidence for the dissimilarity between 

ip
66C  and the two 

other shearing components of 
ipC . It is clearly seen that although the small negative shearing stiffnesses 

ip
44C  and 

ip
55C  may look negligible and unimportant at first glance, they can produce corresponding 

il
44C  and 

il
55C  that are two to three orders greater in magnitude.   

As a last sensitivity check, only the orthotropic part of 
ilC  has been preserved and the dissociation 

analysis at the same temperature of 370 K was carried out. Table B2 confirms that 
ipC s calculated using the 

two approaches match perfectly. The tensile elements of the newly calculated 
ipC  are still close to their 

corresponding components of 
ipC , given in Table 1 and calculated using a 

ilC  of monoclinic symmetry. 

Contrary to the situation reflected in Table 1, here the ECIM converges to the same solution output by the 

DIM using the numerical recursive method. Indeed, a combination of dual formulae (6) was used to achieve 

the convergence. More interestingly, it is observed that the controversial shearing stiffnesses 
ip
44C  and 

ip
55C  

appearing in Table B2 are equal to those appearing in Table 1, suggesting that these two shearing stiffnesses 
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are very robust to or, more precisely, independent of the non-orthotropic components of 
ilC . The last 

shearing stiffness, 
ip
66C , however, exhibits a strong dependence on non-orthotropic components; another 

dissimilarity which might have been expected in advance. 

Table B1: The effect of negligible terms of 
ipC  on the homogenized 

ilC   

at T=370 K: am 6.31MPaE = , 
am 2.1MPaG = , 

am 0.66η = , 
ip 0.34η =  

( )ip MPaC  (Taken from Table 1 after eliminating nonzero 

terms beyond orthotropic symmetry) 

⇒  

( )il MPaC   

1972.2 1307.4 427.7 0 0 0 1600.5 1414.3 1134.4 0 0 0 

1307.4 3824.3 524.2 0 0 0 1414.3 2304.6 1205.3 0 0 0 

427.7 524.2 567.3 0 0 0 1134.4 1205.3 1238.1 0 0 0 

0 0 0 -1.11 0 0 0 0 0 90 0 0 

0 0 0 0 -1.08 0 0 0 0 0 220.7 0 

0 0 0 0 0 320.5 0 0 0 0 0 109.3 

 

( )ip MPaC  (Taken from Table 1 after eliminating small 

negligible elements) 

⇒  

( )il MPaC   

1972.2 1307.4 427.7 0 0 0 1600.5 1414.3 1134.4 0 0 0 

1307.4 3824.3 524.2 0 0 0 1414.3 2304.6 1205.3 0 0 0 

427.7 524.2 567.3 0 0 0 1134.4 1205.3 1238.1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 320.5 0 0 0 0 0 109.3 

 

Table B2: Impact of nonorthotropic components of 
ilC  on the dissociated 

ipC  

at T=370 K: am 6.31MPaE = , 
am 2.1MPaG = , 

am 0.66η = , 
ip 0.34η =  

( )am MPaC   ilC  (taken from 20 after eliminating nonorthotropic 

elements) 

3097.9 3093.7 3093.7 0 0 0 1749.9 1613.6 1092.9 0 0 0 

3093.7 3097.9 3093.7 0 0 0 1613.6 2569.3 1150 0 0 0 

3093.7 3093.7 3097.9 0 0 0 1092.9 1150 1249.6 0 0 0 

0 0 0 2.1 0 0 0 0 0 90 0 0 

0 0 0 0 2.1 0 0 0 0 0 220 0 

0 0 0 0 0 2.1 0 0 0 0 0 570 

Then: 

( )ip MPaC  output by the DIM  

2569.8 2074.1 362.03 0 0 0 

2074.1 4807.8 439.96 0 0 0 

362.03 439.96 574.47 0 0 0 

0 0 0 -1.11 0 0 

0 0 0 0 -1.08 0 

0 0 0 0 0 1688.6 

( )ip MPaC  output by the ECIM 

using numerical recursive 

method 

2569.8 2074.1 362.03 0 0 0 

2074.1 4807.8 439.96 0 0 0 

362.03 439.96 574.47 0 0 0 

0 0 0 -1.11 0 0 

0 0 0 0 -1.08 0 

0 0 0 0 0 1688.6 
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