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Abstract 

Recent experiments on light harvesting complexes have shown clear indication of coherent 
transport of excitations in these aggregates.  We review the theoretical models that have been used to 
study energy transfer in molecular aggregates, beginning with the early models of Förster and 
Davydov. We cover the Redfield and Haken Strobl models in some detail, in order to set the 
nomenclature and because they are the most common and easiest models to understand and work 
with. We briefly discuss more complex models.   
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1. Introduction 
 

1.1 Förster and Davydov 
 

In the late 1940s, Förster in Germany, introduced a model for excitation transfer between donor 
and acceptor molecules, in order to explain the fluorescent lifetime of an emitter in the presence of 
acceptors [1]. He showed that the rate of energy transfer, kET, (which we would now classify as 
incoherent energy transfer) depends on the distance between donor and acceptor, R, as kET ~ (R0/R)6, 
where R0 can be calculated from the overlap of the donor emission spectrum and the acceptor 
absorption spectrum.  This theory has been immensely useful in the intervening years, and is now 
used routinely in single molecule biophysical spectroscopy experiments.  There have been a number 
of recent theoretical generalizations of the theory that make it suitable for situations that are more 
complex than the original one Förster discussed [2]. 

 At about the same time, Davydov, in the USSR, following earlier work by Frenkel [3], 
introduced the idea of molecular excitons, in order to discuss the low temperature spectroscopy of 
molecular crystals and aggregates.  His work was translated and appeared in English in a book 
published in 1962 [4].  Davydov’s description of the electronic (and vibronic) states of molecular 
crystals emphasized coherence: the states were linear combinations of excitations localized on 
different sites.  The theory predicted that in pure molecular crystals in which there were two 
molecular sites connected by a symmetry operator (e.g. in naphthalene or anthracene crystals, there is 
a glide plane or screw axis connecting the two sites), each spectral line would be split into two, giving 
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rise to the Davydov splitting.  If the electronic states were not coherent superpositions, but were 
localized on a site, there would be no splitting.  Experiments found the Davydov splittings in a 
number of crystals at low temperature [5].  The theoretical model of Davydov has been generalized 
(e.g. to include charge transfer and other two site states) [6], but the basic ideas have continued to be 
fertile for experimenters and theorists alike. 

Förster only considered incoherent energy transfer between localized excitations; Davydov 
only considered excitations that were coherently coupled among many sites.  A more general model 
allows for both coherence and interactions with phonons and other excitations in the environment of 
the excitations that lead to decoherence, so that the Davydov and Förster pictures emerge as limiting 
cases.  This has been the focus of much research in the past decades. 

 
1.2. Early Experiments: the mini-exciton   

 
In 1967, Schwoerer and Wolf  [7] discovered an interesting model system to study the effects of 

coherence and decoherence in molecular aggregates.  They looked at isotopically mixed naphthalene 
crystals (small amount of napthalene-h8 in a crystal of naphthalene-d8).  The naphthalene-h8 excited 
triplet state is approximately 100 cm-1 below the same state of the deuterated molecule.  At 
sufficiently high concentrations of the h8, both monomers and dimers of  h8 (made up of the nearest 
neighbor translationally inequivalent molecules) can be seen in optical spectroscopy and in EPR and 
ENDOR experiments at low temperature.    High resolution optical spectra showed two lines 
symmetrically placed around the 0-0 transition of the monomer with an energy splitting of 2.5 cm-1, 
that was identified as twice the interaction between the two molecules.  That is, the eigenstates of the 
dimer at T = 0 K were taken to be 

 
 Φ±  = 2-1/2 { |Aex Bg> ± |AgBex> },      (1) 

 
The first term represents the state in which the molecule A is excited and the molecule B is in the 
ground state.  The matrix element of the Hamiltonian between the two terms is J = <Aex Bg|H| AgBex>, 
and the splitting between the two eigenvalues is 2J, so that J = 1.25 cm-1[Φ- was assumed to be the 
lower state (J >0)].    

The question arose as to how to describe the experimental observations, in particular whether 
the energy transfer between the two localized states should be considered to be incoherent hopping 
(the Förster picture) or coherent (the Davydov picture).  The interaction with phonons in the crystal 
lattice will cause scattering from Φ+ to Φ-  and vice versa.  If the scattering rate from the upper state 
to the lower is τ-1, then by detailed balance, the scattering from the lower to the upper state is given 
by W = τ-1 exp(-2J/kT).  If W > 2J, then the better description is hopping, and if W < 2J, the better 
description is coherent transfer.  Schwoerer [8] analyzed the EPR line shape between 1.5K and 4.2K 
and concluded that hopping was the correct description.  However, Botter, Schmidt and van der 
Waals [9] later measured the phase memory time of the triplet spins and the zero magnetic field 
resonance frequencies (using optical detection) between 1.2 K and 4.2 K.  From these measurements, 
they were able to conclude that W/2J = 10-3 at 1.2 K and 10-2 at 4.2 K, and thus the coherent 
description of the states and the energy transfer is preferred. 
 As experimental optical methods improved, it was possible to perform photon echo 
experiments on isolated molecules and isolated pairs of molecules in a host crystal.  For example, the 
Fayer group studied the singlet excited states of dimers of tetracene and pentacene in p-terphenyl 
crystals [10] at liquid He temperatures.  This showed that the coherent description of the pair states 
was again correct.  There were a number of other groups that contributed to the study of dimers (and 
one dimensional molecular excitons [11]) in this period.   

The bottom line is that at very low temperatures the coherent description of the electronic 
states of aggregates and crystals was basically correct, so the energy transfer was dominated by 
coherent interactions; that is, the electronic (or vibronic) states of the system were wavelike but were 
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scattered weakly by phonons (and defects).  At high temperatures, most experiments continued to be 
described using the Förster mechanism, so the energy transfer was considered to be incoherent; that 
is, the scattering of the electronic states was large enough to localize the excitation which then 
hopped from site to site due to the fluctuation of the interactions.   

Interest has now shifted to understanding how the description changes as one goes from low 
temperature to high temperature, and what are the important interactions and mechanisms that govern 
the change.  Recent experiments in the Fleming [12], Engel [13] and Scholes [14] groups on the 
excitation dynamics in multchromophoric molecular aggregates have been able to watch the 
electronic excitations as they start at early times in a superposition state and then, over a few hundred 
femtoseconds, exhibit decoherence.   These light harvesting aggregates are part of biological systems 
that utilize the energy of the light to drive chemical reactions.   Does this long-lived coherence play a 
role in the efficiency of this process? How does the coherence and decoherence depend on the 
structure of the system?  Does the protein in which these chromophoric molecules are arrayed help or 
hinder the coherence?  Does decoherence play a role in optimizing the efficiency of the transport of 
the excitation to the reaction center?  These are some of the questions that many groups are trying to 
answer.   

 

2. Theoretical description 

2.1 General remarks 

In order to theoretically describe the dynamics of excitations in aggregates and crystals, one must 
use a density matrix formalism, because it is impossible to control the other degrees of freedom (i.e 
phonons, librations, two-level defects, etc) in the crystal or protein environment of the chromophores; 
all one can do is set the temperature.  The equation of motion for the density matrix for the entire 
system, ρ, is 

dρ/dt = -i [H, ρ]         (2) 
 

where the bracket represents a commutator.  The Hamiltonian is given in general as 
 
H = Hs + Hb + V         (3) 
 
where Hs is the Hamiltonian of the system under study (e.g the dimer of h8 molecules mentioned 
above), Hb is the Hamiltonian of the bath, i.e the other degrees of freedom (phonons, etc.) and V is 
the interaction between the system and the bath. Since we only measure properties of the system, we 
take the trace of ρ over the bath degrees of freedom to find the reduced density matrix of the system, 
σ(t) = Trbath [ρ(τ)].  Using a variety of methods, one can derive an exact equation for the dynamics of 
σ(t), called the stochastic Liouville equation (SLE) [15] : 
 
dσ/dt = -i [Hs, σ] - ∫0

t
 K(τ) σ(t- τ) dτ       (4) 

 
There are very few (almost none!) models for which the exact form of K(t) can be found; therefore 
one must use sensible approximations in order to proceed. The most common (and perhaps the most 
important) of these is due to Redfield [16], who studied the relaxation of nuclear spin states in 
condensed phases.    
 
2.2 The Redfield equation 
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 Redfield made the approximations (quite appropriate for nuclear spins) that (i) the coupling 
of the system to the bath was weak and (ii) the dynamics of σ(t) was slow compared to the time scale 
of relaxation of the bath, which governs the time scale of relaxation of K(t).  Therefore, one can 
replace σ(t- τ) by σ(t) in Eq..  In addition, if one restricts the time of examination of σ(t) to times long 
compared to the relaxation of the bath, one can take the upper limit of the integral to infinity (to be 
precise, one must go into the interaction representation with respect to Hs+ Hb before doing this […]). 
The Redfield equation for the reduced density matrix becomes 
 
dσ/dt = -i [Hs, σ] - R σ(t) ,         (5) 
 
Here R is the relaxation matrix (it is complex in general).  In the eigenbasis of Hs {|n>}, we can write 
this as 
 
dσnm/dt = -i (En-Em) σnm - ∑ pq R nm, pq σ pq(t)      (6) 
 
The diagonal elements σ nn(t) are the populations of the eigenstates, and the off-diagonal elements, 
σnm(t), are the coherences.  Note that the coherences oscillate with frequencies given by the difference 
between the eigenenergies.  The populations do not oscillate unless they are coupled to the 
coherences and the coherences are non-zero.  

Because of the assumption of weak coupling, the form of Rmn,pq is equivalent to second order 
perturbation theory.  Look at the equation for the populations, 
 
dσnn/dt = - ∑ pq R nn, pq σ pq(t) = - ∑ p R nn, pp σ pp(t)  -  ∑ p≠q R nn, pq σ pq(t).   (7) 
 
If one can neglect the coherences, the equation for the populations becomes a simple kinetic (i.e  
master) equation, where the rate of relaxation from state p to state n is given by the Fermi Golden rule 
rate of scattering from p to n by the interaction with the bath variables.    
 We now apply this model to model the symmetric dimer case (i.e., molecules α and β have 
the same excitation energy E0).  For ease of notation, label the site states as |1> =  | αex βg> and |2> = 
|αg βex>, then the Hamiltonian in the site basis is 
 
H = E0 {|1><1| +  |2><2|} + J {|1><2| + |2><1| }  +  Hb  + V    (8) 
 
where V = δe1 |1><1| + δe2 |2><2| + δJ {|1><2| + |2><1| }, and the terms δe1, δe2 and δJ are operators 
of the bath degrees of freedom (e.g. phonon coordinates).  In the eigenbasis, |± > = 2-1/2 { |1> ± |2> },  
 
H = E0 {|+><+| +  |-><-|} + J {|+><+| - |-><-| } + Hb  + V    (9) 
 
V = (1/2)(δe1 + δe2){|+><+| +  |-><-|} + (1/2)(δe1 - δe2) {|+><-| + |-><+|}+δJ{|+><+| - |-><-| } 
          (10) 
 
And the R matrix in the equation of motion for σ(t) becomes 
 
 
 
   - -  ++  - +   + - 
        - -    AΓ    -Γ  ψ(0)  ψ(0) 
 
        ++  -AΓ   Γ  -ψ(0)  -ψ(0) 
R =          (11)    
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        - +   Aψ(2J)  - ψ(2J)  ΓPD+(1+A) Γ/2 -(1+A) Γ/2 
 

   + -  Aψ(2J)   - ψ(2J)  -(1+A) Γ/2 ΓPD+(1+A) Γ/2 
 
Here, Γ is the relaxation rate from |+> to |-> due to (phonon) scattering, ΓPD is the pure dephasing 
rate,  A = exp(-2J/kT), and ψ(ω) is the coupling between populations and coherences.  For the model 
above,  
 
ΓPD  = 2 ∫-∞

∞
< δJ(t) δJ(0)>dt       (12a) 

  
Γ = (1/4) ∫-∞

∞
exp(i2Jt) <(δe1 - δe2)(t) (δe1 - δe2)(0)> dt      (12b) 

 
ψ(ω) = (1/2) ∫-∞

∞
exp(i ω t) <(δe1 - δe2)(t) δJ(0)> dt     (12c) 

 
The correlation functions <C(t)D(0)> are averages over the equilibrium density matrix of the bath and 
the time dependence of the bath operators are due to the interaction representation:  C(t) = exp(iHbt) 
C exp(-iHbt). 
 If we assume that there is no coupling between the site energy fluctuations and the 
fluctuations in J (i.e ψ(ω) = 0), then the equations can easily be solved.  The population difference of 
the eigenstates (mini-exciton states) decays monotonically to the equilibrium value; where Δ(t)  = σ--

(t) – σ++(t): 
 
Δ(t)  = (1-A)/(1+A) {1-exp [-γ0 t]} + exp [-γ0 t] Δ(0)., where γ0 = (1/2)(1+A)Γ  (13) 
 
If we now assume that the system is in state |1> at t = 0 (the state for which the excitation is localized 
on molecule α), so that σ+-(0) = σ-+(0) = ½ , we find for X(t) =  [σ+- (t) + σ-+ (t)] = [σ11(t) – σ22(t)] (i.e 
the population difference between states 1 and 2 or sites α and β): 
 
X(t) =  (1/2)[(1+ γ0/λ) exp(λ t) + (1- γ0/ λ) exp(-λ t)] exp[-(γ0+ 2 γ1)t],   (14) 
 
where γ1 = ΓPD and λ = [γ0

2 – 4J2]1/2.  In the limit that both γ0 and γ1 are zero (no scattering), X(t) = 
cos(2Jt), purely coherent transfer.   When γ0

2 – 4J2 < 0, then there are oscillations in X(t) as it decays 
to zero, but if γ0

2 – 4J2 > 0, there are no oscillations.  When γ0
2 >> 4J2 , X(t) decays as exp[-(2J2/γ0 

+ γ1)t],which has the same general form as the Förster transfer rate. Thus, the Redfield equations lead 
to a qualitatively correct description of the energy transfer process between two molecules over a 
large range of parameters. 

If one considers the asymmetric dimer (E〈 ≠ Eβ), the equations are a bit more complex, but 
the same general conclusions result.  The general form for the relaxation parameters Γ, ΓPD, and 
ψ(ω) are given by Wertheimer and Silbey [17]. In general, ψ(ω) is not zero in this case. However, 
with the assumption that the population dynamics (in the eigenstate basis) and the coherences are 
uncoupled, the populations decay monotonically to the equilibrium values. Here, the equilibrium 
values refer to the Boltzmann distribution of the system. In general, with coherence-population 
coupling, the reduced density matrix approaches a steady-state, which is not the thermal equilibrium 
of the system but approximately the projection of the entangled system-bath equilibrium state. 
 There are some immediate consequences of the Redfield model.  (i) The scattering rates 
between the two states satisfy detailed balance.  (ii) The decay of the populations is governed by the 
scattering between the states, but the decay of the coherences has the added term, the pure dephasing 
rate, so normally, the coherences decay more rapidly than the populations. (iii) Since the pure 
dephasing rate is a zero frequency Fourier transform, it normally goes to 0 as T goes to zero, because 
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the spectral density of phonon (and other) modes goes to zero at zero frequency. (iv) Finally, if the 
phonon coordinates that cause J to fluctuate (i.e. those contained in δJ) are different from those that 
cause the site energies to fluctuate, then ψ(ω) = 0, and the populations decouple from the coherences.  
In this case the populations relax without oscillation.  However, if the modes that cause J to fluctuate 
also cause the energies to fluctuate, there will be coupling between populations and coherences.  The 
results given above are for the symmetric dimer; however, when the energies of the two site state 
differ, the results are more complicated and, in general, the populations and coherences are always 
coupled [18]. 
 The Redfield model has been applied to many spin resonance and optical experiments with 
great success.    One must be careful however, because it is inherently a weak coupling model. One 
consequence of this is the failure to reproduce the Förster rate behavior in the strong coupling limit. 
Another failure of the Redfield equations is that for some values of the parameters, the predicted 
populations can become negative or larger than 1.  This indicates a breakdown of the model.  If this 
happens, we have to go beyond second order or define a different system Hamiltonian, by, for 
example, making a unitary transformation that puts some of the coupling to bath modes into the 
system Hamiltonian [19].  Another approach is to use the Lindblad equation, which guarantees 
positivity of the reduced density matrix [20]. 
 
2.3 Haken Strobl Reineker (HSR) model 
 
 Haken and Strobl [20] introduced a model, following earlier work by Sewell [21], that has 
many attractive features, and so has been used by many groups.  The model replaces the time 
dependence of the phonon operators in the Redfield model by classical stochastic Gaussian white 
noise, i.e. it assumes that all correlation functions <C(t) D(0)> have a δ(t) time dependence and all 
fluctuations are Gaussian.  The ensuing equations are the same as the Redfield equations given above, 
but with the matrix elements of R calculated with the HSR assumptions.  And these equations are 
exact within these assumptions, because these assumptions cause the higher than second order 
cumulants to be zero, and so the weak coupling equations (like Redfield) that only consider the 
second cumulant become exact.   

There are a number of concerns about the HSR model. (i) Assuming a δ(t) time dependence 
means that the relaxation of the bath modes is instantaneous and that the bath has energies on all 
scales, or equivalently the temperature is very large compared to any energy differences in the 
system.  Thus, detailed balance is lost and A = 1.    (ii) the model predicts that the pure dephasing rate 
is independent of temperature (although one can always put in a T dependence by hand). It is known 
that the pure dephasing rate should vanish at low temperatures.  (iii) the model predicts that ψ(ω) is 
independent of frequency, which neglects the differences in the phonon spectral density of real 
systems. (iv) the original HSR model neglected the correlations between fluctuations on different 
sites and on the fluctuations between J and site energies.  Neighboring molecules in a crystal or 
protein environment should exhibit correlations among these quantities and putting them into the 
model can qualitatively change the results [22]. 

In spite of these concerns, the HSR model, including all correlations, is useful and important, 
especially at higher temperatures, where (i)-(iii) are less troubling.   
   
2.4 Explicit models for exciton phonon coupling between the system and the bath modes 

The phonons are assumed to be harmonic, Hb = Σλ (1/2){Pλ2 + ωλ2 Qλ
2} = Σλ ωλ (bλ+bλ  + ½) 

where bλ and bλ+ are the usual Boson operators. The most common form of interaction is a site 
diagonal excitation-phonon interaction, i.e. the energy at site n in the system varies with the λ phonon 
coordinate Qλ as δen = Σλ dnλ Qλ = Σλ gnλ ωλ (bλ+ + bλ)  [where gnλ = dnλ/√2ω3].  This form might be 
interpreted as the change in site energy due to a quasi-localized oscillator made up by a linear 
combination of the normal harmonic modes.  For the asymmetric dimer, the Hamiltonian then 
becomes 
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H = E1|1><1| + E2 |2><2| + J {|1><2| + |2><1| }  + Σλ ωλ (bλ+bλ  + ½)   +  
 

Σλ (bλ+ + bλ) { g1λ |1><1| + g2λ |2><2| }                   (15)  
 
Note, that this is the famous spin-boson problem [23].   

In the limit that J = 0, the eigenstates are easily found by displacing the coordinates an 
amount depending on which molecules is excited (polaron transformation).  The eigenenergies 
become En - Σλ g2

nλ ωλ (  = 1).  The second term is the reorganization energy of the lattice when the 
excitation is on site n, and Snλ  = g2

nλ is related to the Huang-Rhys factor used in spectroscopy [24]. 
Also note the resemblance to the theory of electron transfer. 
 Using this form for the exciton phonon interaction, we can calculate Γ in the Redfield model 
to lowest order (i.e. second order perturbation theory) 
 
Γ = (1/4) ∫-∞

∞
exp(i2Jt) <(δe1 - δe2)(t) (δe1 - δe2)(0)> dt =  

 
= (1/2) Re ∫0

∞
 dt exp(i2Jt) Σλ (g1λ – g2λ) 2[nλ exp(iωλt) + (nλ+1) exp(-iωλt)]  (16) 

 
where nλ = exp(-βωλ)/[1- exp(βωλ)] is the boson occupation number and β = 1/(kT).  At this order in 
perturbation theory, only one phonon absorption or emission processes are allowed.  In order to go 
further, we need explicit forms for the frequencies and the coupling constants.  Or we can make the 
following crude approximations and assume that (i) the sum over the harmonic modes yields a 
decaying exponential function, exp (-νt), where ν is proportional to the phonon bandwidth, (ii) kT >> 
ωλ, and (iii) (g1λ – g2λ) 2 ≈ g2(ωλ) (1-c), where c is the correlation coefficient between the local modes 
on site 1 and site 2.  Then 
 
Γ ⊕  < g2> (1-c) kT [ν/(ν2 + 4J2)]        (17) 
 
where < g2> (1-c) is the average of (g1λ – g2λ) 2 over the phonon band(s). This is very crude, but does 
give us insight into the process  of dephasing or decoherence.  If 2J >> ν, then the dephasing is weak 
(this is the motional narrowing limit, in which the excitation transfer between sites is so rapid that the 
phonons cannot keep up).  In the opposite limit (2J << ν) the phonon bandwidth is so large that there 
are so few dephasing processes at 2J and again the dephasing is weak. Calculations going to higher 
order confirm this qualitative picture.  We note the similarity to the results of the high temperature 
Brownian oscillator model introduced by Mukamel for non-linear spectroscopy [24]. 
 Almost all theoretical calculations have been made with the assumption of site energy 
fluctuations only.  If we look at the results of the Haken-Strobl model, we note that the fluctuations of 
the transfer matrix element, J, are important.  In particular, the long time diffusion constant at high 
temperatures is dominated by these fluctuations.  It is important for a full understanding of the 
problem of energy transfer that we take these fluctuations (and the correlation of fluctuations) into 
account in theoretical models. 

Another approach to the Hamiltonian of Eq. (15) is to realize that it is exactly solvable for J = 0 
by making the polaron transformation to remove the linear displacements of the harmonic phonons 
for the states |1> and |2>.  The transformed Hamiltonian is H’ = UHU+, where 
U = exp[Σλ (bλ+ - bλ) {g1λ |1><1| + g2λ|2><2|}], so  
 
H’ = [E1 -Σλ g2

1λ ωλ ]|1><1| + [E2 - Σλ g2
2λ ωλ ]|2><2| + Jθ|1><2| + Jθ+|2><1|  + Σλ ωλ (bλ+bλ + ½) (18) 

 
where θ = exp [Σλ (bλ+ - bλ) (g1λ-g2λ)].  In order to go further, we average the term in J over the 
thermal phonon bath and add and subtract that average from H’.  This leads a perturbation term which 
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is proportional to the difference between Jθ  and its average <Jθ> [18,25].  In addition, the original 
transfer matrix element J has been replaced by <Jθ> (which is less than J).  We find 
 
H’ = [E1 - Σλ g2

1λ ωλ ]|1><1| + [E2 - Σλ g2
2λ ωλ ]|2><2| + <Jθ> {|1><2| + 2><1| }  + Σλ ωλ (bλ+bλ + ½) 

 
 + [Jθ- <Jθ>]| 1><2| + [Jθ-<Jθ+>] |2><1|}     (19) 
 
Note that the perturbation term can be interpreted as the fluctuation of the transformed transfer matrix 
element from its average value. This perturbation is small in both the weak coupling limit (g2

nλ << 1) 
and the strong coupling limit (g2

nλ >> 1), suggesting that this is a particularly good starting point for 
studying excitation transfer.  In the strong coupling limit, second order perturbation theory reproduces 
the Förster picture exactly.  In the weak coupling limit, it reproduces the Davydov picture with weak 
scattering of the exciton states. 
 
2.5 Beyond Redfield 
 A number of authors have made progress in going beyond the standard Redfield equations.  
We will not give the details of these theoretical treatments but will only discuss them qualitatively, 
without attempting to be at all definitive.  

The simplest extension of Redfield is to keep the upper limit of the integral in Eq. (4), and 
keep the second order form of K(t), to get (after some mathematical manipulations) 
 
dσ/dt = -i [Hs, σ] - ∫0

t
 K(2) (τ) dτ σ(t) = -i [Hs, σ] – R(t) σ(t)     (20) 

 
Jang et al [26] used this equation (with careful consideration of the initial conditions) to discuss 
excitation transfer in a two molecule system.  They first applied a polaron transformation to the 
Hamiltonian [18, 25] which leads to a small perturbation in both the weak coupling and strong 
coupling regimes of exciton phonon coupling. The results show qualitative differences from those of 
the Redfield approach in the moderate to strong coupling regime.  In particular, there are enhanced 
oscillations in the populations. 
 Cao [27] introduced a phase space method for going beyond the Redfield picture for the 
stochastic Liouville equation and Tanimura et al [28] and Ishizaki and Fleming [29] have discussed 
hierarchical approaches to improving the approximations to the kernel, K(t). All of these approaches 
have assumed that the fluctuations are of the Gaussian-Markov type with exponential time 
dependence in the correlation function. Since the harmonic phonon bath is Gaussian, this is a good 
assumption.  Ishizaki and Fleming show that for the two molecule system their approach yields 
results that are valid in both the weak and strong coupling regimes.  
 The Reineker group [30] treated the dimer with dichotomic noise, i.e stochastic fluctuations 
that take only two values with a correlation function in time. With this assumption, the hierarchical 
equations close [31]; thus, this procedure is exact in principle, but requires much computation.  

 
2.6  Recent theoretical calculations on light harvesting complexes 
 
   In the last few years, a number of theoretical groups have examined the effect of 
decoherence (due to noise or fluctuations) on the efficiency of energy transfer, in model systems and 
in the FMO protein [32-36].  The focus of this work has been on whether noise can increase the 
efficiency of the transfer process, instead of, as is usually thought, that noise can only decrease the 
transfer rate (as in the Förster model) and so decrease the efficiency.  However, it was found in a 
number of theoretical studies the efficiency of transport to the reaction center in the FMO protein 
depends non-monotonically on the amount of noise (i.e dephasing rate), and there is an optimal noise.  
How does this happen?  If we look at the exciton states of the FMO system in the total absence of 
noise, we find that some of these coherent exciton states have no (or almost no) coupling to the 
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reaction center.  Thus if an excitation begins on these exciton states, the trapping time is very long.  
However, when noise is introduced, the exciton states mix and this opens these channels, so the 
average trapping time decreases.  Thus, a small amount of noise increases the efficiency in this 
system.  If the noise is increased further, efficiency begins to drop and for strong noise goes to the 
Förster limit, so there is an optimal amount of noise [37]. 
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