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Tuning thermal transport in nanostructured materials is a powerful approach to develop high-
efficiency thermoelectric materials. Using a recently developed approach based on the phonon mean
free path dependent Boltzmann transport equation, we compute the effective thermal conductivity
of nanoporous materials with pores of various shapes and arrangements. We assess the importance
of pore-pore distance in suppressing thermal transport, and identify the pore arrangement that
minimizes the thermal conductivity, composed of a periodic arrangement of two misaligned rows of
triangular pores. Such a configuration yields a reduction in the thermal conductivity of more than
60% with respect the simple circular aligned case with the same porosity.

Engineering thermal transport in nanostructured ma-
terials is a powerful route to develop high-efficiency ther-
moelectric (TE) materials. In fact, thanks to phonon-
boundary scattering, the effective phonon thermal con-
ductivity (PTC) may decrease even by two orders of
magnitude with respect to bulk [1–4]. Among differ-
ent nanostructures appealing for TE, porous materials
offer the highest number of degrees of freedom for tun-
ing thermal transport, thanks to the possibility of ar-
ranging arbitrary boundaries against which phonons can
scatter [3, 5–8]. In exploring different pore configura-
tions, Song et al. [6] found experimentally that for cylin-
drical pores, the staggered configurations have slightly
lower PTCs than the aligned configurations. In other
work, Tse-yang et al. provide insights on the influence
of the shape of aligned pores on the PTC, by employing
the frequency-dependent Boltzmann transport equation
(FD-BTE) [8]. In investigating thermal transport across
periodically aligned circular pores, Prasher emphasized
the importance of the the so-called view factor, i.e. the
proportion of phonons flux leaving the hot surface that
strikes the cold surface ballistically [9]. However, de-
spite these important contributions, both theoretically
and experimentally, in understanding heat transport in
complex-shaped porous materials, the combined effects
of pores shape, size and arrangement on the PTC is still
to a large extend poorly understood.

In this work, we compute phonon size effects in
nanoporous materials with pores of different shapes in-
cluding circles, squares and triangles, arranged in both
aligned and staggered configurations. From our calcula-
tions, we deduce that the pore-pore distance plays a cru-
cial role in tuning the PTC, while the view factor plays
a secondary role. By using this finding, we identify the
optimum pore configuration composed of two misaligned
rows of triangular pores, which suppresses heat more ef-
fectively than the simple aligned pore configuration case
by a factor of 60%. Our findings provide practical guid-
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ance for engineering thermal transport in nanostructured
materials.

Although our approach could be useful for a range
of thermal transport related applications, we focus here
on TE materials. The TE figure of merit is given by

ZT = Sσ2T
κeff

, where σ is the electronic conductivity, S

the Seebeck coefficient, κeff the PTC and T the temper-
ature. For simplicity, we neglect the thermal conductiv-
ity arising from electrons and assume that the Seebeck
coefficient is the same as in bulk. For heavily doped
semiconductors, the electron mean free path (MFP) is
smaller than 10nm [10], thus the drift-diffusion theory
for electron transport can be safely used. Within this
assumption, the reduction in conductivity of electrons is
comparable with that experienced by the heat carriers at
the diffusive level, and both reductions can be described
by the so called porosity function [11]. As we will see
later, for a given porosity, the actual pore configuration
has little effect on the porosity function. On the other
hand, phonons in certain materials, such as Si, may have
MFP even longer than 1µm [12]; hence, by choosing ac-
curately the characteristic length of the material, it is
possible to suppress phonon transport while leaving the
electrical transport essentially unaltered and consequen-
tially increasing ZT [2]. In light of the discussion above
and with minimal loss of generality, in this work we focus
on nanoporous (np)-Si with a fixed porosity φ = 0.25.

Quasi-ballistic heat transport is captured by solving
the phonon mean free path (MFP)-BTE [13] over a sim-
ulation domain composed by a square single cell of length
L = 10nm containing one pore in the center. Stag-
gered configurations have a square single unit cell of size
Ls = L

√
2 with a pore in the center and four pores at the

edges. Hereafter we refer to aligned circles, squares and
triangles cases as CA, SA and TA, respectively, whereas
the staggered configurations are referred as CS, SS and
TS, respectively. We consider the reduction in ther-
mal transport only given by phonon-boundary scatter-
ing, whereas the coherence effects are neglected [14]. As
a consequence, the full phonon dispersion as well as the
scattering times are assumed to be the same as in bulk.
The PTC is computed by κeff =

∫∞
0
Kbulk(Λ)S(Λ)dΛ,
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where Kbulk(Λ) is the bulk MFP distribution, obtained
by-first principle calculations [12], and S(Λ) is the so-
called phonon suppression function, the output of the
MFP-BTE [13].

To ensure phonon flux, we impose the temperatures
Thot and Tcold to the left and right side, respectively,
of the simulation domain. We apply periodic bound-
ary conditions both along the direction perpendicular
and longitudinal to the heat flux. The surface of the
pores are considered purely diffusive. The technical de-
tails of the implementation of the BTE are in [7, 15]. In
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FIG. 1. Magnitude of the thermal flux for CA (upper left), SA
(upper center), TA (upper right), CS (lower left), SS (lower
center) and TS (lower right). The periodicity is L = 10nm.
Red and blue areas refer to high and low thermal flux, respec-
tively. Most of the heat flux travels away from the pores, due
to phonon size effects. The unit cells as well as the pore-pore
distances are underlined.

Fig. 1, we show the magnitude of the thermal flux for all
the configurations considered here, where the unit cell is
highlighted. The imposed temperature gradient is along
the +x direction. The higher thermal fluxes are in the
regions representing a continuous path from the hot to
the cold side. Intuitively, staggered configurations should
give lower PTCs with respect the aligned case with the
same porosity, because of the lower view factor. How-
ever, as can be seen in Fig. 2 which shows our computed
PTC for each of these configurations, for circular pores

the aligned and staggered cases have very similar PTCs,
in good agreement with experimental results [6]. For the
square pore cases, the staggered configuration exhibits a
lower PTC than the aligned case. Interestingly, for trian-
gular pores even though the staggered case has no direct
path between the hot and the cold side, it has a higher
PTC than the aligned case, which has the lowest PTC
among all configurations.

FIG. 2. Phonon thermal conductivities (PTC) for different
configurations. The CA configuration gives the highest PTC
whereas the lowest PTC is given by the TA case.

To understand this trend, we first compute the effect
of the porosity and the pore configurations at the macro-
scopic level. In absence of phonon size effects, heat trans-
port is purely diffusive and the PTC can be described
as κeff = κbulkf(φ), where f(φ), the porosity function,
is computed by Fourier’s law. From Fig. 3-a, we note
that the porosity function has relatively small variations
for the six configurations at a given porosity, and can
be fairly approximated by [11] f(φ) = 1−φ

1+φ . Further-
more, although configurations with triangular pores give
lower porosity functions, there is basically no difference
between the TA and TS cases, meaning that the porosity
function alone cannot explain the trend in the PTCs at
the nanoscale. Conversely, this trend can be explained
examining the pore-pore distances, whose formulae are
tabulated in I.

Circle Square Triangle

Distance (A) 1−
√

φ
π

1−
√
φ 1− 2

4√3

√
φ

Distance (S) 1−
√

φ
π

1−
√

2φ 1− 4
√

3
√
φ

TABLE I. Pore-pore distance normalized to the size of the
unit cell in the aligned configurations. For the TS case, only
an approximate formula is reported.

In order to provide a common reference, all the pore-
pore distances are normalized to the size of the unit cell
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Porosity used in this work

(a)

(b)

FIG. 3. a) The porosity function versus porosity for differ-
ent pore configurations, alongside the analytical model given
by Eucken’s theory. b) The pore-pore distance for different
porosities. All the distances are normalized to the aligned
unit cell size L.

L for the aligned configurations. From Fig. 3-b we note
that the trend in the pore-pore distance reflects well the
trend in the PTCs. Indeed, for the TA case we have the
lowest pore-pore distance. These results suggest that the
pore-pore distance has a primary role in tuning PTCs,
whereas the view factor plays a less important role, at
least for the scale and geometry we have considered.

Motivated by these results we further explored the ef-
fects of pore-pore misalignment on the PTC for the tri-
angular case by shifting the pore rows with respect to one
another by distance D. The PTC as a function of mis-
alignment M=D/L, is shown in Fig. 4-a, where M = 0
corresponds to perfectly aligned pores and M = 0.5 per-
fectly misaligned. The latter case refers to a staggered
case with a rectangular unit cell, as shown in Fig. 4-b.
By keeping the pore-pore distance fixed, we are able to
isolate the effect of the view factor on the PTC. As can be
seen in Fig. 4, for a normalized misalignment M = 0.5
each gap between pores contributes to two direct and
oblique paths from the hot and cold contacts, causing
an increase in the view factor with respect to the TA
case, where M = 0. For intermediate cases, the view
factor vanishes and for M = 0.25, reported in Fig. 4-
c, we reach the minimum in the thermal conductivity,
achieving a decrease in heat transport of more than 60%
with respect the CA case. We emphasize that, despite

D

L
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FIG. 4. (a). The PTCas a function of adjacent rows of trian-
gular pores. The misalignment is normalized to the size of the
unit cell for the aligned case M = D/L. Across each gap be-
tween two pores, two direct paths are available for phonons to
travel ballistically between the hot and the cold side. (Lower
panel) Magnitude of thermal flux for the M = 0.5 (b) and
M = 0.25 (c) cases.

the fact that the two configurations have different PTCs,
they still have the same porosity, and therefore we obtain
an increase in ZT.

In summary, we have computed the PTC of np-Si with
different pore arrangements and correlate the trend in
PTCs with the geometric configurations. We deduced
that the staggered configurations are not always the best
choice for a given porosity and pore shape, and that a
combined analysis based on both the view factor and
pore-pore distance is needed. We identified the pore
configuration that minimizes thermal transport, whose
suppression ability is 60% higher than that obtained by
the simple circular aligned pore configuration. This re-
sult might serve as guidance for multiscale engineering
of pore-boundary scattering in complex-shape materials
which is crucial for the development of high performance
thermoelectric materials.

[1] A. Majumdar, Science 303, 777 (2004).
[2] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee,

D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, Advanced



4

Materials 19, 1043 (2007).
[3] J.-H. Lee, G. A. Galli, and J. C. Grossman, Nano letters

8, 3750 (2008).
[4] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang,

E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang,
Nature 451, 163 (2008).

[5] P. E. Hopkins, P. T. Rakich, R. H. Olsson, I. F. El-Kady,
and L. M. Phinney, Applied Physics Letters 95, 161902
(2009).

[6] D. Song and G. Chen, Applied physics letters 84, 687
(2004).

[7] G. Romano, A. Di Carlo, and J. C. Grossman, Journal
of Computational Electronics 11, 8 (2012).

[8] T.-Y. Hsieh, H. Lin, T.-J. Hsieh, and J.-C. Huang, Jour-
nal of Applied Physics 111, 124329 (2012).

[9] R. Prasher, Journal of applied physics 100, 064302

(2006).
[10] J. M. Ziman, Electrons and phonons: the theory of trans-

port phenomena in solids (OUP Oxford, 2001).
[11] Z. Hashin and S. Shtrikman, Journal of applied Physics

33, 3125 (1962).
[12] K. Esfarjani, G. Chen, and H. T. Stokes, Physical Re-

view B 84, 085204 (2011).
[13] G. Romano and J. C. Grossman, arXiv:1312.7849 [cond-

mat.mes-hall] (2013).
[14] N. K. Ravichandran and A. J. Minnich, Phys. Rev. B 89,

205432 (2014).
[15] G. Romano and A. Di Carlo, IEEE Transactions on Nan-

otechnology , online (2011).
[16] A. J. Minnich, J. Johnson, A. Schmidt, K. Esfarjani,

M. Dresselhaus, K. A. Nelson, and G. Chen, Physical
review letters 107, 095901 (2011).

[17] A. Minnich, Physical review letters 109, 205901 (2012).

http://dx.doi.org/10.1103/PhysRevB.89.205432
http://dx.doi.org/10.1103/PhysRevB.89.205432

	Toward phonon-boundary engineering in nanoporous materials
	Abstract
	 References


