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Abstract 

In this work, we demonstrate a single-layer encapsulation method for poly(3,4-

ethylenedioxythiophene) (PEDOT). This method is achieved by initiated chemical vapor 

deposition (iCVD) process, which is scalable and employs solvent-free and low-substrate 

temperature conditions. The encapsulant used, poly(divinylbenzene-co-maleic anhydride) 

(PDVB-MA), was first time synthesized via vapor phase process. This cross-linked iCVD 

polymer can be rapidly deposited (40 nm min
-1

) with uniform and conformal morphology. 

In the test of PEDOT degradation, the encapsulation extended the halflife of PEDOT to 

900 hours at 30°C in air, which is more than ten times of the counterpart without 

encapsulation.  
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1. Introduction 

 Conducting polymers are rapidly developing as electromaterials used in organic 

solar cells, organic light-emitting diodes (OLEDs), and biomedical applications.[1-6] 

They are attractive due to their easy processing, flexibility, low cost and high porosity, 

which is important for many commercial applications. Among all organic conducting 

materials, PEDOT has shown a great promise as a result of its high conductivities (>1000 

S cm
-1

).[7, 8] However, like many organic materials in this field, PEDOT is chemically 

unstable. The instability of PEDOT, which limits its application in industry, registers as 

the deterioration of its electrical conductivity in air.[9-12] Thus, there is great need to 

improve the stability of PEDOT. PEDOT in air can undergo multiple degradation 

mechanisms. Previous studies indicated oxidization by permeated oxygen can decrease 

the conductivity of PEDOT,[10] and water vapor adsorption resulted insulating patches 

may also increase the resistivity of PEDOT.[13] At elevated temperature, thermal 

shrinkage of the conducting area can also cause conductivity loss of PEDOT.[9] Last but 

not least, scientists found sizes of dopant molecules in PEDOT films have a large impact 

on its conductivity loss, which suggests that a loss of dopants is also a mechanism of 

PEDOT degradation.[14, 15] Previous reports indicated that acid-rinsed PEDOT has 

enhanced stability as well as increased conductivity as the removal of the excess 

hygroscopic oxidant and improved chain packing, which provides a better barrier for 

oxygen and moisture.[15] However, the acid-rinse cannot prevent escape of dopants, 

although it can reduce the degradation caused by permeated oxygen or water vapor. 

Therefore, a cross-linked network preventing loss of dopants may be an efficient way to 

encapsulate and enhance the stability of acid-rinsed PEDOT. 



Previous achievements on the encapsulation of PEDOT and its copolymers 

include parylene[16, 17], silicon nitride[4], and et al.. These materials have been proved 

to provide excellent barrier to water vapor and oxygen. However, there is still a need of a 

solvent-free and low-temperature encapsulation method, which is simple to apply and 

easy to scale up, since PEDOT applications are usually sensitive to heat, solvent, and 

plasma. iCVD is a solvent-free deposition method for conformal and functional polymer 

thin films. In this process, monomer and initiator flow into a vacuum chamber, passing 

through a hot filament, where initiators get thermally activated. On a cooled substrate 

beneath the filament, adsorbed monomers and radicals from activated initiator react and 

form a uniform layer of polymer thin film. In iCVD, thermal activation and 

polymerization happened on different sites, so the temperature of substrate can stay cool, 

and functional groups of the monomer can be retained. Films deposited via iCVD 

polymerization are highly conformal and uniform.[18-21] Moreover, the iCVD process is 

scalable and easily integrated with other techniques, such as roll-to-roll processing[22] 

and plasma enhanced CVD[23]. These unique advantages make it an ideal way of 

encapsulation.  

 

2. Material and Method 

     2.1 PEDOT synthesis 

PEDOT was deposited directly on glass substrates via an oxidative chemical 

vapor deposition process (oCVD) described elsewhere.[15, 20] Here, we only summarize 

key details. 3,4-ethylenedioxythiophene (EDOT, Aldrich 97%) vapors was delivered to 

vacuum chamber at flow rate of ~5 sccm. FeCl3 oxidant (Sigma Aldrich, 99.99%) was 

evaporated from a crucible, which is heated to 170 °C with a constant heating rate of 



1.5 °C min
-1

. Glass substrates at a substrate temperature of 150 °C were exposed to 

monomer and oxidant under the chamber pressure of 10
-4

 Torr for 40 minutes. After 

synthesis, PEDOT samples were rinsed by hydrobromic acid (HBr, Aldrich 48%, diluted 

with deionized H2O to 5 mol L
-1

) for 5 minutes then followed by drying for 30 minutes 

before a final rinse with methanol. All rinsing steps were done in ambient conditions. 

Two 4mm-wide strips of silver (Alfa Aesar, 1~3 mm particles, 99.9999%) were 

thermally evaporated onto edges of PEDOT film in order to avoid damage to 

encapsulation layer during measurements of resistance. The resistance (R) of PEDOT 

samples was measured by a multimeter (Keithley, model 2000, 4-wire mode), and then 

converted to conductivity (C) using Eq. 1.  

𝐶 =
𝐿

𝑅×𝑊×𝑇
 (1) 

where L, W, and T represent length, width and thickness of PEDOT film, respectively.  

 

     2.2 Encapsulation  

The PDVB-MA thin film was deposited directly on top of the PEDOT film at a 

rate of 20~40 nm min
-1

 using the iCVD process described elsewhere.[21] We only 

summarize key details in here. The deposition pressures (0.27 Torr and 0.67 Torr) were 

maintained using a throttling butterfly valve. The substrate temperature was controlled at 

25 °C. Two monomers, divinylbenzene (DVB, Sigma Aldrich, 80%) and maleic 

anhydride (MA, Sigma Aldrich, 99%) were heated at 60 and 80 °C, respectively. 

Monomers were delivered into the chamber at ~1.0 sccm controlled by needle valves. 

The initiator, tert-butyl peroxide (TBPO, Sigma Aldrich 98%), was delivered by a mass 

flow controller (MKS Instruments, model 1479) at ~1.0 sccm under room temperature. 



The filament array (Chromaloy O resistance alloy, Goodfellow) was heated to 270 °C in 

order to activate the initiator. An in-situ interferometry (JDS Uniphase, 633 nm HeNe 

laser) was used to monitor the film growth. Thicknesses of deposited PDVB-MA films 

were measured on bare silicon wafers (Wafer World, Inc., aside of PEDOT samples in 

the reactor) by a variable angle spectroscopic ellipsometer (VASE, J. A. Woollam M-

2000) at incident angles of 65°, 70°, and 75°. Fourier transform infrared (FTIR) spectrum 

was measured by Thermo Nicolet Nexus 870 spectrometer. Morphology of films was 

investigated by scanning electron microscope (SEM, JEOL 6010L) and atomic force 

microscopy (AFM, Digital Instruments, model D3100). Root–mean–square (RMS) 

roughness of films was measured on a 5 μm × 5 μm surface area using AFM. 

 

3. Results and Discussion 

    3.1 Characterization of PDVB-MA  

We use FTIR spectrum to confirm the structure of the synthesized copolymer. In 

Fig. 1, strong absorptions at 1780 and 1870 cm
−1

 are due to stretching of carbonyl groups 

from the 5-member ring of maleic anhydride.[24]. Absence of strong absorption at 903 

cm
-1

 indicates vinyl groups from DVB were reacted during the polymerization.[25] 

Absorptions around 2900 cm
−1

 are from symmetric and asymmetric C-H stretching in the 

backbone of the newly formed polymer chain of PDVB-MA.[26, 27]   

Cross-linked polymer networks are useful in many applications, including but not 

limited to sensors, micro-fluidic devices, shape memory films, and electronics 

protection.[28-30] PDVB and its copolymers have been used in many applications of 

cross-linked networks.[31-33] Previous report indicated copolymerization of styrene and 

MA has much faster deposition rate than that of polystyrene homopolymer.[34] Similar 



results were observed in copolymerization of DVB and MA. Compared to the deposition 

rate of PDVB homopolymer in iCVD process (~4 nm min
-1

), the PDVB-MA copolymer 

shows a rapid deposition rate (up to 40 nm min
-1

). This higher deposition rate would 

correspond to lower overall cost. In order to clearly show the role of MA in accelerating 

the deposition, it is necessary to define a fundamental characteristic of the iCVD process, 

PM / Psat, which is the ratio of the partial pressure of monomer to its saturation vapor 

pressure at certain substrate temperature. This ratio is directly related to the equilibrium 

surface concentration of adsorbed monomers based on Brunauer, Emmett, and Teller 

(BET) isotherm.[35] Previous report indicated 0.4~0.7 is an optimal PM / Psat range for 

rapid iCVD processes of vinyl monomers.[36] We summarize deposition rate of PDVB-

MA at different PM / Psat of MA in Fig. 2. In the range of 0~0.7, PM / Psat of MA shows 

linear relationship with the deposition rate of the copolymer, which indicates 

participation of MA accelerated the reaction. In our experiments, the fastest deposition 

rates (40 nm min
-1

) occurred at PM / Psat = 0.7. Based on following BET equations[37, 38] 

(Eq. 2 and Eq. 3), we can estimate an adsorption energy of 24.8 kJ mol
-1

, which is in the 

typical range of 20 to 80 kJ mol
-1

 for physisorption of small molecules.[39] 

𝑉𝑎𝑑 =
𝑉𝑚𝑙𝐶(𝑃𝑀/𝑃𝑆𝐴𝑇)

(1−𝑃𝑀/𝑃𝑆𝐴𝑇)[1−(1−𝐶)(𝑃𝑀/𝑃𝑆𝐴𝑇)]
 (2) 

𝐶 = exp(
𝐸𝑎𝑑

𝑅𝑇
) (3) 

where Vad, Vml, C, and Ead represent adsorbed volume, monolayer adsorbed volume, the 

BET constant, and adsorption energy, respectively. Besides the effect of PM / Psat, 

temperatures of the filament (Tf) can also affect the deposition rate in the synthesis of 

PDVB-MA. Previous publication indicates the degree of decomposition of TBPO 

increases as Tf increases when Tf  < 270 °C, and higher Tf results methyl radicals[40], 



which is more reactive than the tert-butoxy radicals and therefore accelerate the free-

radical polymerization.[41]    

 

3.2 Conformality, uniformity, and surface roughness 

Describing the ability to encapsulate the entire surface topography, conformality 

is an important standard to judge an encapsulation method. Conformal coating is highly 

desired since it can bring additional functionalities without changing the original 

morphology, which is important in many micro fabrication steps. In this work, we use 

cross-sectional SEM to demonstrate the overall profiles for PDVB-MA films rapidly 

growing (35 nm min
-1

) inside a trench feature (aspect ratio = 4.2). Fig. 3 shows good 

thickness uniformity over the entire trench feature, which indicates the conformal nature 

of iCVD synthesized PDVB-MA films. Another important parameter of thin film coating 

is the uniformity of entire coating area. In order to demonstrate this uniformity, we 

deposited 350 nm PDVB-MA film on a bare silicon substrate and measured thicknesses 

at different positions in a 8 × 8 cm area by VASE. In Table 1, thicknesses at five different 

positions in the area are all within 5% of the averaged thickness, which indicates the 

iCVD deposition of PDVB-MA is uniform all over the entire 8 × 8 cm area. AFM is also 

used to characterize the surface morphology. Fig. 4 a) shows the AFM image of the bare 

acid-rinsed PEDOT, and Fig. 4 b) shows the same sample encapsulated with 200 nm 

PDVB-MA thin film. The RMS surface roughness calculated from a 5 × 5 μm area 

dropped from 2.35 nm before encapsulation to 0.63 nm after encapsulation. The reduced 

roughness suggests the PDVB-MA encapsulation smoothed the surface, which helps to 

reduce the absorption of water and oxygen. 



 

3.3 PEDOT degradation  

 We tested the stability of PEDOT with and without encapsulation in air at 30°C. 

In order to characterize the performance of encapsulation, we define the time when 

PEDOT lose half of its original conductivity as its halflife. In Fig. 5, the PEDOT sample 

without encapsulation shows a halflife of 118 hours. With PDVB-MA encapsulation, the 

halflife of PEDOT can be extended to more than 850 hours, which is a 7-fold increase. 

We observed encapsulation with PDVB-MA films with different thicknesses, but we did 

not observe any obvious effect of thickness in the range of 200 nm to 800 nm, and a 4-

fold increase in encapsulate thickness only brings less than 5% increase of the halflife. 

This suggests that the 200 nm film of PDVB-MA is sufficient to prevent loss of dopants, 

which is considered as one of major degradation mechanisms of acid-rinsed PEDOT. 

Also, the shape of curves in Fig. 5 indicates at least two mechanisms were involved in the 

degradation of PEDOT as the flat stage shown between 0 to 170 hours. However, it is 

still not enough to make a clear conclusion on the role of different mechanisms in 

PEDOT degradation. Further experiments are being carrying out to address this issue.    

 

4. Conclusion 

 We have successfully synthesized PDVB-MA via iCVD process for the first time. 

This cross-linked polymer performs as a good single-layer encapsulant for PEDOT, and 

extends the halflife of PEDOT to 900 hours at 30°C in air. The rapid encapsulation 

method features with solvent-free and low-substrate-temperature conditions, which is 

ideal for many fragile PEDOT applications. The effect of monomer saturation ratio on the 

deposition rate is discussed, and a deposition rate of 40 nm min
-1

 was achieved at PM / Psat 



(MA) = 0.7. For morphology of the deposited films, SEM, VASE, and AFM 

investigations indicate the iCVD PDVB-MA film is conformal, uniform, and smooth, 

respectively. Overall, iCVD is an ideal method for conformal, solvent-free encapsulations 

at low substrate temperature.   
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Figure 1. FTIR spectrum of 200nm PDVB-MA film on silicon substrate. The insert panel 

shows the structure diagram of PDVB-MA. 
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Figure 2. Effect of PM / Psat (MA) on the rate of deposition at Tsubstrate = 25°C and Tfilament 

= 270°C. Error bars on data points are standard deviations observed in replicate 

measurements. The trendline is a linear fit of all data points.  

  



 

Figure 3. Cross-sectional SEM image of iCVD deposited PDVB-MA on a trench feature.    

  



 

Figure 4. AFM images of a) PEDOT on a silicon substrate; b) 200 nm PDVB-MA 

encapsulated PEDOT on silicon substrate.   

  



 

Figure 5. Degradation curves of PEDOT samples at 30°C in air.  

 

 


