
A Latent Source Model for
Online Collaborative Filtering

Guy Bresler George H. Chen Devavrat Shah
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

{gbresler,georgehc,devavrat}@mit.edu

Abstract

Despite the prevalence of collaborative filtering in recommendation systems, there
has been little theoretical development on why and how well it works, especially
in the “online” setting, where items are recommended to users over time. We
address this theoretical gap by introducing a model for online recommendation
systems, cast item recommendation under the model as a learning problem, and
analyze the performance of a cosine-similarity collaborative filtering method. In
our model, each of n users either likes or dislikes each of m items. We assume
there to be k types of users, and all the users of a given type share a common
string of probabilities determining the chance of liking each item. At each time
step, we recommend an item to each user, where a key distinction from related
bandit literature is that once a user consumes an item (e.g., watches a movie),
then that item cannot be recommended to the same user again. The goal is to
maximize the number of likable items recommended to users over time. Our main
result establishes that after nearly log(km) initial learning time steps, a simple
collaborative filtering algorithm achieves essentially optimal performance without
knowing k. The algorithm has an exploitation step that uses cosine similarity and
two types of exploration steps, one to explore the space of items (standard in the
literature) and the other to explore similarity between users (novel to this work).

1 Introduction

Recommendation systems have become ubiquitous in our lives, helping us filter the vast expanse of
information we encounter into small selections tailored to our personal tastes. Prominent examples
include Amazon recommending items to buy, Netflix recommending movies, and LinkedIn recom-
mending jobs. In practice, recommendations are often made via collaborative filtering, which boils
down to recommending an item to a user by considering items that other similar or “nearby” users
liked. Collaborative filtering has been used extensively for decades now including in the GroupLens
news recommendation system [20], Amazon’s item recommendation system [17], the Netflix Prize
winning algorithm by BellKor’s Pragmatic Chaos [16, 24, 19], and a recent song recommendation
system [1] that won the Million Song Dataset Challenge [6].

Most such systems operate in the “online” setting, where items are constantly recommended to
users over time. In many scenarios, it does not make sense to recommend an item that is already
consumed. For example, once Alice watches a movie, there’s little point to recommending the same
movie to her again, at least not immediately, and one could argue that recommending unwatched
movies and already watched movies could be handled as separate cases. Finally, what matters is
whether a likable item is recommended to a user rather than an unlikable one. In short, a good
online recommendation system should recommend different likable items continually over time.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/78056957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Despite the success of collaborative filtering, there has been little theoretical development to justify
its effectiveness in the online setting. We address this theoretical gap with our two main contributions
in this paper. First, we frame online recommendation as a learning problem that fuses the lines of
work on sleeping bandits and clustered bandits. We impose the constraint that once an item is
consumed by a user, the system can’t recommend the item to the same user again. Our second
main contribution is to analyze a cosine-similarity collaborative filtering algorithm. The key insight
is our inclusion of two types of exploration in the algorithm: (1) the standard random exploration
for probing the space of items, and (2) a novel “joint” exploration for finding different user types.
Under our learning problem setup, after nearly log(km) initial time steps, the proposed algorithm
achieves near-optimal performance relative to an oracle algorithm that recommends all likable items
first. The nearly logarithmic dependence is a result of using the two different exploration types. We
note that the algorithm does not know k.

Outline. We present our model and learning problem for online recommendation systems in Section
2, provide a collaborative filtering algorithm and its performance guarantee in Section 3, and give
the proof idea for the performance guarantee in Section 4. An overview of experimental results is
given in Section 5. We discuss our work in the context of prior work in Section 6.

2 A Model and Learning Problem for Online Recommendations

We consider a system with n users and m items. At each time step, each user is recommended an
item that she or he hasn’t consumed yet, upon which, for simplicity, we assume that the user imme-
diately consumes the item and rates it +1 (like) or −1 (dislike).1 The reward earned by the recom-
mendation system up to any time step is the total number of liked items that have been recommended
so far across all users. Formally, index time by t ∈ {1, 2, . . . }, and users by u ∈ [n] , {1, . . . , n}.
Let πut ∈ [m] , {1, . . . ,m} be the item recommended to user u at time t. Let Y (t)

ui ∈ {−1, 0,+1}
be the rating provided by user u for item i up to and including time t, where 0 indicates that no rating
has been given yet. A reasonable objective is to maximize the expected reward r(T) up to time T :

r(T) ,
T∑
t=1

n∑
u=1

E[Y (T)
uπut] =

m∑
i=1

n∑
u=1

E[Y
(T)
ui].

The ratings are noisy: the latent item preferences for user u are represented by a length-m vector
pu ∈ [0, 1]m, where user u likes item i with probability pui, independently across items. For a user
u, we say that item i is likable if pui > 1/2 and unlikable if pui < 1/2. To maximize the expected
reward r(T), clearly likable items for the user should be recommended before unlikable ones.

In this paper, we focus on recommending likable items. Thus, instead of maximizing the expected
reward r(T), we aim to maximize the expected number of likable items recommended up to time T :

r
(T)
+ ,

T∑
t=1

n∑
u=1

E[Xut] , (1)

where Xut is the indicator random variable for whether the item recommended to user u at time t is
likable, i.e., Xut = +1 if puπut > 1/2 and Xut = 0 otherwise. Maximizing r(T) and r(T)

+ differ
since the former asks that we prioritize items according to their probability of being liked.

Recommending likable items for a user in an arbitrary order is sufficient for many real recommen-
dation systems such as for movies and music. For example, we suspect that users wouldn’t actually
prefer to listen to music starting from the songs that their user type would like with highest probabil-
ity to the ones their user type would like with lowest probability; instead, each user would listen to
songs that she or he finds likable, ordered such that there is sufficient diversity in the playlist to keep
the user experience interesting. We target the modest goal of merely recommending likable items,
in any order. Of course, if all likable items have the same probability of being liked and similarly
for all unlikable items, then maximizing r(T) and r(T)

+ are equivalent.

1In practice, a user could ignore the recommendation. To keep our exposition simple, however, we stick to
this setting that resembles song recommendation systems like Pandora that per user continually recommends
a single item at a time. For example, if a user rates a song as “thumbs down” then we assign a rating of −1
(dislike), and any other action corresponds to +1 (like).

2

The fundamental challenge is that to learn about a user’s preference for an item, we need the user to
rate (and thus consume) the item. But then we cannot recommend that item to the user again! Thus,
the only way to learn about a user’s preferences is through collaboration, or inferring from other
users’ ratings. Broadly, such inference is possible if the users preferences are somehow related.

In this paper, we assume a simple structure for shared user preferences. We posit that there are
k < n different types of users, where users of the same type have identical item preference vectors.
The number of types k represents the heterogeneity in the population. For ease of exposition, in this
paper we assume that a user belongs to each user type with probability 1/k. We refer to this model
as a latent source model, where each user type corresponds to a latent source of users. We remark
that there is evidence suggesting real movie recommendation data to be well modeled by clustering
of both users and items [21]. Our model only assumes clustering over users.

Our problem setup relates to some versions of the multi-armed bandit problem. A fundamental
difference between our setup and that of the standard stochastic multi-armed bandit problem [23, 8]
is that the latter allows each item to be recommended an infinite number of times. Thus, the solution
concept for the stochastic multi-armed bandit problem is to determine the best item (arm) and keep
choosing it [3]. This observation applies also to “clustered bandits” [9], which like our work seeks to
capture collaboration between users. On the other hand, sleeping bandits [15] allow for the available
items at each time step to vary, but the analysis is worst-case in terms of which items are available
over time. In our setup, the sequence of items that are available is not adversarial. Our model
combines the collaborative aspect of clustered bandits with dynamic item availability from sleeping
bandits, where we impose a strict structure on how items become unavailable.

3 A Collaborative Filtering Algorithm and Its Performance Guarantee

This section presents our algorithm COLLABORATIVE-GREEDY and its accompanying theoretical
performance guarantee. The algorithm is syntactically similar to the ε-greedy algorithm for multi-
armed bandits [22], which explores items with probability ε and otherwise greedily chooses the best
item seen so far based on a plurality vote. In our algorithm, the greedy choice, or exploitation, uses
the standard cosine-similarity measure. The exploration, on the other hand, is split into two types, a
standard item exploration in which a user is recommended an item that she or he hasn’t consumed
yet uniformly at random, and a joint exploration in which all users are asked to provide a rating for
the next item in a shared, randomly chosen sequence of items. Let’s fill in the details.

Algorithm. At each time step t, either all the users are asked to explore, or an item is recommended
to each user by choosing the item with the highest score for that user. The pseudocode is described
in Algorithm 1. There are two types of exploration: random exploration, which is for exploring the
space of items, and joint exploration, which helps to learn about similarity between users. For a
pre-specified rate α ∈ (0, 4/7], we set the probability of random exploration to be εR(n) = 1/nα

Algorithm 1: COLLABORATIVE-GREEDY

Input: Parameters θ ∈ [0, 1], α ∈ (0, 4/7].
Select a random ordering σ of the items [m]. Define

εR(n) =
1

nα
, and εJ(t) =

1

tα
.

for time step t = 1, 2, . . . , T do
With prob. εR(n): (random exploration) for each user, recommend a random item that the
user has not rated.
With prob. εJ(t): (joint exploration) for each user, recommend the first item in σ that the user
has not rated.
With prob. 1− εJ(t)− εR(n): (exploitation) for each user u, recommend an item j that the
user has not rated and that maximizes score p̃(t)

uj , which depends on threshold θ.
end

3

(decaying with the number of users), and the probability of joint exploration to be εJ(t) = 1/tα

(decaying with time).2

Next, we define user u’s score p̃(t)
ui for item i at time t. Recall that we observe Y (t)

ui = {−1, 0,+1}
as user u’s rating for item i up to time t, where 0 indicates that no rating has been given yet. We
define

p̃
(t)
ui ,

∑
v∈Ñ (t)

u
1{Y (t)

vi = +1}∑
v∈Ñ (t)

u
1{Y (t)

vi 6= 0}
if
∑
v∈Ñ (t)

u
1{Y (t)

vi 6= 0} > 0,

1/2 otherwise,

where the neighborhood of user u is given by

Ñ (t)
u , {v ∈ [n] : 〈Ỹ (t)

u , Ỹ (t)
v 〉 ≥ θ|supp(Ỹ (t)

u) ∩ supp(Ỹ (t)
v)|},

and Ỹ (t)
u consists of the revealed ratings of user u restricted to items that have been jointly explored.

In other words,

Ỹ
(t)
ui =

{
Y

(t)
ui if item i is jointly explored by time t,

0 otherwise.

The neighborhoods are defined precisely by cosine similarity with respect to jointed explored items.
To see this, for users u and v with revealed ratings Ỹ (t)

u and Ỹ (t)
v , let Ωuv , supp(Ỹ

(t)
u)∩supp(Ỹ

(t)
v)

be the support overlap of Ỹ (t)
u and Ỹ (t)

v , and let 〈·, ·〉Ωuv be the dot product restricted to entries in
Ωuv . Then

〈Ỹ (t)
u , Ỹ

(t)
v 〉

|Ωuv|
=

〈Ỹ (t)
u , Ỹ

(t)
v 〉Ωuv√

〈Ỹ (t)
u , Ỹ

(t)
u 〉Ωuv

√
〈Ỹ (t)
v , Ỹ

(t)
v 〉Ωuv

,

which is the cosine similarity of revealed rating vectors Ỹ (t)
u and Ỹ (t)

v restricted to the overlap of
their supports. Thus, users u and v are neighbors if and only if their cosine similarity is at least θ.

Theoretical performance guarantee. We now state our main result on the proposed collaborative
filtering algorithm’s performance with respect to the objective stated in equation (1). We begin with
two reasonable, and seemingly necessary, conditions under which our the results will be established.

A1 No ∆-ambiguous items. There exists some constant ∆ > 0 such that

|pui − 1/2| ≥ ∆

for all users u and items i. (Smaller ∆ corresponds to more noise.)

A2 γ-incoherence. There exist a constant γ ∈ [0, 1) such that if users u and v are of different
types, then their item preference vectors pu and pv satisfy

1

m
〈2pu − 1, 2pv − 1〉 ≤ 4γ∆2,

where 1 is the all ones vector. Note that a different way to write the left-hand side is
E[1

m 〈Y ∗u , Y ∗v 〉], where Y ∗u and Y ∗v are fully-revealed rating vectors of users u and v, and
the expectation is over the random ratings of items.

The first condition is a low noise condition to ensure that with a finite number of samples, we can
correctly classify each item as either likable or unlikable. The incoherence condition asks that the
different user types are well-separated so that cosine similarity can tease apart the users of different
types over time. We provide some examples after the statement of the main theorem that suggest the
incoherence condition to be reasonable, allowing E[〈Y ∗u , Y ∗v 〉] to scale as Θ(m) rather than o(m).

We assume that the number of users satisfies n = O(mC) for some constant C > 1. This is without
loss of generality since otherwise, we can randomly divide the n users into separate population

2For ease of presentation, we set the two explorations to have the same decay rate α, but our proof easily
extends to encompass different decay rates for the two exploration types. Furthermore, the constant 4/7 ≥ α
is not special. It could be different and only affects another constant in our proof.

4

pools, each of size O(mC) and run the recommendation algorithm independently for each pool to
achieve the same overall performance guarantee.

Finally, we define µ, the minimum proportion of likable items for any user (and thus any user type):

µ , min
u∈[n]

∑m
i=1 1{pui > 1/2}

m
.

Theorem 1. Let δ ∈ (0, 1) be some pre-specified tolerance. Take as input to COLLABORATIVE-
GREEDY θ = 2∆2(1 + γ) where γ ∈ [0, 1) is as defined in A2, and α ∈ (0, 4/7]. Under the latent
source model and assumptions A1 and A2, if the number of users n = O(mC) satisfies

n = Ω
(
km log

1

δ
+
(4

δ

)1/α)
,

then for any Tlearn ≤ T ≤ µm, the expected proportion of likable items recommended by
COLLABORATIVE-GREEDY up until time T satisfies

r
(T)
+

Tn
≥
(

1− Tlearn

T

)
(1− δ),

where

Tlearn = Θ

((
log km

∆δ

∆4(1− γ)2

)1/(1−α)

+
(4

δ

)1/α
)
.

Theorem 1 says that there are Tlearn initial time steps for which the algorithm may be giving poor
recommendations. Afterward, for Tlearn < T < µm, the algorithm becomes near-optimal, recom-
mending a fraction of likable items 1−δ close to what an optimal oracle algorithm (that recommends
all likable items first) would achieve. Then for time horizon T > µm, we can no longer guarantee
that there are likable items left to recommend. Indeed, if the user types each have the same fraction
of likable items, then even an oracle recommender would use up the µm likable items by this time.
Meanwhile, to give a sense of how long the learning period Tlearn is, note that when α = 1/2, we
have Tlearn scaling as log2(km), and if we choose α close to 0, then Tlearn becomes nearly log(km).
In summary, after Tlearn initial time steps, the simple algorithm proposed is essentially optimal.

To gain intuition for incoherence condition A2, we calculate the parameter γ for three examples.

Example 1. Consider when there is no noise, i.e., ∆ = 1
2 . Then users’ ratings are deterministic

given their user type. Produce k vectors of probabilities by drawing m independent Bernoulli(1
2)

random variables (0 or 1 with probability 1
2 each) for each user type. For any item i and pair of

users u and v of different types, Y ∗ui · Y ∗vi is a Rademacher random variable (±1 with probability 1
2

each), and thus the inner product of two user rating vectors is equal to the sum of m Rademacher

random variables. Standard concentration inequalities show that one may take γ = Θ
(√

logm
m

)
to

satisfy γ-incoherence with probability 1− 1/poly(m).

Example 2. We expand on the previous example by choosing an arbitrary ∆ > 0 and making all
latent source probability vectors have entries equal to 1

2 ±∆ with probability 1
2 each. As before let

user u and v are from different type. Now E[Y ∗ui ·Y ∗vi] = (1
2 + ∆)2 + (1

2 −∆)2− 2(1
4 −∆2) = 4∆2

if pui = pvi and E[Y ∗ui · Y ∗vi] = 2(1
4 − ∆2) − (1

2 + ∆)2 − (1
2 − ∆)2 = −4∆2 if pui = 1 − pvi.

The value of the inner product E[〈Y ∗u , Y ∗v 〉] is again equal to the sum of m Rademacher random

variables, but this time scaled by 4∆2. For similar reasons as before, γ = Θ
(√

logm
m

)
suffices to

satisfy γ-incoherence with probability 1− 1/poly(m).

Example 3. Continuing with the previous example, now suppose each entry is 1
2 +∆ with probability

µ ∈ (0, 1/2) and 1
2 − ∆ with probability 1 − µ. Then for two users u and v of different types,

pui = pvi with probability µ2 + (1 − µ)2. This implies that E[〈Y ∗u , Y ∗v 〉] = 4m∆2(1 − 2µ)2.

Again, using standard concentration, this shows that γ = (1−2µ)2 +Θ
(√

logm
m

)
suffices to satisfy

γ-incoherence with probability 1− 1/poly(m).

5

4 Proof of Theorem 1

Recall that Xut is the indicator random variable for whether the item πut recommended to user u
at time t is likable, i.e., puπut > 1/2. Given assumption A1, this is equivalent to the event that
puπut ≥ 1

2 + ∆. The expected proportion of likable items is

r
(T)
+

Tn
=

1

Tn

T∑
t=1

n∑
u=1

E[Xut] =
1

Tn

T∑
t=1

n∑
u=1

P(Xut = 1).

Our proof focuses on lower-bounding P(Xut = 1). The key idea is to condition on what we call the
“good neighborhood” event Egood(u, t):

Egood(u, t) =
{

at time t, user u has ≥ n

5k
neighbors from the same user type (“good neighbors”),

and ≤ ∆tn1−α

10km
neighbors from other user types (“bad neighbors”)

}
.

This good neighborhood event will enable us to argue that after an initial learning time, with high
probability there are at most ∆ as many ratings from bad neighbors as there are from good neighbors.

The proof of Theorem 1 consists of two parts. The first part uses joint exploration to show that after
a sufficient amount of time, the good neighborhood event Egood(u, t) holds with high probability.
Lemma 1. For user u, after

t ≥
(

2 log(10kmnα/∆)

∆4(1− γ)2

)1/(1−α)

time steps,

P(Egood(u, t)) ≥ 1− exp
(
− n

8k

)
− 12 exp

(
− ∆4(1− γ)2t1−α

20

)
.

In the above lower bound, the first exponentially decaying term could be thought of as the penalty
for not having enough users in the system from the k user types, and the second decaying term could
be thought of as the penalty for not yet clustering the users correctly.

The second part of our proof to Theorem 1 shows that, with high probability, the good neighborhoods
have, through random exploration, accurately estimated the probability of liking each item. Thus,
we correctly classify each item as likable or not with high probability, which leads to a lower bound
on P(Xut = 1).
Lemma 2. For user u at time t, if the good neighborhood event Egood(u, t) holds and t ≤ µm, then

P(Xut = 1) ≥ 1− 2m exp
(
− ∆2tn1−α

40km

)
− 1

tα
− 1

nα
.

Here, the first exponentially decaying term could be thought of as the cost of not classifying items
correctly as likable or unlikable, and the last two decaying terms together could be thought of as the
cost of exploration (we explore with probability εJ(t) + εR(n) = 1/tα + 1/nα).

We defer the proofs of Lemmas 1 and 2 to Appendices A.1 and A.2. Combining these lemmas
and choosing appropriate constraints on the numbers of users and items, we produce the following
lemma.
Lemma 3. Let δ ∈ (0, 1) be some pre-specified tolerance. If the number of users n and items m
satisfy

n ≥ max
{

8k log
4

δ
,
(4

δ

)1/α}
,

µm ≥ t ≥ max

{(
2 log(10kmnα/∆)

∆4(1− γ)2

)1/(1−α)

,

(
20 log(96/δ)

∆4(1− γ)2

)1/(1−α)

,
(4

δ

)1/α
}
,

nt1−α ≥ 40km

∆2
log
(16m

δ

)
,

then P(Xut = 1) ≥ 1− δ.

6

Proof. With the above conditions on n and t satisfied, we combine Lemmas 1 and 2 to obtain

P(Xut = 1) ≥ 1− exp
(
− n

8k

)
− 12 exp

(
− ∆4(1− γ)2t1−α

20

)
− 2m exp

(
− ∆2tn1−α

40km

)
− 1

tα
− 1

nα
≥ 1− δ

4
− δ

8
− δ

8
− δ

4
− δ

4
= 1− δ.

Theorem 1 follows as a corollary to Lemma 3. As previously mentioned, without loss of generality,
we take n = O(mC). Then with number of users n satisfying

O(mC) = n = Ω
(
km log

1

δ
+
(4

δ

)1/α)
,

and for any time step t satisfying

µm ≥ t ≥ Θ

((
log km

∆δ

∆4(1− γ)2

)1/(1−α)

+
(4

δ

)1/α
)

, Tlearn ,

we simultaneously meet all of the conditions of Lemma 3. Note that the upper bound on number of
users n appears since without it, Tlearn would depend on n (observe that in Lemma 3, we ask that t
be greater than a quantity that depends on n). Provided that the time horizon satisfies T ≤ µm, then

r
(T)
+

Tn
≥ 1

Tn

T∑
t=Tlearn

n∑
u=1

P(Xut = 1) ≥ 1

Tn

T∑
t=Tlearn

n∑
u=1

(1− δ) =
(T − Tlearn)(1− δ)

T
,

yielding the theorem statement.

5 Experimental Results

We provide only a summary of our experimental results here, deferring full details to Appendix A.3.
We simulate an online recommendation system based on movie ratings from the Movielens10m and
Netflix datasets, each of which provides a sparsely filled user-by-movie rating matrix with ratings
out of 5 stars. Unfortunately, existing collaborative filtering datasets such as the two we consider
don’t offer the interactivity of a real online recommendation system, nor do they allow us to reveal
the rating for an item that a user didn’t actually rate. For simulating an online system, the former
issue can be dealt with by simply revealing entries in the user-by-item rating matrix over time. We
address the latter issue by only considering a dense “top users vs. top items” subset of each dataset.
In particular, we consider only the “top” users who have rated the most number of items, and the
“top” items that have received the most number of ratings. While this dense part of the dataset is
unrepresentative of the rest of the dataset, it does allow us to use actual ratings provided by users
without synthesizing any ratings. A rigorous validation would require an implementation of an
actual interactive online recommendation system, which is beyond the scope of our paper.

First, we validate that our latent source model is reasonable for the dense parts of the two datasets
we consider by looking for clustering behavior across users. We find that the dense top users vs. top
movies matrices do in fact exhibit clustering behavior of users and also movies, as shown in Figure
1(a). The clustering was found via Bayesian clustered tensor factorization, which was previously
shown to model real movie ratings data well [21].

Next, we demonstrate our algorithm COLLABORATIVE-GREEDY on the two simulated online movie
recommendation systems, showing that it outperforms two existing recommendation algorithms
Popularity Amongst Friends (PAF) [4] and a method by Deshpande and Montanari (DM) [12]. Fol-
lowing the experimental setup of [4], we quantize a rating of 4 stars or more to be +1 (likable), and
a rating less than 4 stars to be −1 (unlikable). While we look at a dense subset of each dataset, there
are still missing entries. If a user u hasn’t rated item j in the dataset, then we set the corresponding
true rating to 0, meaning that in our simulation, upon recommending item j to user u, we receive
0 reward, but we still mark that user u has consumed item j; thus, item j can no longer be recom-
mended to user u. For both Movielens10m and Netflix datasets, we consider the top n = 200 users
and the top m = 500 movies. For Movielens10m, the resulting user-by-rating matrix has 80.7%
nonzero entries. For Netflix, the resulting matrix has 86.0% nonzero entries. For an algorithm that

7

0 100 200 300 400 500

0

50

100

150

200

(a)

0 100 200 300 400 500

Time

−10

0

10

20

30

40

50

60

A
ve

ra
ge

cu
m

ul
at

iv
e

re
w

ar
d

Collaborative-Greedy

Popularity Amongst Friends

Deshpande-Montanari

(b)

Figure 1: Movielens10m dataset: (a) Top users by top movies matrix with rows and columns re-
ordered to show clustering of users and items. (b) Average cumulative rewards over time.

recommends item πut to user u at time t, we measure the algorithm’s average cumulative reward up
to time T as 1

n

∑T
t=1

∑n
u=1 Y

(T)
uπut , where we average over users. For all four methods, we recom-

mend items until we reach time T = 500, i.e., we make movie recommendations until each user has
seen all m = 500 movies. We disallow the matrix completion step for DM to see the users that we
actually test on, but we allow it to see the the same items as what is in the simulated online recom-
mendation system in order to compute these items’ feature vectors (using the rest of the users in the
dataset). Furthermore, when a rating is revealed, we provide DM both the thresholded rating and
the non-thresholded rating, the latter of which DM uses to estimate user feature vectors over time.
We discuss choice of algorithm parameters in Appendix A.3. In short, parameters θ and α of our
algorithm are chosen based on training data, whereas we allow the other algorithms to use whichever
parameters give the best results on the test data. Despite giving the two competing algorithms this
advantage, COLLABORATIVE-GREEDY outperforms the two, as shown in Figure 1(b). Results on
the Netflix dataset are similar.

6 Discussion and Related Work

This paper proposes a model for online recommendation systems under which we can analyze the
performance of recommendation algorithms. We theoretical justify when a cosine-similarity collab-
orative filtering method works well, with a key insight of using two exploration types.

The closest related work is by Biau et al. [7], who study the asymptotic consistency of a cosine-
similarity nearest-neighbor collaborative filtering method. Their goal is to predict the rating of the
next unseen item. Barman and Dabeer [4] study the performance of an algorithm called Popular-
ity Amongst Friends, examining its ability to predict binary ratings in an asymptotic information-
theoretic setting. In contrast, we seek to understand the finite-time performance of such systems.
Dabeer [11] uses a model similar to ours and studies online collaborative filtering with a moving
horizon cost in the limit of small noise using an algorithm that knows the numbers of user types and
item types. We do not model different item types, our algorithm is oblivious to the number of user
types, and our performance metric is different. Another related work is by Deshpande and Mon-
tanari [12], who study online recommendations as a linear bandit problem; their method, however,
does not actually use any collaboration beyond a pre-processing step in which offline collaborative
filtering (specifically matrix completion) is solved to compute feature vectors for items.

Our work also relates to the problem of learning mixture distributions (c.f., [10, 18, 5, 2]), where
one observes samples from a mixture distribution and the goal is to learn the mixture components
and weights. Existing results assume that one has access to the entire high-dimensional sample
or that the samples are produced in an exogenous manner (not chosen by the algorithm). Neither
assumption holds in our setting, as we only see each user’s revealed ratings thus far and not the user’s
entire preference vector, and the recommendation algorithm affects which samples are observed (by
choosing which item ratings are revealed for each user). These two aspects make our setting more
challenging than the standard setting for learning mixture distributions. However, our goal is more
modest. Rather than learning the k item preference vectors, we settle for classifying them as likable
or unlikable. Despite this, we suspect having two types of exploration to be useful in general for
efficiently learning mixture distributions in the active learning setting.

Acknowledgements. This work was supported in part by NSF grant CNS-1161964 and by Army
Research Office MURI Award W911NF-11-1-0036. GHC was supported by an NDSEG fellowship.

8

References
[1] Fabio Aiolli. A preliminary study on a recommender system for the million songs dataset challenge. In

Proceedings of the Italian Information Retrieval Workshop, pages 73–83, 2013.

[2] Anima Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky. Tensor decomposi-
tions for learning latent variable models, 2012. arXiv:1210.7559.

[3] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47(2-3):235–256, May 2002.

[4] Kishor Barman and Onkar Dabeer. Analysis of a collaborative filter based on popularity amongst neigh-
bors. IEEE Transactions on Information Theory, 58(12):7110–7134, 2012.

[5] Mikhail Belkin and Kaushik Sinha. Polynomial learning of distribution families. In Foundations of
Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 103–112. IEEE, 2010.

[6] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The million song dataset.
In Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR 2011), 2011.

[7] Gérard Biau, Benoı̂t Cadre, and Laurent Rouvière. Statistical analysis of k-nearest neighbor collaborative
recommendation. The Annals of Statistics, 38(3):1568–1592, 2010.

[8] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. Foundations and Trends in Machine Learning, 5(1):1–122, 2012.

[9] Loc Bui, Ramesh Johari, and Shie Mannor. Clustered bandits, 2012. arXiv:1206.4169.

[10] Kamalika Chaudhuri and Satish Rao. Learning mixtures of product distributions using correlations and
independence. In Conference on Learning Theory, pages 9–20, 2008.

[11] Onkar Dabeer. Adaptive collaborating filtering: The low noise regime. In IEEE International Symposium
on Information Theory, pages 1197–1201, 2013.

[12] Yash Deshpande and Andrea Montanari. Linear bandits in high dimension and recommendation systems,
2013. arXiv:1301.1722.

[13] Roger B. Grosse, Ruslan Salakhutdinov, William T. Freeman, and Joshua B. Tenenbaum. Exploiting
compositionality to explore a large space of model structures. In Uncertainty in Artificial Intelligence,
pages 306–315, 2012.

[14] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the Amer-
ican statistical association, 58(301):13–30, 1963.

[15] Robert Kleinberg, Alexandru Niculescu-Mizil, and Yogeshwer Sharma. Regret bounds for sleeping ex-
perts and bandits. Machine Learning, 80(2-3):245–272, 2010.

[16] Yehuda Koren. The BellKor solution to the Netflix grand prize. http://www.netflixprize.com/
assets/GrandPrize2009_BPC_BellKor.pdf, August 2009.

[17] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations: item-to-item collaborative
filtering. IEEE Internet Computing, 7(1):76–80, 2003.

[18] Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures of gaussians. Pro-
ceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, 2010.

[19] Martin Piotte and Martin Chabbert. The pragmatic theory solution to the netflix grand prize. http://
www.netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf, Au-
gust 2009.

[20] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. Grouplens: An
open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM Conference on
Computer Supported Cooperative Work, CSCW ’94, pages 175–186, New York, NY, USA, 1994. ACM.

[21] Ilya Sutskever, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Modelling relational data using
bayesian clustered tensor factorization. In NIPS, pages 1821–1828, 2009.

[22] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge, MA, 1998.

[23] William R. Thompson. On the Likelihood that one Unknown Probability Exceeds Another in View of the
Evidence of Two Samples. Biometrika, 25:285–294, 1933.

[24] Andreas Töscher and Michael Jahrer. The bigchaos solution to the netflix grand prize. http://www.
netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf, September 2009.

9

http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf

A Appendix

Throughout our derivations, if it is clear from context, we omit the argument (t) indexing time, for
example writing Yu instead of Yu(t).

A.1 Proof of Lemma 1

We reproduce Lemma 1 below for ease of presentation.
Lemma 1. For user u, after

t ≥
(

2 log(10kmnα/∆)

∆4(1− γ)2

)1/(1−α)

time steps,

P(Egood(u, t)) ≥ 1− exp
(
− n

8k

)
− 12 exp

(
− ∆4(1− γ)2t1−α

20

)
.

To derive this lower bound on the probability that the good neighborhood event Egood(u, t) occurs,
we prove four lemmas (Lemmas 4, 5, 6, and 7). Before doing so, we define a constant that will
appear several times:

β , exp(−∆4(1− γ)2t1−α).

We begin by ensuring that enough users from each of the k user types are in the system.
Lemma 4. For a user u,

P
(

user u’s type has ≤ n

2k
users

)
≤ exp

(
− n

8k

)
.

Proof. Let N be the number of users from user u’s type. User types are equiprobable, so N ∼
Bin(n, 1

k). By a Chernoff bound,

P
(
N ≤ n

2k

)
≤ exp

(
− 1

2

(nk − n
2k)2

n
k

)
= exp

(
− n

8k

)
.

Next, we ensure that sufficiently many items have been jointly explored across all users. This will
subsequently be used for bounding both the number of good neighbors and the number of bad
neighbors.
Lemma 5. After t time steps,

P(fewer than t1−α/2 jointly explored items) ≤ exp(−t1−α/20).

Proof. Let Zs be the indicator random variable for the event that the algorithm jointly explores
at time s. Thus, the number of jointly explored items up to time t is

∑t
s=1 Zs. By our choice

for the time-varying joint exploration probability εJ , we have P(Zs = 1) = εJ(s) = 1
sα and

P(Zs = 0) = 1− 1
sα . Note that the centered random variable Z̄s = E[Zs]−Zs = 1

sα −Zs has zero
mean, and |Z̄s| ≤ 1 with probability 1. Then,

P
(t∑
s=1

Zs <
1

2
t1−α

)
= P

(t∑
s=1

Z̄s >

t∑
s=1

E[Zs]−
1

2
t1−α

)
(i)

≤ P
(t∑
s=1

Z̄s >
1

2
t1−α

)
(ii)

≤ exp

(
−

1
8 t

2(1−α)∑t
s=1 E[Z̄2

s] + 1
6 t

1−α

)
(iii)

≤ exp

(
−

1
8 t

2(1−α)

t1−α

1−α + 1
6 t

1−α

)
= exp

(
− 3(1− α)t1−α

4(7− α)

)
(iv)

≤ exp(−t1−α/20),

where step (i) uses the fact that
∑t
s=1 E[Zs] =

∑t
s=1 1/sα ≥ t/tα = t1−α, step (ii) is Bernstein’s

inequality, step (iii) uses the fact that
∑t
s=1 E[Z̄2

s] ≤∑t
s=1 E[Z2

s] =
∑t
s=1 1/sα ≤ t1−α/(1−α),

and step (iv) uses the fact that α ≤ 4/7. (We remark that the choice of constant 4/7 isn’t special;
changing it would simply modify the constant in the decaying exponentially to potentially no longer
be 1/20).

10

Assuming that the bad events for the previous two lemmas do not occur, we now provide a lower
bound on the number of good neighbors that holds with high probability.

Lemma 6. Suppose that there are no ∆-ambiguous items, that there are more than n
2k users of user

u’s type, and that all users have rated at least t1−α/2 items as part of joint exploration. For user u,
let ngood be the number of “good” neighbors of user u. If β ≤ 1

10 , then

P
(
ngood ≤ (1− β)

n

4k

)
≤ 10β.

We defer the proof of Lemma 6 to Appendix A.1.1.

Finally, we verify that the number of bad neighbors for any user is not too large, again conditioned
on there being enough jointly explored items.

Lemma 7. Suppose that the minimum number of rated items in common between any pair of users
is t1−α/2 and suppose that γ-incoherence holds for some γ ∈ [0, 1). For user u, let nbad be the
number of “bad” neighbors of user u. Then

P(nbad ≥ n
√
β) ≤

√
β.

We defer the proof of Lemma 7 to Appendix A.1.2.

We now prove Lemma 1, which union bounds over the four bad events of Lemmas 4, 5, 6, and 7.
Recall that the good neighborhood event Egood(u, t) holds if at time t, user u has more than n

5k good
neighbors and less than ∆tn1−α

10km bad neighbors. By assuming that the four bad events don’t happen,
then Lemma 6 tells us that there are more than (1 − β) n4k good neighbors provided that β ≤ 1

10 .
Thus, to ensure that there are more than n

5k good neighbors, it suffices to have (1 − β) n4k ≥ n
5k ,

which happens when β ≤ 1
5 , but we already require that β ≤ 1

10 . Similarly, Lemma 7 tells us
that there are fewer than n

√
β bad neighbors, so to ensure that there are fewer than ∆tn1−α

10km bad
neighbors it suffices to have n

√
β ≤ ∆tn1−α

10km , which happens when β ≤ (∆t
10kmnα)2. We can satisfy

all constraints on β by asking that β ≤ (∆
10kmnα)2, which is tantamount to asking that

t ≥
(

2 log(10kmnα/∆)

∆4(1− γ)2

)1/(1−α)

since β = exp(−∆4(1− γ)2t1−α).

Finally, with t satisfying the inequality above, the union bound over the four bad events can be
further bounded to complete the proof:

P(Egood(u, t)) ≥ 1− exp
(
− n

8k

)
− exp(−t1−α/20)− 10β −

√
β

≥ 1− exp
(
− n

8k

)
− 12 exp

(
− ∆4(1− γ)2t1−α

20

)
.

A.1.1 Proof of Lemma 6

We begin with a preliminary lemma that upper-bounds the probability of two users of the same type
not being declared as neighbors.

Lemma 8. Suppose that there are no ∆-ambiguous items for any of the user types. Let users u
and v be of the same type, and suppose that they have rated at least Γ0 items in common (explored
jointly). Then for θ ∈ (0, 4∆2),

P(users u and v are not declared as neighbors) ≤ exp
(
− (4∆2 − θ)2

2
Γ0

)
.

11

Proof. Let us first suppose that users u and v have rated exactly Γ0 items in common. The two users
are not declared to be neighbors if 〈Ỹu, Ỹv〉 < θΓ0. Let Ω ⊆ [m] such that |Ω| = Γ0. We have

E
[
〈Ỹu, Ỹv〉

∣∣supp(Ỹu) ∩ supp(Ỹv) = Ω
]

=
∑
i∈Ω

E[ỸuiỸvi | Ỹui 6= 0, Ỹvi 6= 0]

=
∑
i∈Ω

(p2
ui + (1− pui)2 − 2pui(1− pui))

= 4
∑
i∈Ω

(
pui −

1

2

)2

. (2)

Since 〈Ỹu, Ỹv〉 =
∑
i∈Ω ỸuiỸvi is the sum of terms {ỸuiỸvi}i∈Ω that are each bounded within

[−1, 1], Hoeffding’s inequality yields

P
(
〈Ỹu, Ỹv〉 ≤ θΓ0

∣∣ supp(Ỹu) ∩ supp(Ỹv) = Ω
)
≤ exp

(
−
[equation (2)︷ ︸︸ ︷

4
∑
i∈Ω

(
pgi − 1

2

)2−θΓ0

]2
2Γ0

)
. (3)

As there are no ∆-ambiguous items, ∆ ≤ |pui − 1/2| for all users u and items i. Thus, our choice
of θ guarantees that

4
∑
i∈Ω

(
pui −

1

2

)2

− θΓ0 ≥ 4Γ0∆2 − θΓ0 = (4∆2 − θ)Γ0 ≥ 0. (4)

Combining inequalities (3) and (4), and observing that the above holds for all subsets Ω of cardinality
Γ0, we obtain the desired bound on the probability that users u and v are not declared as neighbors:

P(〈Ỹu, Ỹv〉 ≤ θΓ0 | |supp(Ỹu) ∩ supp(Ỹv)| = Γ0) ≤ exp
(
− (4∆2 − θ)2

2
Γ0

)
. (5)

Now to handle the case that users u and v have jointly rated more than Γ0 items, observe that, with
shorthand Γuv , |supp(Ỹu) ∩ supp(Ỹv)|,

P(u and v not declared neighbors | pu = pv,Γuv ≥ Γ0)

= P(〈Ỹu, Ỹv〉 < θΓuv | pu = pv, Γuv ≥ Γ0)

=
P(〈Ỹu, Ỹv〉 ≤ θΓuv,Γuv ≥ Γ0 | pu = pv)

P(Γuv ≥ Γ0 | pu = pv)

=

∑m
`=Γ0

P(〈Ỹu, Ỹv〉 ≤ θ`,Γuv = ` | pu = pv)

P(Γuv ≥ Γ0 | pu = pv)

=

∑m
`=Γ0

[
P(Γuv = ` | pu = pv)

·P(〈Ỹu, Ỹv〉 ≤ θ` | pu = pv,Γuv = `)
]

P(Γuv ≥ Γ0 | pu = pv)

≤
∑m
`=Γ0

P(Γuv = ` | pu = pv) exp
(
− (4∆2−θ)2

2 Γ0

)
P(Γuv ≥ Γ0 | pu = pv)

by inequality (5)

= exp
(
− (4∆2 − θ)2

2
Γ0

)
.

We now prove Lemma 6.

Suppose that the event in Lemma 4 holds. Let G be n
2k users from the same user type as user u;

there could be more than n
2k such users but it suffices to consider n

2k of them. We define an indicator
random variable

Gv , 1{users u and v are neighbors} = 1{〈Ỹ (t)
u , Ỹ (t)

v 〉 ≥ θt1−α/2}.

12

Thus, the number of good neighbors of user u is lower-bounded by W =
∑
v∈G Gv . Note that the

Gv’s are not independent. To arrive at a lower bound for W that holds with high probability, we use
Chebyshev’s inequality:

P(W − E[W] ≤ −E[W]/2) ≤ 4Var(W)

(E[W])2
. (6)

Let β = exp(−(4∆2 − θ)2Γ0/2) be the probability bound from Lemma 8, where by our choice of
θ = 2∆2(1 + γ) and with Γ0 = t1−α/2, we have β = exp(−∆4(1− γ)2t1−α).

Applying Lemma 8, we have E[W] ≥ (1− β) n2k , and hence

(E[W])2 ≥ (1− 2β)
n2

4k2
. (7)

We now upper-bound
Var(W) =

∑
v∈G

Var(Gv) +
∑
v 6=w

Cov(Gv, Gw).

Since Gv = G2
v ,

Var(Gv) = E[Gv]− E[Gv]
2 = E[Gv]︸ ︷︷ ︸

≤1

(1− E[Gv]) ≤ β,

where the last step uses Lemma 8.

Meanwhile,

Cov(Gv, Gw) = E[GvGw]− E[Gv]E[Gw] ≤ 1− (1− β)2 ≤ 2β.

Putting together the pieces,

Var(W) ≤ n

2k
· β +

n

2k
·
(n

2k
− 1
)
· 2β ≤ n2

2k2
· β. (8)

Plugging (7) and (8) into (6) gives

P(W − E[W] ≤ −E[W]/2) ≤ 8β

1− 2β
≤ 10β,

provided that β ≤ 1
10 . Thus, ngood ≥W ≥ E[W]/2 ≥ (1− β) n4k with probability at least 1− 10β.

A.1.2 Proof of Lemma 7

We begin with a preliminary lemma that upper-bounds the probability of two users of different types
being declared as neighbors.
Lemma 9. Let users u and v be of different types, and suppose that they have rated at least Γ0

items in common via joint exploration. Further suppose γ-incoherence is satisfied for γ ∈ [0, 1). If
θ ≥ 4γ∆2, then

P(users u and v are declared to be neighbors) ≤ exp
(
− (θ − 4γ∆2)2

2
Γ0

)
.

Proof. As with the proof of Lemma 8, we first analyze the case where users u and v have rated
exactly Γ0 items in common. Users u and v are declared to be neighbors if 〈Ỹu, Ỹv〉 ≥ θΓ0. We
now crucially use the fact that joint exploration chooses these Γ0 items as a random subset of the
m items. For our random permutation σ of m items, we have 〈Ỹu, Ỹv〉 =

∑Γ0

i=1 Ỹu,σ(i)Ỹv,σ(i) =∑Γ0

i=1 Yu,σ(i)Yv,σ(i), which is the sum of terms {Yu,σ(i)Yv,σ(i)}Γ0
i=1 that are each bounded within

[−1, 1] and drawn without replacement from a population of all possible items. Hoeffding’s in-
equality (which also applies to the current scenario of sampling without replacement [14]) yields

P
(
〈Ỹu, Ỹv〉 ≥ θΓ0 | pu 6= pv

)
≤ exp

(
−
(
θΓ0 − E[〈Ỹu, Ỹv〉 | pu 6= pv]

)2
2Γ0

)
. (9)

13

By γ-incoherence and our choice of θ,

θΓ0 − E
[
〈Ỹu, Ỹv〉 | pu 6= pv

]
≥ θΓ0 − 4γ∆2Γ0 = (θ − 4γ∆2)Γ0 ≥ 0. (10)

Above, we used the fact that Γ0 randomly explored items are a random subset ofm items, and hence

E
[

1
Γ 0
〈Ỹu, Ỹv〉

]
= E

[
1
m 〈Yu, Yv〉

]
,

with Yu, Yv representing the entire (random) vector of preferences of u and v respectively.

Combining inequalities (9) and (10) yields

P
(
〈Ỹu, Ỹv〉 ≥ θΓ0 | pu 6= pv

)
≤ exp

(
− (θ − 4γ∆2)2

2
Γ0

)
.

A similar argument as the ending of Lemma 8’s proof establishes that the bound holds even if users
u and v have jointly explored more than Γ0 items.

We now prove Lemma 7.

Let β = exp(−(θ− 4γ∆2)2Γ0/2) be the probability bound from Lemma 9, where by our choice of
θ = 2∆2(1 + γ) and with Γ0 = t1−α/2, we have β = exp(−∆4(1− γ)2t1−α).

By Lemma 9, for a pair of users u and v with at least t1−α/2 items jointly explored, the probability
that they are erroneously declared neighbors is upper-bounded by β.

Denote the set of users of type different from u by B, and write

nbad =
∑
v∈B

1{u and v are declared to be neighbors},

whence E[nbad] ≤ nβ. Markov’s inequality gives

P(nbad ≥ n
√
β) ≤ E[nbad]

n
√
β
≤ nβ

n
√
β

=
√
β ,

proving the lemma.

A.2 Proof of Lemma 2

We reproduce Lemma 2 below.
Lemma 2. For user u at time t, if the good neighborhood event Egood(u, t) holds and t ≤ µm, then

P(Xut = 1) ≥ 1− 2m exp
(
− ∆2tn1−α

40km

)
− 1

tα
− 1

nα
.

We begin by checking that when the good neighborhood event Egood(u, t) holds for user u, the items
have been rated enough times by the good neighbors.
Lemma 10. For user u at time t, suppose that the good neighborhood event Egood(u, t) holds. Then
for a given item i,

P
(

item i has ≤ tn1−α

10km
ratings from good neighbors of u

)
≤ exp

(
− tn1−α

40km

)
.

Proof. The number of user u’s good neighbors who have rated item i stochastically dominates a
Bin(n5k ,

εR(n)t
m) random variable, where εR(n)t

m = t
mnα (here, we have critically used the lower

bound on the number of good neighbors user u has when the good neighborhood event Egood(u, t)
holds). By a Chernoff bound,

P
(

Bin
(n

5k
,

t

mnα

)
≤ tn1−α

10km

)
≤ exp

(
− 1

2

(tn
1−α

5km − tn1−α

10km)2

tn1−α

5km

)
≤ exp

(
− tn1−α

40km

)
.

Next, we show a sufficient condition for which the algorithm correctly classifies every item as likable
or unlikable for user u.

14

Lemma 11. Suppose that there are no ∆-ambiguous items. For user u at time t, suppose that the
good neighborhood event Egood(u, t) holds. Provided that every item i ∈ [m] has more than tn1−α

10km

ratings from good neighbors of user u, then with probability at least 1 − m exp(−∆2tn1−α

20km), we
have that for every item i ∈ [m],

p̃ui >
1

2
if item i is likable by user u,

p̃ui <
1

2
if item i is unlikable by user u.

Proof. Let A be the number of ratings that good neighbors of user u have provided. Suppose item i

is likable by user u. Then when we condition on A = a0 , d tn1−α

10km e, p̃ui stochastically dominates

qui ,
Bin(a0, pui)

a0 + ∆a0
=

Bin(a0, pui)

(1 + ∆)a0
,

which is the worst-case variant of p̃ui that insists that all ∆a0 bad neighbors provided rating “−1”
for likable item i (here, we have critically used the upper bound on the number of bad neighbors
user u has when the good neighborhood event Egood(u, t) holds). Then

P(qui ≤
1

2
| A = a0) = P

(
Bin(a0, pui) ≤

(1 + ∆)a0

2

∣∣∣∣ A = a0

)
= P

(
a0pui − Bin(a0, pui) ≥ a0

(
pui −

1

2
− ∆

2

) ∣∣∣∣ A = a0

)
(i)

≤ exp
(
− 2a0

(
pui −

1

2
− ∆

2

)2)
(ii)

≤ exp
(
− 1

2
a0∆2

)
(iii)

≤ exp
(
− ∆2tn1−α

20km

)
,

where step (i) is Hoeffding’s inequality, step (ii) follows from item i being likable by user u (i.e.,
pui ≥ 1

2 + ∆), and step (iii) is by our choice of a0. Conclude then that

P(p̃ui ≤
1

2
| A = a0) ≤ exp

(
− ∆2tn1−α

20km

)
.

Finally,

P
(
p̃ui ≤

1

2

∣∣∣ A ≥ tn1−α

10km

)
=

∑∞
a=a0

P(A = a)P(p̃ui ≤ 1
2 | A = a)

P(A ≥ tn1−α

10km)

≤
∑∞
a=a0

P(A = a) exp(−∆2tn1−α

20km)

P(A ≥ tn1−α

10km)

= exp
(
− ∆2tn1−α

20km

)
.

A similar argument holds for when item i is unlikable. Union-bounding over all m items yields the
claim.

We now prove Lemma 2. First off, provided that t ≤ µm, we know that there must still exist an
item likable by user u that user u has yet to consume. For user u at time t, supposing that event
Egood(u, t) holds, then every item has been rated more than tn1−α

10km times by the good neighbors of
user u with probability at least 1 − m exp(− tn1−α

40km). This follows from union-bounding over the
m items with Lemma 10. Applying Lemma 11, and noting that we only exploit with probability
1− εJ(t)− εR(n) = 1− 1/tα − 1/nα, we finish the proof:

P(Xut = 1) ≥ 1−m exp
(
− tn1−α

40km

)
−m exp

(
− ∆2tn1−α

20km

)
− 1

tα
− 1

nα

≥ 1− 2m exp
(
− ∆2tn1−α

40km

)
− 1

tα
− 1

nα
.

15

A.3 Experimental Results

We demonstrate our algorithm COLLABORATIVE-GREEDY on two datasets, showing that they have
comparable performance and that they both outperform two existing recommendation algorithms
Popularity Amongst Friends (PAF) [4] and Deshpande and Montanari’s method (DM) [12]. At each
time step, PAF finds nearest neighbors (“friends”) for every user and recommends to a user the
“most popular” item, i.e., the one with the most number of +1 ratings, among the user’s friends.
DM doesn’t do any collaboration beyond a preprocessing step that computes item feature vectors
via matrix completion. Then during online recommendation, DM learns user feature vectors over
time with the help of item feature vectors and recommends an item to each user based on whether it
aligns well with the user’s feature vector.

We simulate an online recommendation system based on movie ratings from the Movielens10m and
Netflix datasets, each of which provides a sparsely filled user-by-movie rating matrix with ratings
out of 5 stars. Unfortunately, existing collaborative filtering datasets such as the two we consider
don’t offer the interactivity of a real online recommendation system, nor do they allow us to reveal
the rating for an item that a user didn’t actually rate. For simulating an online system, the former
issue can be dealt with by simply revealing entries in the user-by-item rating matrix over time. We
address the latter issue by only considering a dense “top users vs. top items” subset of each dataset.
In particular, we consider only the “top” users who have rated the most number of items, and the
“top” items that have received the most number of ratings. While this dense part of the dataset is
unrepresentative of the rest of the dataset, it does allow us to use actual ratings provided by users
without synthesizing any ratings.

An initial question to ask is whether the dense movie ratings matrices we consider could be reason-
ably explained by our latent source model. We automatically learn the structure of these matrices
using the method by Grosse et al. [13] and find Bayesian clustered tensor factorization (BCTF) to
accurately model the data. This finding isn’t surprising as BCTF has previously been used to model
movie ratings data [21]. BCTF effectively clusters both users and movies so that we get structure
such as that shown in Figure 1(a) for the Movielens10m “top users vs. top items” matrix. Our latent
source model could reasonably model movie ratings data as it only assumes clustering of users.

Following the experimental setup of [4], we quantize a rating of 4 stars or more to be +1 (likeable),
and a rating of 3 stars or less to be −1 (unlikeable). While we look at a dense subset of each
dataset, there are still missing entries. If a user u hasn’t rated item j in the dataset, then we set
the corresponding true rating to 0, meaning that in our simulation, upon recommending item j to
user u, we receive 0 reward, but we still mark that user u has consumed item j; thus, item j can no
longer be recommended to user u. For both Movielens10m and Netflix datasets, we consider the
top n = 200 users and the top m = 500 movies. For Movielens10m, the resulting user-by-rating
matrix has 80.7% nonzero entries. For Netflix, the resulting matrix has 86.0% nonzero entries. For
an algorithm that recommends item πut to user u at time t, we measure the algorithm’s average
cumulative reward up to time T as

1

n

T∑
t=1

n∑
u=1

Y (T)
uπut ,

where we average over users.

For all methods, we recommend items until we reach time T = 500, i.e., we make movie recom-
mendations until each user has seen all m = 500 movies. We disallow the matrix completion step
for DM to see the users that we actually test on, but we allow it to see the the same items as what
is in the simulated online recommendation system in order to compute these items’ feature vectors
(using the rest of the users in the dataset). Furthermore, when a rating is revealed, we provide DM
both the thresholded rating and the non-thresholded rating, the latter of which DM uses to estimate
user feature vectors over time.

Parameters θ and α for and COLLABORATIVE-GREEDY are chosen using training data: We sweep
over the two parameters on training data consisting of 200 users that are the “next top” 200 users,
i.e., ranked 201 to 400 in number movie ratings they provided. For simplicity, we discretize our
search space to θ ∈ {0.0, 0.1, . . . , 1.0} and α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We choose the parameter
setting achieving the highest area under the cumulative reward curve. For both Movielens10m and
Netflix datasets, this corresponded to setting θ = 0.0 and α = 0.5 for COLLABORATIVE-GREEDY.

16

0 100 200 300 400 500

Time

−10

0

10

20

30

40

50

60

A
ve

ra
ge

cu
m

ul
at

iv
e

re
w

ar
d

Collaborative-Greedy

Popularity Amongst Friends

Deshpande-Montanari

(a)

0 100 200 300 400 500

Time

−10

0

10

20

30

40

50

60

A
ve

ra
ge

cu
m

ul
at

iv
e

re
w

ar
d

Collaborative-Greedy

Popularity Amongst Friends

Deshpande-Montanari

(b)

Figure 2: Average cumulative rewards over time: (a) Movielens10m, (b) Netflix.

In contrast, the parameters for PAF and DM are chosen to be the best parameters for the test data
among a wide range of parameters. The results are shown in Figure 2. We find that our algorithm
COLLABORATIVE-GREEDY outperforms PAF and DM. We remark that the curves are roughly con-
cave, which is expected since once we’ve finished recommending likeable items (roughly around
time step 300), we end up recommending mostly unlikeable items until we’ve exhausted all the
items.

17

	Introduction
	A Model and Learning Problem for Online Recommendations
	A Collaborative Filtering Algorithm and Its Performance Guarantee
	Proof of Theorem 1
	Experimental Results
	Discussion and Related Work
	Appendix
	Proof of Lemma 1
	Proof of Lemma 6
	Proof of Lemma 7

	Proof of Lemma 2
	Experimental Results

