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Abstract
We present Fiat, a library for the Coq proof assistant supporting
refinement of declarative specifications into efficient functional
programs with a high degree of automation. Each refinement process
leaves a proof trail, checkable by the normal Coq kernel, justifying
its soundness. We focus on the synthesis of abstract data types that
package methods with private data. We demonstrate the utility of
our framework by applying it to the synthesis of query structures –
abstract data types with SQL-like query and insert operations. Fiat
includes a library for writing specifications of query structures in
SQL-inspired notation, expressing operations over relations (tables)
in terms of mathematical sets. This library includes a suite of tactics
for automating the refinement of specifications into efficient, correct-
by-construction OCaml code. Using these tactics, a programmer can
generate such an implementation completely automatically by only
specifying the equivalent of SQL indexes, data structures capturing
useful views of the abstract data. Throughout we speculate on the
new programming modularity possibilities enabled by an automated
refinement system with proved-correct rules.

“Every block of stone has a statue inside it and it is the task
of the sculptor to discover it.”

— Michelangelo

1. Introduction
Deductive synthesis allows users to derive correct-by-construction
programs interactively via stepwise refinement of specifications. The
programmer starts with a very underconstrained nondeterministic
program, which may be nonobvious how to execute efficiently.
Step by step, the developer applies refinement rules, which replace
program subterms with others that are “at least as deterministic,”
introducing no new behaviors beyond those of the terms they
replace. Eventually, the program has been refined to a completely
deterministic form, ideally employing efficient data structures and
algorithms. At its core, deductive synthesis decomposes a program
into a high-level specification of its functionality and a sequence
of semantics-preserving optimizations that produces an efficient,
executable implementation. So long as the library of primitive
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refinement steps is sound, developers using this approach can modify
the optimizations to suit their performance requirements, remaining
confident that the implementation produced meets the original
specification.

This paper introduces an approach for the deductive synthesis
of abstract data types (ADTs) combining computational refine-
ment [7] and abstraction relations [9, 10]. An important novelty of
our approach is that all refinement derivations are carried out inside
the Coq proof assistant, thereby achieving a previously unmatched
degree of confidence in the correctness of the resulting implemen-
tations. Derivations in our prototype system Fiat are optimization
scripts that transform programs in correctness-preserving ways, pos-
sibly resolving nondeterminism. These optimization scripts yield
machine-checkable refinement theorems certifying the correctness
of the resulting implementations.

Systems like Specware [20] and its predecessors [2, 16] at the
Kestrel Institute have enabled interactive synthesis by refinement
since the 1970s. Only recently has Specware supported any kind
of mechanized proof about refinement correctness, by instrument-
ing refinement primitives to generate Isabelle/HOL proof scripts,
although each of these generators expands Specware’s trusted code
base. Specware also follows a very manual model of choosing refine-
ment steps, which is understandable given the challenging problems
it has been used to tackle, in domains like artificial intelligence and
programming-language runtime systems.

With Fiat, we instead focus (for now, at least) on more modest
programming tasks, like those faced by mainstream Web application
developers interacting with persistent data stores. The ultimate goal
of Fiat is to enable refinement derivations using the sort of push-
button automation found in traditional SQL query planners, while
adding a high level of assurance about their correctness by carrying
them out inside of Coq with full proofs. At the same time, the
framework allows seamless integration with manual derivations
where they are called for, without weakening the formal guarantee
that a derived implementation meets its specification.

By combining the core of Fiat with domain-specific libraries,
programmers can write derivations with a high degree of automation.
These libraries combine domain-specific refinement theorems and
automation tactics to build what amount to first-class, semantics-
preserving compilers. Our main case study to date involves a library
for synthesizing ADTs with SQL-like operations, operating in the
style of query planners from the database community. We start
with declarative queries over relational tables, transforming them
into efficient, correct-by-construction OCaml code. This library
implements “domain compilers” at varying levels of automation;
users can do completely automated planning for a common class
of queries, and with more work they can apply some of our more
advanced strategies for choosing data structures or algorithms.

Figure 1 shows an example Fiat derivation for a simple data
structure representing a book store. We consider this example in
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Definition BookstoreSpec := QueryADTRep BookstoreSchema {
const Init ( : unit) : rep := empty,

update AddBook (book: Book) : bool :=
Insert book into Books,

update PlaceOrder (order: Order) : bool :=
Insert order into Orders,

query GetTitles (author: string) : list string :=
For (b in Books)
Where (author = b!Author)
Return (b!Title),

query NumOrders (author: string) : nat :=
Count (For (o in Orders) (b in Books)

Where (author = b!Author)
Where (b!ISBN = o!ISBN)
Return ())

}.

Definition BookStorage : IndexFor Book.
mkIndex [ BookSchema/Author; BookSchema/ISBN ].

Defined.

Definition OrderStorage : IndexFor Order.
mkIndex [ OrderSchema/ISBN ].

Defined.

Definition Bookstore AbsR abs
(conc : BookStorage × OrderStorage) :=

abs!Books ' benumerate (fst conc)
∧ abs!Orders ' benumerate (snd conc).

Definition Bookstore : Sharpened BookstoreSpec.
plan Bookstore AbsR.
finish sharpening.

Defined.

Figure 1. Specification for a bookstore ADT

more detail later in the paper, but for now we just want to give a
basic sense of how Fiat may be used. The code excerpt begins with
a definition of a data type as a set of methods over a relational
database schema (whose definition we give later, in Figure 8).
Methods are written in SQL-inspired syntax, saying more of what
we want computed than how to compute it. These expressions
have rigorous meanings in Coq, standing for mathematical sets.
For each of our two database tables, we define an index, a data
structure useful to look up entries by values of certain keys. The
two Definitions of IndexFor values accomplish that purpose in the
figure. Next, we define an abstraction relation, explaining how we
propose to implement set-based relations using the concrete indexes
we have defined. Finally, we begin an optimization script to generate
a correct-by-construction implementation (shown later in Figure 11).
Most of the work is done by a “domain compiler” called plan,
which knows how to use indexes to implement queries efficiently.
The programmer is free to chain sequences of library invocations
and more manual steps, as needed to meet his performance target.
Any sequence accepted by Coq is guaranteed to preserve correctness,
just as in conventional programming any sequence of calls to an
encapsulated data type is guaranteed to preserve its invariants.
Instead of just decomposing a program into “data structures +
algorithms,” implementations synthesized by Fiat are decomposed
into “functionality + optimizations,” with a similar kind of enforced
modularity to what we are used to with encapsulated data types.

Considering this idea more carefully, we can spot opportunities
for these domain-specific libraries to provide automation that goes

beyond the programmer’s usual relationship with her compilers.
Compilers generally do not play too well with each other, and any
optimization not built into a compiler goes unapplied in the final
code. By relying on Fiat’s core as a common foundation, users
can freely compose the automation tactics provided by domain-
specific libraries. Furthermore, this foundation enables programmers
to take an existing domain-specific library and safely extend it with
novel optimizations, without affecting the soundness of any program
optimized with the extended library.

Section 2 introduces Fiat’s basic notions of computations and
their refinement and then lifts these ideas to abstract data types,
which expose private data through methods with specifications. Sec-
tion 3 describes how these foundations are utilized to synthesize
correct-by-construction ADTs. Section 4 presents query structures,
a library for synthesizing ADTs with SQL-style operations on rela-
tional tables. This library augments the core of Fiat with new nota-
tions for specifying functionality at a high level and optimization-
script building blocks for implementing ADTs at varying levels of
automation. We have used this machinery to generate correct-by-
construction OCaml programs; Section 5 includes more detail. We
close with more discussion of related work. The entire Fiat frame-
work, including all the examples discussed in this paper, can be
found at http://plv.csail.mit.edu/fiat/ and can be built
and run using the standard distribution of Coq 8.4pl2.

2. Refinement
The foundation of deductive synthesis in Fiat is refinement: a user
starts out with a high-level specification that can be implemented
in any number of different ways and iteratively refines the possible
implementations until producing an executable (and hopefully
efficient) implementation.

Specifications in Fiat are represented as computations, or sets
of values satisfying some defining property. Figure 2 lists the three
combinators Fiat uses to define these sets: ret builds a singleton set,
set comprehension { | } “picks” an arbitrary element satisfying
a characteristic property, and the “bind” combinator, “ ← ; ”,
combines two computations. Throughout the text we will use the
notation c ; v ≡ v ∈ c to emphasize that computations denote
sets of “computed” values.

ret a ≡ {a} {a | P a} ≡ {a | P a}
x ← ca; cb(x) ≡ {b | ∃a ∈ ca. b ∈ cb(a)}

Figure 2. Computation combinators

Consider the following (particularly permissive) specification of
an insert function for a cache represented as a list of key-value pairs:

insert k v l ≡ {l ′ | l ′ ⊆ [(k, v)] ∪ l }
This specification only requires that insert does not inject extraneous
elements in the list. When a key is not included in the original cache,
the specification imposes no ordering on the result and somewhat
counterintuitively does not require that the result include the new
key-value pair. Such underspecification is not a bug. It allows for a
wide range of caching behaviors: existing keys can be replaced or
retained when they are reinserted, new keys can be inserted in an
order that facilitates lookup, and old values can be dropped from the
cache to maintain a constant memory footprint.

Each of these choices represents a more refined version of insert,
with refinement defined by the superset relation ⊇ between the set
of implementations of insert and that of each choice. Refinement
forms a partial order on computations. Intuitively, a computation
c ′ is a refinement of a computation c if c ′ only “computes” to
values that c can “compute” to. Figure 3 shows a subset of the

http://plv.csail.mit.edu/fiat/


insert k v l
{l ′ | k 6∈ l →l ′ ⊆ [(k, v)] ∪ l

∧ k ∈ l → l ′ ⊆ [(k, v)] ∪ RemoveKey(k, l)}
{l ′ | k 6∈ l → l ′ = [(k, v)] ∪ l

∧ k ∈ l → l ′ ⊆ l

{l ′ | k 6∈ l → l ′ ⊆ [(k, v)] ∪ l

∧ k ∈ l → l ′ ⊆ l}
b ← {b | if b then k 6∈ l else k ∈ l};

if b then ret [(k, v)] ∪ l else {l ′ | l ′ ⊆ l }

{l ′ | l ′ = [(k, v)] ∪ l }
b ← ret notKey(k,l);

if b then ret [(k, v)] ∪ l else ret l

{l ′ | ∃kopt . l ′ = [(k, v)] ∪ RemoveKey(kopt , l) }
if notKey(k,l) then ret [(k, v)] ∪ l

else ret l

⊇

⊇

⊇

⊇

⊇ ⊇
⊇

⊇

Figure 3. A space of possible refinements of insert.

space of computations that we can explore through sequences of
refinements from the initial definition of insert. The second column
shows a number of refinements of the initial specification, each of
which admits a smaller set of implementations. The computation
in the second row of this column, for example, only permits
implementations that ignore the insertion of duplicate keys.

The third column shows a sequence of refinements progressing
towards such an implementation. The first entry further requires
implementations to add new keys to the cache. The next computation
is an equivalent but more operational version that decomposes the
pick into

b ← {b | if b then k 6∈ l else k ∈ l};

if b then ret [(k, v)] ∪ l else {l ′ | l ′ ⊆ l }
where b is bound to the negation of a nondeterministic membership
check for key k in list l . b is passed to a computation that adds
the key-value pair to the list if k is not already used and nondeter-
ministically shrinks l otherwise. The third entry moves closer to
an implementation by implementing the membership check using a
notKey function and the pick in the else case with ret l. A few basic
properties of our computation combinators justify implementing
each of these subterms of the bind. Refinement may be pushed down
through “bind” in two different ways:

ca ⊇ c ′a −→ (x ← ca; cb(x)) ⊇ (x ← c ′a; cb(x))

(∀x , cb(x) ⊇ c ′b(x)) −→ (x ← ca; cb(x)) ⊇ (x ← ca; c ′b(x))

The usual monad laws [21] hold for computations under set equality
=.

(x ← ret a; c(x)) = c(a)

(x ← c; ret x) = c

(y ← (x ← ca; cb(x)); cc (y) = x ← ca; y ← cb(x); cc (y)

These laws justify the final refinement in the third column; by
transitivity of refinement, it is also a refinement of the initial
specification of insert.

2.1 Refinement of Abstract Datatypes
Fiat defines abstract data types [11] (ADTs) as records of state
types and computations implementing operations over states. Fig-
ure 4 gives a specification of a cache as an abstract data type. In
the CacheSig type signature, rep stands for an arbitrary abstract
implementation type, to be threaded through the methods; this type
placeholder has a special status in signatures. The CacheSpec func-
tional specification is a nondeterministic reference implementation
of a cache. That is, it uses a simple data representation type and
its associated method implementations to clearly express how any
implementation of this ADT ought to behave. The representation

type of CacheSpec does not even obviously lead to computable exe-
cution, since it is phrased in terms of mathematical sets. CacheSpec
adds to our running example of insert a lookup method for retrieving
values from the cache, an update method for updating keys already
in the cache, and a constructor called empty for creating a fresh
cache.

ADTSig CacheSig :=
empty : () → rep,
insert : rep × Key × Value → rep,
update : rep × Key × (Value → Value) → rep,
lookup : rep × Key → Maybe Value

ADT CacheSpec implementing CacheSig :=
rep := Set of (Key × Value)
constructor empty := Return ∅
method insert (r : rep, k : Key, v : Value) : rep :=
{r′ | ∀kv. kv ∈ r′ → kv = (k, v) ∨ kv ∈ r}

method update (r : rep, k : Key, f : Value → Value) : rep :=
{r′ | ∀v. (k, v) ∈ r → ∀kv. kv ∈ r′ → kv = (k, f(v))

∨ kv ∈ RemoveKey(k, r)}
method lookup (r : rep, k : Key) : Maybe Value :=
{vopt | ∀v. vopt = Some v → (k, v) ∈ r}

Figure 4. An abstract data type for caches

While mathematical sets provide a clean way to specify the
methods of a Cache, they are unsuitable for an ADT implementation,
which requires a computational representation type for method
implementations to operate on. Fiat uses abstraction relations [9, 10]
to enable refinement of representation types. An abstraction relation
A ≈ B between two ADTs implementing a common signature
ASig is a binary relation on the representation types A.rep and
B.rep that is preserved by the operations specified in ASig. In other
words, the operations of the two ADTs take “similar” input states to
“similar” output states. Since operations in Fiat are implemented as
computations, the methods of B may be computational refinements
of A. Thus, an ADT method B.m is a refinement of A.m if

A.m ' B.m ≡
∀ rA rB . rA ≈ rB →

∀ i r ′B o. B.m(rB , i) ; (r ′B , o) →
∃r ′A. A.m(rA, i) ; (r ′A, o) ∧ r ′A ≈ r ′B

The quantified variable i stands for the method’s other inputs, beside
the “self” value in the data type itself; and o is similarly the parts of
the output value beside “self.”



The statement of constructor refinement is similar:
A.c ' B.c ≡ ∀ i r ′B . B.m(i) ; r ′B →

∃r ′A. A.m(i) ; r ′A ∧ r ′A ≈ r ′B

B is a refinement of A if all the operations of B are refinements
of the operations of A:

A ' B ≡ ∀o ∈ ASig. A.o ' B.o

To be completely formal, this relation ' should be indexed by
the abstraction relation ≈, so that we write A '≈ B to indicate that
relation ≈ demonstrates the compatibility between the representa-
tion types of A and B. Then we can define more general refinement
as:

A ' B ≡ ∃R. A 'R B

Note that by picking equality as the abstraction relation, we can
justify the refinement of the code of a particular method using any⊆
proof. The transitivity of ' justifies chaining such steps with others
that make representation changes, allowing us to decompose proofs
of ADT refinement into applications of basic refinement facts and
optimizations of the representation type.

3. Synthesis by Fiat
The core of the Fiat framework includes a Coq formalization
of refinement that can be used to write machine-checked proofs
certifying that an implementation is a valid refinement of an ADT
specification. The implementation of a computation CS can be
expressed in Coq as a computation CI paired with a proof that
it is a valid refinement of CS:

SharpenedComputation CS ≡ Σ CI. CS ⊇ CI

The derivation of an implementation of a computation in Fiat
is simply a user-guided search for the two components of this
dependent product. By applying transitivity of refinement, a user
may take a single step towards an eventual implementation:

∀CS C′S. SharpenedComputation C′S → CS ⊇ C′S

→ SharpenedComputation CS

A user satisfied with an implementation of a computation can
finish the derivation by reflexivity of refinement:

∀CI. SharpenedComputation CI

These two lemmas allow derivations to be decomposed into
sequences of applications of basic refinement facts. The refinement
proof in Figure 3 gives the recipe for such an optimization script.
Beginning with an initial goal of SharpenedComputation (insert
k v l), the user can progressively apply transitivity with a proof of
each refinement step until arriving at

if noKey(k,l) then ret [(k, v)] ∪ l else ret l

Moving the rets outside of the if and applying reflexivity to this
goal finishes the derivation.

The core of Fiat includes a collection of proofs of basic re-
finement facts to use in derivations. One example lemma is RE-
FINEPICKDECIDES’, which can be used to justify the first refine-
ment step in the third column of Figure 3.

∀Pc Pt Pe .{x | Pc → Pt x ∧ ¬Pc → Pe x} ⊇
b ← {b | if b then Pc else ¬Pc};

if b then {x | Pt x} else {x | Pe x}
(REFINEPICKDECIDES’)

Users can freely augment the set of refinements available by writing
their own refinement lemmas. These facts are safe to use in any
derivation without any expansion of the trusted code base and
without breaking the guarantees of refinement. Fiat automates

applying these facts using Coq’s setoid rewriting tactics, which
extend Coq’s rewriting machinery with support for partial-order
relations other than Leibniz equality1.

A synthesis goal involving an ADT is expressed as an ADT B
paired with a proof that it is a valid refinement of a reference ADT
A:

Sharpened A ≡ Σ B. A ' B

A user can interactively derive a Sharpened ADT implementation
in a similar manner as above, by transitively applying basic ADT
refinement facts. Once a satisfactorily refined ADT has been derived,
users can transform it into a version suitable for extraction to OCaml
by refining its method bodies to rets.

In addition to the definitions making up the refinement frame-
work discussed so far, Fiat includes a library of honing tactics to help
automate the derivation of Sharpened ADTs2. As an illustration
of these honing tactics, we consider a derivation of an implemen-
tation of the cache specified by CacheSpec. Figure 5 shows this
derivation, with single-bordered boxes framing honing tactics and
double-bordered boxes framing the goals they produce.

Honing Data Representations One of the key design choices
when implementing a bounded cache is the policy used to evict
entries from a full cache. Many selection algorithms depend on
more information than the reference implementation provides. Con-
ceptually, these algorithms associate an index with each key in the
cache, which the insertion algorithm uses to select a key for eviction
when the cache is full. By augmenting the reference type with an
additional set holding the indexes that are assigned to active keys,
we are able to refine toward a whole family of cache algorithms.
The particular abstraction relation we will use is

rv ≈i (r ′v , r ′i ) ≡ r ′v = rv ∧ ∀k. (k, ) ∈ r ′i ↔ (k, ) ∈ r ′v

Importantly, it is always possible to build a default (very nonde-
terministic!) implementation for any abstraction relation:
default≈m (A.m, rB , i) ≡ {(r ′B , o) | ∀rA. rA ≈ rB →

∃r ′A. A.m(rA, i) ; (r ′A, o) ∧ r ′A ≈ r ′B}
default≈c (A.c, i) ≡ {r ′B | ∃r

′
A. A.c(i) ; r ′A ∧ r ′A ≈ r ′B}

Fiat includes a honing tactic “hone representation using R”
which, when given an abstraction relation R , soundly changes the
refinement goal from Sharpened A to Sharpened A’, where A’
is an ADT with the new representation type and with methods
and constructors built by the defaultm and defaultc functions,
respectively. Applying hone representation to CacheSpec produces
the Cache2 ADT in Figure 5.

Honing Operations After honing the representation of CacheS-
pec, we can now specify the key replacement policy of a bounded
cache as a refinement of the insert method. Fiat includes a honing
tactic “hone method m” that generates a new subgoal for interac-
tively refining m. Figure 5 shows the result of using “hone method
insert” to sharpen Cache2. We can refine the initial specification of
insert in this goal to

{l ′ | ∃kopt . l ′ = [(k, v)] ∪ RemoveKey(kopt , l) }

by rewriting with the refine ReplaceUsedKeyAdd refinement fact,
as in Figure 3. We then use a sequence of rewrites to select the key
with the smallest index in ri once rv is full.

After selecting the replacement policy, the refined insert method
still has dangling nondeterministic choices, with constraints like

1 The Coq documentation[6] has a full explanation of the machinery involved.
2 As the keywords refine, replace, and change are already claimed by
standard Coq tactics, Fiat uses the keyword hone in many of the tactics it
provides – hence the name of the Sharpened predicate.

http://coq.inria.fr/distrib/current/refman/Reference-Manual029.html


{r ′n | r ′n ≈ r ′o}, arising from the defaulto implementations. Deter-
minizing these picks in every method amounts to selecting the par-
ticular replacement key policy. Initializing the index of a key to zero
after insert and incrementing the index of a key after each lookup,
for example, implements a least frequently used policy. Alterna-
tively, we can use these indexes as logical timestamps by initializing
the index of a key to a value greater than every index in the current
map and having lookup leave indexes unchanged, implementing a
least recently used policy. Once we have rewritten the goal further to
select the latter policy, the “finish honing” tactic presents the origi-
nal Sharpened goal updated with the refined method body. Figure 6
presents the full optimization script for Figure 5.

Invariants via Abstraction The idea of abstraction relations turns
out to subsume the idea of representation invariants that must always
hold on an ADT’s state. Consider that an LRU implementation can
“cache” the value of the greatest timestamp in its representation and
use it in insert to select the next timestamp efficiently. In order to
justify this refinement, however, we must maintain the invariant
that this cached value holds the latest timestamp. To do so, we can
include the invariant in the abstraction relation:

rvi ≈n (r ′vi , r
′
n) ≡ r ′vi = rvi ∧ r ′n = max

(k,i)∈rvi
i

Now when honing insert, we can exploit the invariant on r ′n from≈n

to implement the selection of the timestamp. Since the abstraction
relation formalizes the requirements on the saved index, the default
implementation of insert automatically keeps the new piece of
state up-to-date, albeit in a nondeterministic way that needs further
refinement.

Implementing the Cache Once we are satisfied that the cache is
sufficiently specified, we can implement it by honing the representa-
tion type to a data structure efficiently implementing the remaining
nondeterministic operations on sets. For this example, we choose
the finite maps implementation in Coq’s standard library. We have
proven a library of lemmas showing that the operations provided
by finite maps correctly implement mathematical set operations
used to specify the cache behaviors. The refinement lemmas can be
used to implement a number of different high-level specifications.
Conversely, since intermediate specifications (such as Cache3) are
independent from the implementation data structure, a library of
refinement facts about a different data structure can be used to
synthesize a different implementation. As an example, we could
implement Cache3 with a single map of keys to pairs of values
and timestamps, or as two separate maps, one from keys to values
and another from timestamps to keys. The former implementation
uses less memory, but looking up the key to evict takes O(n) time,
whereas the latter can use the second map to do this lookup in O(1)
time.

Taking Stock We pause here to put the last two sections in context.
Fiat provides a number of simple concepts for organizing the
refinement of specifications into efficient code, where abstract data
types are a central idea for packaging methods with private data.
We apply refinements step-by-step with optimization scripts, which
apply to Sharpened goals in Coq. These scripts are implemented
in Ltac, Coq’s Turing-complete tactic language, so it is possible to
implement arbitrarily involved heuristics to choose good refinement
sequences, packaged as callable tactic functions. The Coq kernel
ensures that only semantically valid refinements will be admitted,
providing a kind of enforced modularity that allows users to write
their own refinements to use in optimization scripts. This idea is
simple but powerful, supporting decomposition of programming
tasks into uses of separate encapsulated components for functionality
and optimization.

The next section shows how to automate the synthesis of ADTs
in a domain with a well-known functionality/optimization split.

Sharpened(CacheADT)

Sharpened (
ADT Cache2 implementing CacheSig :=

rep := Set of (Key × Value) × Set of (Key × N)
constructor empty := defaultc (CacheSpec.empty),
method insert (r : rep, k : Key, v : Value) : rep :=

defaultm(CacheSpec.insert, r, k, v),
method update (r : rep, k : Key, f : Value → Value) : rep := . . .
method lookup (r : rep, k : Key) : Maybe Value := . . . )

∀ k, ro, rn. ro ≈ rn →
∃m.

(
r’o ← insert(k, ro);
{r’n | r’n ≈i r’o}

)
⊇ m(i, rn)

∀ k, ro, rn. ro ≈ rn →

∃m.

(
r’o ← {l′ | k 6∈ ro → ∃kopt.

l′ = [(k, v)] ∪ RemoveKey(kopt, ro)};
{r’n | r’n ≈i r’o }

)
⊇ m(i, rn)

let (rv , rn) := r in
b ← {b | decides b ((k, ) ∈ rv )};
if b then r’v ← {r’v | r’v ⊆ ReplaceKey(rv , k, v)};

{rn | rn ≈n rv ’}
else kopt ← {kopt | ∃n. (kopt , n) ∈ rn ∧ ∀(k, v) ∈ rn. n≤v};

{rn | rn ≈n {(k, v)} ∪ RemoveKey(rv , kopt)}

Sharpened(
ADT Cache3 implementing CacheSig :=

rep := Set of (Key × Value) × Set of (Key × N)
constructor empty := . . . ,

method insert (r : rep, k : Key, v : Value) : rep :=
let (rv , rn) := r in

b ← {b | decides b ((k, ) ∈ rv ) };
if b then n ← {n |max(k,i)∈rn

i < n}
ret (ReplaceKey(rv , k, v), ReplaceKey(rn, k, n))

else kopt ← {kopt | (kopt , min(k,i)∈rn
i) ∈ rn};

n ← {n | ∀ (k, m) ∈ rn. m < n }
ret ({(k,v)} ∪ RemoveKey(kopt , rv ),

{(k,n)} ∪ RemoveKey(kopt , rn))

method update (r : rep, k : Key, f : Value → Value) : rep :=
. . .

method lookup (r : rep, k : Key) : Maybe Value := . . . )

hone representation using ≈i

hone method insert

StartMethod

setoid rewrite refine ReplaceUsedKeyAdd

...
}
1

...
}
2

finish honing

Figure 5. Derivation of an LRU implementation of CacheSpec

In particular, we demonstrate the versatility of our approach on
specifications inspired by SQL-style relational databases, almost



completely automating derivations in this domain with a set of
honing tactics that act like database query planners.

4. Query Structures
This section presents a library for writing specifications of ADTs
using reference implementations called query structures and with
SQL-like query and insert operations. The library also provides
tactic support for automatically refining those specifications into
correct and efficient implementations, allowing users to generate
custom database-like ADTs. Figure 8 shows the definition of a
schema describing a query structure for a simple bookstore ADT,
which we used in Figure 1 from the introduction. This code is taken
almost verbatim from the QueryStructure library.

4.1 Specification of Query Structures
The Fiat query structure library includes a DSL for specifying
reference query structures implemented in convenient notation,
thanks to Coq’s extensible parser. Figure 7 presents the grammar of
this embedded DSL; the types t, terms v , and propositions P are
exactly those of Coq itself. The grammar also draws on an infinite
set of identifiers I.

Query structures are designed to align with the conceptual
abstraction of SQL databases as sets of named relations (i.e. tables)
containing tuples. The query structure library defines tuples as
functions from attributes (i.e. column names) to values; the type of
each value is described by a heading mapping attributes to types.
Tuple projection is denoted using the ! notation:

〈Author::“T. Pynchon”,Title::“Bleeding Edge”〉!Title

=“Bleeding Edge”

To align with the standard SQL notion of tables, relations are
multisets (mathematical sets that can have repeated elements) of
tuples. We implement that concept more concretely by pairing
each tuple with a unique numeric index, storing these pairs as sets.
Subsection 4.2 discusses how these indexes can be dropped for
query structure implementations that only have SQL-like operations.
A relation (S) schema specifies the heading of the tuples contained
in a relation and also a set of constraints describing properties that
included tuples must satisfy. Relations themselves are implemented
as records, with a field for a mathematical set containing the
relation’s tuples, and a field for a proof that the schema constraints
hold for every pair of tuples in the relation. A query structure is
similarly described by a query structure (Q) schema that contains
a set of schemas and a set of cross-relation constraints describing
properties that must hold between tuples of different tables. A query

hone method insert. {
StartMethod.
setoid rewrite refine ReplaceUsedKeyAdd.

setoid rewrite refine SubEnsembleInsert.
autorewrite with monad laws.
setoid rewrite refine pick KeyToBeReplaced min.
setoid rewrite refine If Then Else Bind.
autorewrite with monad laws.
setoid rewrite refine If Opt Then Else Bind.
autorewrite with monad laws.


1

setoid rewrite refine pick CacheADTwLogIndex AbsR.
setoid rewrite refine pick KVEnsembleInsertRemove

with (1 := EquivKeys H).
setoid rewrite refine pick KVEnsembleInsert

with (1 := EquivKeys H).
autorewrite with monad laws; simpl.
finish honing. }


2

Figure 6. Complete optimization script for Figure 5

t ∈ Set (* Types *)
v ∈ V (* Terms *)
P ∈ Prop (* Propositions *)
i g h ∈ I (* Identifiers *)

H ::= 〈i :: t〉 (*Headings*)
T ::= 〈i :: v〉 (*Tuples*)

S ::= relation i schema H where P (*Relation Schemas*)
(*Query Structure Schemas*)
Q ::= QueryStructure Schema S enforcing P

(*Functional Dependencies*)
attributes i depend on g ≡ ∀t1 t2 . t1!g = t2!g → t1!i = t2!i
(*Foreign Keys*)
attribute i for g references h ≡ ∀t1 ∈ g . ∃t2 ∈ h . t1!i = t2!i

Figure 7. Syntax for reference query structure implementations

Query Structure Schema
[ relation Books has schema

〈Author :: string, Title :: string, ISBN :: nat〉
where attributes [Title; Author] depend on [ISBN];

relation Orders has schema
〈ISBN :: nat, Date :: nat〉 ]

enforcing [ attribute ISBN for Orders references Books ]

Figure 8. Query structure schema for a bookstore

structure is implemented as a record that contains a list of relations
and proofs that each pair of relations satisfies its cross-relation
constraints. The relations of a query structure are accessed using the
! notation: qs!i .

Data-Integrity Constraints The constraints contained in relation
and query structure schemas are familiar to SQL programmers in the
form of data-integrity properties like functional dependencies and
foreign-key constraints. In our library, these constraints are simply
representation invariants over the state of query structures, enforced
by the proof fields of the relation and query structure records. Fiat’s
query structure library includes notations for these common SQL
constraints (listed in Figure 7), but S and Q schema constraints are
not limited to them: query structures can include arbitrary predicates
over tuples. It is possible to specify that the population of a nation is
always equal to the sum of the populations of its cities, for example.
Since query structure notations are simply an embedded DSL for
writing ADTs, it is possible to write non-SQL-like operations for
these ADTs – in addition to conforming with the standard data-
integrity properties SQL programmers are familiar with, explicitly
including these constraints allows users to be sure that they cannot
write operations that go wrong.

4.2 Specification of Operations
The query structure library also provides a set of definitions and
notations for specifying query and insertion operations mimicking
standard SQL queries. Note that ADTs using query structures as
reference implementations can support a mix of these operations
and operations with arbitrary specifications, and can furthermore use
SQL-style notations in the specifications of nonstandard operations.
The most basic definition is empty, which returns a query structure
containing only empty relations. All the operation specifications
provided by the library have two implicit arguments: qs , the Q
schema of the reference implementation; and q, the rep argument
used by each method.

Querying Query Structures Figure 9 presents the notations the
query structure library provides for specifying query operations.



empty ≡ {q | ∀i ∈ qs. q!i = ∅}

For b ≡ result ← b;
{l | Permutation l result}

(x in i) b ≡ table ← {l | q!i ∼ l};
fold right (λa b . l ← a; l ′ ← b; ret (l ++ l ′))

(ret []) (map (λx .b) table)

Where P b ≡ {l | P → b ; l ∧ ¬P → l = []}

Return a ≡ ret [a]

Count b ≡ results ← b; ret length(results)

Figure 9. Notations for initializing a query structure and defining
query operations

Queries specified by the For notation compute any permutation
of a list of result tuples generated by a body expression. We use
permutations in order to avoid fixing a result order in advance. Since
queries are specified over relations implemented as mathematical
sets, the definitions of these operations are a straightforward lifting
of the standard interpretation of queries using comprehensions [3]
and the list monad to handle computations. The in notation picks a
result list that is equivalent (∼) to the mathematical set of relation
i ; this is a placeholder for an enumeration method that is filled in
by an implementation. This equivalence relation ignores the indexes
of the tuples and only considers their multiplicities, and result thus
disregards the indexes of the tuples in i . The body b is a function that
is mapped over each tuple in result, producing a list of computations
of query results for each element. This list of computations is then
flattened into a single list of query results. Finally, Where clauses
are allowed to use arbitrary predicates. Decision procedures for
these predicates are left for an implementation to fill in.

Query Structure Inserts Whereas queries are observers for the
query structure, insertion operations are mutators returning modified
query structures, which by definition must satisfy the data-integrity
constraints specified by their Q schema. The naı̈ve specification of
insertion always inserts a tuple into a query structure:

Insert t into i ≡ {q′ | ∀u. u ∈ q′!i ↔ u ∈ (q!i ∪ {t})}
This specification is unrealizable in general, however, as there does
not exist a proof of consistency for a query structure containing a
tuple violating its data-integrity constraints. The specification of
Insert given in Figure 10 thus only specifies insertion behavior
when the tuple satisfies both the S and Q schema constraints. This
definition highlights Fiat’s ability to specify method behavior at a
high level without regard for implementation concerns. The specifi-
cation delays the decision of how to handle conflicts (i.e. ignore the
insertion, drop conflicting tuples, etc.) to subsequent refinements3.
As we shall see in the following section, this specification can be
transformed automatically into a more readily implementable form.

4.3 Honing Query Structures
Figure 1 contains the specification of an ADT using a query structure
with the bookstore schema from Figure 8 and insert and query
operations specified with the notations from the query structure
library. As an initial step in implementing this specification, the
library provides a fully automated tactic for removing the data-
integrity constraints from the representation type of the ADT,
building an ADT that uses unconstrained query structures, i.e.

3 Note that regardless of how conflicts are resolved, the synthesis process
ensures that any result must be equivalent to some query structure satisfying
the data-integrity constraints of the schema.

QuerySpec(i , t, q′) ≡

Schema Con-
straints


i .P(t, t)

→ (∀u ∈ q!i . i .P(u, t))

→ (∀u ∈ q!i . i .P(t, u))

Query Structure
Schema Constraints

{ → (∀g 6= i . qs.Pi ,g (t, q!g))

→ (∀g 6= i , u ∈ q!g . qs.Pg ,i (u, q′!i))

→ q′.i ⊆ q.i ∪ {t}
∧ (∀g 6= i . q!g = q′!g)

Insert t into i ≡
id ← {id | ∀u ∈ q!i . u.id 6= id};

q′ ← {q′ | QuerySpec(i , (id , t), q′)};

b ← {b | b = true ↔ (∀u. u ∈ q′!i ↔ u ∈ (q!i ∪ {t}))};
Return (q′, b)

Figure 10. Notations for insert operations

collections of mathematical sets with no proof components, freeing
subsequent refinements from having to consider these proof terms.
We pick an abstraction relation enforcing that a query structure is
equivalent to an unconstrained query structure if the two contain
equivalent sets of tuples:

q ≈ q′ ≡ ∀i ∈ qs. q!i = q′!i (1)

The implementation of this tactic is straightforward for the
empty constructor. Queries over unconstrained query structures can
also be constructed trivially if they are built from the notations in
Figure 10, as those definitions do not reference the proof components
of a query structure. For insertions, the tactic applies a lemma
showing that if a tuple passes a series of consistency checks, it is
possible to build the proof component of a query structure containing
that tuple. By running these consistency checks before inserting a
tuple into the unconstrained query structure, this lemma shows that
there exists some query structure, i.e. that the abstraction relation
is preserved. For a concrete query structure schema, these checks
are materialized as a set of nondeterministic choices of decision
procedures for the constraints. If there are no constraints, the tactic
simplifies these checks away entirely. Figure 11 shows the result of
applying this tactic to the bookstore ADT.

Refining the decision procedures for the remaining constraints
into a concrete implementation is easily done by first transitioning
to a query-based representation. In the foreign-key case, we refine

{b | b decides (∃ book∈ Books. book!ISBN = order!ISBN)}

into

c ←Count (For (book in Books)
Where (book!ISBN = order!ISBN)
Return ()); ret (c 6= 0).

Similarly, functional-dependency checks are refined from

{b | b decides (∀ book’∈ Books.
book!ISBN = book’!ISBN →
book!Author = book’!Author ∧
book!Title = book’!Title)}

into

c ←Count (For (book’ in Books)
Where (book!ISBN = book’!ISBN)
Where (book!Author 6= book’!Author ∨

book!Title 6= book’!Title)
Return ()); ret (c = 0)



ADTRep (UnConstrQueryStructure BookStoreSchema) {
const Init ( : ()) : rep :=

ret (DropQSConstraints (QSEmptySpec BookStoreSchema)),

meth PlaceOrder (u: rep , order: Order) : bool :=
id ←{id | ∀ order’∈ u!Orders. order’!id 6= id};
b ←{b | b decides (∃ book∈ Books.

book!ISBN = order!ISBN)};
ret if b then (u!Books, u!Orders ∪ {(order, id)}, true)

else (u!Books, u!Orders, false),

meth AddBook (u: rep , book: Book) : bool :=
id ←{id | ∀ book’∈ u!Books. book’!id 6= id};
b ←{b | b decides (∀ book’∈ Books.

book!ISBN = book’!ISBN →
book!Author = book’!Author ∧
book!Title = book’!Title)}

ret if b then (u!Books ∪ {(book, id)}, u!Orders, true)
else (u!Books, u!Orders, false),

meth GetTitles (u: rep , author: string) : list string :=
titles ←For (b in u!Books)

Where (author = b!Author)
Return b!Title;

ret (u, titles),

meth NumOrders (u: rep , author: string) : nat :=
num ←Count (For (b in u!Books) (o in u!Orders)

Where (author = b!Author)
Where (b!ISBN = o!ISBN)
Return ());

ret (u, num) }

Figure 11. The bookstore ADT after removing data-integrity proofs

This type of refinement allows clients of the library to reuse the
existing query machinery to implement these checks and facilitate
the automatic derivation of efficient query plans.

Importantly, this tactic only removes constraints from operations
built from the notations provided by the library – any “exotic”
operations will have to be refined manually to show that they
preserve (1). Having removed the constraints automatically for
“standard” queries, we now consider how to construct data structures
that efficiently implement query and insertion operations.

4.4 The Bag Interface
The data structures used to store and retrieve data records are created,
accessed, and modified through a unified Bag interface, which
guarantees that all underlying implementations behave as multisets.
This interface is implemented as a Coq type class parametrized over
three types: TContainer, the type of the underlying representation
(e.g. lists); TItem, the type of the items stored in the bag (e.g. tuples);
and TSearchTerm, the type of the search terms used to look up
items matching specific conditions (e.g. a function mapping tuples
to Booleans). These types are augmented with a set of operations
whose behavior is described by a small number of consistency
properties. While maintaining sufficient expressive power to allow
for efficient retrieval of information, keeping the interface reduced
makes it relatively simple to implement new instances.

The bag interface is split between constants, methods, and
axioms. Methods operate on containers and include benumerate,
which returns a list of all items stored in a container; binsert,
which returns a copy of a container augmented with one extra item;
and bfind, which returns all items matching a certain search term.
Axioms specify the behavior of these transformations, in relation
to two constants: bempty, the empty bag; and bfind matcher, a
matching function used to specify the behavior of bfind: calling bfind

on a container must return the same results, modulo permutation, as
filtering the container’s elements using the bfind matcher function
(including this function allows us to retain maximal generality
by allowing different bag instances to provide widely varying
types of find functions). Finally, for performance reasons, a bag
implementation is required to provide a bcount method (elided here),
used to count elements matching a given search term instead of
enumerating them.

Class Bag (TContainer TItem TSearchTerm : Type) := {
bempty : TContainer;
bfind matcher : TSearchTerm → TItem → bool;

benumerate : TContainer → list TItem;
bfind : TContainer → TSearchTerm → list TItem;
binsert : TContainer → TItem → TContainer;

binsert enumerate :
∀ inserted container,

Permutation
(benumerate (binsert container inserted))
(inserted :: benumerate container);

benumerate empty : benumerate bempty = [];
bfind correct :
∀ container search term,

Permutation (filter (bfind matcher search term)
(benumerate container))

(bfind container search term)}.

4.5 Bag Implementations
Fiat provides two instances of the Bag interface, one based on lists
and the other based on AVL trees through Coq’s finite map interface.
The definitions making up the list instance are extremely simple and
can thus be reproduced in their entirety below:

Instance ListAsBag (TItem TSearchTerm: Type)
(matcher : TSearchTerm → TItem → bool) :

Bag (list TItem) TItem TSearchTerm :=
{|bempty := nil;
bfind matcher := matcher;

benumerate container := container;
bfind container search term := filter (matcher search term)

container;
binsert container item := item :: container |}.

The tree-based implementation, though lengthier, is also readily
explained: it organizes elements of a data set by extracting a key
from each element and grouping elements that share the same key
into smaller bags. The smaller bags are then placed in a map-like
data structure, which allows for quick access to all elements sharing
the same key. Tree-based bags can thus be used to construct a nested
hierarchy of bags, with each level representing a further partition
of the full data set (in that case, smaller bags are tree-based bags
themselves). In practice, tree bags are implemented as AVL trees
mapping projections (keys) to sub-trees whose elements all project
to the key under which the sub-tree is filed.

The search terms used to query tree-based bags are pairs, each
consisting of an optional key and a search term for sub-bags. The
bfind operation behaves differently depending on the presence or
absence of a key; if a key is given, then bfind returns the results
of calling bfind with the additional search term on the smaller bag
whose elements project to the given key. If no key is given, then
bfind calls bfind on each smaller bag and then merges all results (a
process usually called a skip-scan, in the database world). Finally,
benumerate is implemented by calling benumerate on each sub-tree
and concatenating the resulting lists, and binsert is implemented
by finding (or creating) the right sub-bag to insert into and calling
binsert on it. This design is similar to that found in most database



management systems, where tuples are indexed on successive
columns, with additional support for skip-scans. Figure 12 presents
an example of such an indexed bag structure.

tuple!x = ?

x1 x2 x3

tuple!y = ?

list

y1 y2

list

tuple!y = ?

list

y1 y3

list

Figure 12. Indexed data is organized in a hierarchy of nested bags.
In this example, the data set is first partitioned by column x , then
by column y . Since our nested bags implementation supports skip-
scanning, this same index can be used to answer queries related to
x , to y , and to both x and y .

4.6 Automation
As an example of a very general optimization script, we imple-
mented a tactic plan, which works automatically and is able to
synthesize efficient implementations of a variety of query structures
containing at most two tables, based on index structures backed by
our bags library. Figure 13 shows an example of the code output by
plan for our running Bookstore example. To produce this code from
the reference implementation, the programmer only needs to specify
a bag structure for each table, as shown in the part of Figure 1 after
the method definitions. The plan tactic applies heuristics to rewrite
each method into a more efficient form, given a set of available
bag-based indexes. We describe query heuristics in the most detail
before briefly covering mutator refinement.

The query heuristics run to refine default (nondeterministic)
method bodies induced by choices of abstraction relations. Here a
relevant abstraction relation connects each table to a bag-based index.
Default query bodies will compute with table contents specified as
mathematical sets, and we need to rewrite those operations to use the
indexes efficiently. Every actual code transformation is implemented
as a Coq setoid rewrite; we just need to determine a useful sequence
of rules.

1. The starting point of refinement is expressions that work
directly with mathematical sets. For example:

For (r in T ) Where (r .c1 = 7) Return (r .c2)

2. A concretization step replaces all references to sets with refer-
ences to lists built by enumerating all members of index struc-
tures. For instance, the abstraction relation might declare that
table T is implemented with index structure I , in which case we
may rewrite the above to:

{` | Permutation ` (map (λr . r .c2)
(filter (λr . r .c1 == 7) (benumerate I )))}

That is, we convert set operations into standard functional-
programming operations over lists, starting from the list of all
table elements. Note that we use nondeterministic choice to

Sharpened ADTRep (TBookStorage × TOrderStorage) {
const Init ( : ()) : rep :=

ret (bempty, bempty)

meth PlaceOrder (r n: rep , o: Order) : bool :=
let (books, orders) := r n in
if bcount books (None, Some o!ISBN, []) 6= 0
then ret (books, binsert orders o, true)
else ret (books, orders, false)

meth AddBook (r n: rep , b: Book) : bool :=
let (books, orders) := r n in
if bcount books (None, Some b!ISBN, [λ b’.

b!Title 6= b’!Title ‖
b!Author 6= b’!Author]) == 0

then ret (binsert books b, orders, true)
else ret (books, orders, false)

meth GetTitles (p: rep , author: string) : list string :=
let (books, orders) := p in
ret (books, orders,

map (λ tuple. tuple!Title)
(bfind books (Some author, None, [])))

meth NumOrders (p: rep , author: string) : nat :=
let (books, orders) := p in
ret (books, orders,

fold left
(λ count tup.

count + bcount orders (Some tup!ISBN, []))
(bfind books (Some author, None, [])) 0)

}

Figure 13. Synthesized code for Bookstore example

select any permutation of the list that we compute. We do not
want to commit to ordering this early, since we hope to find more
efficient versions with different orders.

3. A rewriting-modulo-permutation step simplifies the list ex-
pression, possibly with rules that change ordering. Here we
use standard algebraic laws, like map f (map g `) =
map (f ◦ g) `. Less standard rules locate opportunities to apply
our index structures. Our example query would be refined as
follows, assuming the index structure only covers table column
c1:

{` | Permutation ` (map (λr . r .c2) (bfind I (7, [])))}

Our tactic analyzes filter functions syntactically to figure out
useful ways of applying index structures. In full generality, the
heuristics of this phase apply to filter conditions over two tables,
and they are able to decompose conjunctive conditions into
some use of indexes and some use of less efficient filtering for
conditions that do not map neatly to the indexes.

4. A commitment step accepts the current list expression as the
final answer, commiting to an ordering. Our example is refined
in one simple step to:

ret (map (λr . r .c2) (bfind I (7, [])))

This basic three-step process can be extended quite flexibly. Our
implementation handles aggregate functions (e.g., count or max) in
the same way. A use of such an operation is concretized to a fold
over a list, and we apply rewriting to incorporate chances to use
index structures to compute folds more directly.

One further subtlety applies in the rewriting step for queries over
multiple tables. Concretization rewrites a join of two tables into a
Cartesian-product operation Join Lists, defined as follows, where



flat map is a variant of map that concatenates together the lists
produced by its function argument.

Join Lists `1 `2 ≡ flat map (λa. map (λb. (a, b)) `2) `1

This code pattern is known as a nested loop join, in the database
world. Notice that it is inherently asymmetric: we handle one table
in an “outer loop” and the other in an “inner loop.” Imagine that,
because of a Where clause, our nested loop has been concretized
within a filter call, like so:

filter (λ(a, b). a.c1 = 7) (Join Lists `1 `2)

Note that this filter condition is highly selective when it comes to
rows of `1, but it accepts any row of `2. Rewriting will apply the
following algebraic law to push the filter inside the Join Lists:

filter f (Join Lists `1 `2)
= flat map (λa. map (λb. (a, b)) (filter (λb. f (a, b)) `2)) `1

Here we see that the inner filter can be refined into an efficient use
of bfind, if we first swap the order of the Join Lists arguments.
The plan tactic attempts heuristically to orchestrate this style of
strategic rewriting.

The heuristics for queries are the heart of what plan does,
but it also optimizes insert operations. Subsection 4.3 explained
how we refine constraint checks into queries, to reuse query-based
refinement tools. A plan invocation is responsible for noticing
opportunities to apply a suite of formal checks-to-queries rules. We
also apply a set of refinements that remove trivially true checks and
prune duplicate checks. After the set of checks has been simplified
as much as possible, we do a case analysis on all the ways that all
the checks could turn out, performing an actual table insert only in
cases whose checks imply validity.

4.7 Caching Queries
Expressing refinement using the small set of core ideas presented
so far allows us to soundly and cleanly integrate optimizations
from different domains. As a demonstration, this section will show
how we integrate the cache ADTs developed in Subsection 2.1 to
cache query results. Importantly, we will apply this refinement after
dropping the data-integrity constraints, but before implementing
the query structure. Moreover, we perform this refinement using
the CacheSpec reference implementation, allowing users to choose
any caching implementation independently of the query structure.
We will be refining a variation of the bookstore ADT that replaces
the GetTitles method with one that counts the number of books an
author has written:

query NumTitles (author: string) : list string :=
Count (For (b in Books)

Where (author = b!Author)
Return ())

We begin by honing the representation of the reference query
structure to include a cache ADT keyed on author names. The
abstraction relation used to hone the representation maintains the
invariant that the cache of the new representation only holds valid
book counts for each author:

rv ≈c (r ′v , r ′i ) ≡ r ′v = rv

∧ ∀k, v . (k, v) ∈ r ′i → NumTitles(rv , k) ; v

We can use the cache consistency predicate to refine NumTitles
so that it first nondeterministically picks a key in the cache using
lookup, returns that value if it exists, and otherwise runs the query
and adds a new key to the cache (this updated cache trivially
satisfies the representation invariant). NumOrders and PlaceOrder
are unchanged. Since AddBook can increase the number of books
for an author in the cache, it needs to update the cache if the author
of the new book is in the cache. Applying all these refinements to the
bookstore ADT from Figure 11 yields the refined ADT in Figure 14.

ADT BookstoreCache implementing BookstoreSig {
rep := UnConstrQS BookstoreSchema × (CacheSpec S N).rep
const Init ( : unit) : rep := (empty, ∅),

meth AddBook (r : rep, book: Book) : rep :=
(rq , rc ) ← Insert book into Books;
c ← Count (For (b in Books)

Where (author = b!Author)
Return ());

ret (rq , CacheSpec.update (rc , book!Author, λ .c)),

meth NumTitles (r : rep, author : string) : nat :=
let (rq , rc ) := r in

n ← CacheSpec.lookup(rc , author);
if n = Some n’ then ret n’
else c ← Count (For (b in Books)

Where (author = b!Author)
Return ());

ret (rq , CacheSpec.insert (rc , c) , c),

query GetTitles (author: string) : list string := . . . }

Figure 14. Version of the bookstore ADT that caches queries

Observe that the following refinement holds:

l ← b a;

For (x in R ∪ {a}) b ⊇ l ′ ← For (x in R) b;

Return (l ++ l’) (2)

thus allowing us to refine the query in AddBook:

Count( l ← Where (author = a!Author) Return ();
l ′ ← For (b in Books)

Where (author = b!Author) Return ();
Return (l ++ l ′))

which can be further refined into:

n← Count (Where (author = a!Author)
Return ());

n′ ← Count (For (b in Books)
Where (author = b!Author)
Return ());

Return (n + n′)

Due to the representation invariant in the abstraction relation, we
know that the query bound to n′ returns precisely the cache contents,
allowing us to refine the update to simply increment the value of
author currently in the cache:

meth AddBook (r : rep, book: Books) : rep :=
(rq , rc ) ← Insert book into Books;
ret (rq , CacheSpec.update (rc , book!Author, increment))

This case is actually an example of the broader finite differenc-
ing [13] refinement for improving the performance of an expensive
operation f whose input can be partitioned into two pieces, old y
and new x , such that f (x ⊕ y) = f ′(x)⊕′ f (y). The representation
invariant ensures that each value in the cache already stores f (y),
allowing us to reduce the computation of f (x ⊕ y) to computing
f ′(x) and updating the value in the cache appropriately. Note that
Fiat’s refinement process supports finite differencing of any ADT
operation, through the use of abstraction relations to express cache
invariants and refinements to replace repeated computations. In par-
ticular, (2) allows us to easily cache For queries by partitioning their
results into novel results and the portion already in the cache when
performing Insert updates.



5. Evaluation
5.1 Extraction of the Bookstore Example
Once they have been fully refined, our data structures can be
extracted to produce verified OCaml database management libraries.
We performed such an extraction for the bookstore example and
benchmarked it. The observed performance is reasonable, and the
operations scale in a way that is consistent with the indexing scheme
used, as demonstrated by Figure 15. Starting with an empty database,
for instance, it takes about 480 ms on an Intel Core i5-3570 CPU @
3.40GHz to add 10 000 randomly generated books filed under 1 000
distinct authors, and then 6.8 s to place 100 000 orders. Afterward,
the system is able to answer about 350 000 GetTitles queries per
second and about 160 000 NumOrders queries per second.
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Figure 15. Average query execution time, for increasingly large
bookstores

5.2 Further Examples
To demonstrate the generality of our automated refinement strategies,
the code base also includes two more examples: a weather-data
database and a stock-market database, both of which are included in
the Fiat distribution.

The weather example includes two tables – one to hold informa-
tion about the weather stations and one to log the measurements –
and supports operations such as counting the number of stations in a
given geographic area or computing the highest temperature on one
day. The stock market example includes one table listing informa-
tion about stocks and one table keeping track of transactions, and
it allows clients to compute the total volume of shares exchanged
on one day for a particular stock, plus the largest transaction for a
given type of stock.

In both cases skip-scanning allowed for space-efficient indexing
(in the weather case, stations could produce a small number of

different measurement types: wind speed, temperature, air pressure,
or humidity; in the stocks case, different types of stocks were
distinguished), and in both cases nontrivial functional dependencies
were expressed (for examples, two transactions occurring at the
same time and concerning the same stock could differ in the number
of shares exchanged but not in price). The plan tactic synthesizes
correct, efficient implementation code in both cases.

6. Related Work
The concept of deriving implementations that are correct by con-
struction via stepwise refinement of specifications has been around
since at least the late sixties [7].

Deductive Synthesis Specware [20] and its predecessors KIDS [16]
and DTRE [2] are deductive synthesis tools for deriving correct-by-
construction implementations of high-level specifications. Specware
is accompanied by a library of domain theories that describe how
to do iterative decomposition of high-level specifications into sub-
problems until an implementation can be constructed. At each step,
Specware checks the validity of the refinement, although only re-
cently have they begun generating Isabelle/HOL proof obligations
justifying these transformations. Each of these proof obligation
generators makes up part of Specsware’s trusted code base; by
implementing Fiat completely in Coq we rely on a considerably
smaller trusted code base. At the end of refinement, Specware has
a series of automated and quite sophisticated transformations that
generate C code, though these final steps are currently unverified.
In contrast, derivations of ADTs with Fiat are completely verified
by Coq, and these derivations may be integrated within larger, more
general proof developments. We have also demonstrated more au-
tomated refinement for more restrictive domains, as in our query
structure examples.

Synthesis of Abstract Data Types There is also a philosophical
difference between Fiat and Specware – Kestrel has focused on using
Specware to develop families of complex algorithms, including
families of garbage collectors [14], SAT solvers [17], and network
protocols. In contrast, we envision Fiat being used to generate
high-assurance code for algorithmically “simple” domains that are
amenable to automation. A number of domains have been shown
to have this property: Paige et. al [12] demonstrate how efficient
implementations of ADTs supporting set-theoretic operations can
be derived by applying fixed-point iteration [12] to generate initial
implementations, using finite differencing [13] to further optimize
the resulting implementation, before finally selecting data structure
implementations. The generation of data types supporting query-like
operations is another such domain. P2 [1] was a DSL extension to C
that allowed users to specify the layout of container data structures
using a library of structures implementing a common interface,
akin to Fiat’s Bag interface. This interface included an iterator
method for querying contents of the container – implementations
of these iterators would dynamically optimize queries at runtime.
More recently, Hawkins et. al [8] have shown how to synthesize
the implementations of abstract data types specified by abstract
relational descriptions supporting query and update operations. They
also provide an autotuner for selecting the best data representation
implementation in the space of possible decompositions. Our work
with Fiat expands on these past projects by adding proofs of
correctness in a general-purpose proof assistant, which also opens
the door to sound extension of the system by programmers, since
Coq will check any new refinement rules.

Constraint-Based Synthesis Constraint-based synthesis formu-
lates the synthesis problem as a search over a space of candidate
solutions, with programmers providing a set of constraints to help
prune the search space. The Sketch [18] synthesis system, for exam-

http://plv.csail.mit.edu/fiat


ple, allows programmers to constrain the search space by encoding
their algorithmic insight into skeleton programs with “holes” that a
synthesizer automatically completes. Sketching-based approaches
have been used to synthesize low-level data-structure manipulat-
ing algorithms [15], concurrent data structures [19], and programs
with numeric parameters that are optimized over some quantita-
tive metric [4]. These approaches fit into the broad decomposition
of “functionality + optimization” proposed here, with the initial
sketch representing the former and the synthesizer providing the
optimization. Excitingly, Fiat enables opportunities for program-
mers to inject further insight into the synthesis process by chaining
together honing tactics with various degrees of automation. Subsec-
tion 4.7 provides an example of such a development, with the user
first automatically dropping data-integrity constraints via a honing
tactic before manually specifying how to cache certain queries.

Reasoning with Refinements Cohen et al. rely on a similar foun-
dation of refinement to verify an algebra library in Coq using data
type refinement [5] by verifying algorithms parametrized over the
data type and its operations. Verification is done using a simple,
“proof-oriented” data type. The authors then show how to transport
the proof of correctness to a version of the algorithm using a more
efficient implementation that is related to the proof-oriented data
type by a refinement relation. In contrast, Fiat is a system for (semi-)
automatically deriving efficient ADTs that are valid refinements.
The two approaches could certainly be combined to enable users to
build and verify clients of ADTs synthesized by Fiat.

7. Future Work and Conclusion
We have reported here on the start of a project to explore the use of
proof assistants to enable a new modularity pattern in programming:
separating functionality from performance, where programmers
express their functionality and then apply optimization scripts to
refine it to efficient implementations. Special-case systems like SQL
engines have provided this style of decomposition, but only for
hardcoded domains of functionality. We explained how the design
of Fiat allows programmers to define new functionality domains
and new optimization techniques, relying on Coq to check that no
optimization technique breaks program semantics. Programmers
think of implementing a new database engine as a big investment,
but they think of implementing a new container data structure as
a reasonable component of a new project. The promise of the Fiat
approach is to make the former as routine as the latter, by giving
that style of optimization strategy more first-class status within a
programming environment, with enforced modularity via checking
of optimization scripts by a general-purpose proof kernel.

We plan to explore further applications of Fiat, both by identify-
ing other broad functionality domains that admit effective libraries
of optimization scripts, and by narrowing the gap with hand-tuned
program code by generating low-level imperative code instead of
functional code, using the same framework to justify optimizations
that can only be expressed at the lower abstraction level.
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reviewers for their feedback on earlier versions of this paper. The
second author would like to thank École Polytechnique for allowing
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