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Abstract

Small molecule ligands specific for tumor-associated surface receptors have wide applications in

cancer diagnosis and therapy. Achieving high-affinity binding to the desired target is important for

improving detection limits and for increasing therapeutic efficacy. However, the affinity required

for maximal binding and retention remains unknown. Here, we present a systematic study of the

effect of small molecule affinity on tumor uptake in vivo with affinities spanning a range of three

orders of magnitude. A pretargeted bispecific antibody with different binding affinities to different

DOTA-based small molecules is used as a receptor proxy. In this particular system targeting

carcinoembryonic antigen, a small-molecule binding affinity of 400 pM was sufficient to achieve

maximal tumor targeting, and an improvement in affinity to 10 pM showed no significant

improvement in tumor uptake at 24 h post-injection. We derive a simple mathematical model of

tumor targeting using measurable parameters that correlates well with experimental observations.

We use relations derived from the model to develop design criteria for the future development of

small molecule agents for targeted cancer therapeutics.
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INTRODUCTION

Radiolabeled agents have been used as delivery vehicles of ionizing radiation to specific

disease sites for over 50 years (1–6). Their systemic administration allows the treatment of

widely disseminated disease, as opposed to external beam radiotherapy, which is used for

the treatment of known disease sites. Therapeutic radiopharmaceuticals are designed to

exhibit high specificity to the targeted disease site with low accumulation in normal tissues

producing minimal radiation damage to normal cells.

A large number of molecules have been considered for targeted delivery of radioisotopes,

including radiolabeled antibodies, antibody fragments, alterative scaffolds, and small

molecules (7–10). While antibodies exhibit excellent binding specificity, they also exhibit

long half-lives in the blood resulting in low tumor-to-background ratios. Antibody fragments

and other smaller binding scaffolds exhibit faster blood clearance, but result in high kidney

and/or liver uptake. Radiolabeled small molecule ligands generally exhibit more rapid blood

clearance and lower background compared to antibodies and antibody fragments, but usually

result in poor specificity due to relatively low affinities for the desired target. Thus, there is

a strong interest in developing small molecules with higher affinities both through improved

high-throughput screening techniques (11) and through affinity enhancement using avidity

(12–14).

Another approach to generate high affinity binding of small molecules to disease sites is to

use a method called pretargeted radioimmunotherapy (15–17). This approach couples the

high binding specificity of antibodies with the rapid clearance of radiolabeled small

molecules, resulting in high tumor uptake yet fast clearance from non-tumor tissue.

We have engineered a high-affinity antibody fragment with specificity for DOTA-metal

chelates for pretargeted radioimmunotherapy applications (18). A particularly unique feature

of the engineered scaffold is its ability to bind to different DOTA-chelates with a wide range

of affinities. Here, we use it in a pretargeted approach to systematically analyze the effect of

affinity on tumor uptake in vivo. We compare these results to a compartmental model that

has been extended from previous work and use simple analytical relations to derive design

criteria to guide engineering efforts in the development of small molecule radiotherapeutics.

We present here a unique analysis of affinity in tumor targeting and discuss its implications

in pretargeted radioimmunotherapy and small molecule targeting.

MATERIALS AND METHODS

Reagents

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), S-2-(R-

Aminobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (DOTA-Bn), and S-2-(4-

Isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (DOTA-SCN) were
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purchased from Macrocyclics (Dallas, TX). All other chemicals were purchased from

Sigma-Aldrich (St. Louis, MO) or Thermo Fisher Scientific (Waltham, MA) unless

specified otherwise.Sm3e/C825 bsAb was produced by transient HEK cell transfection and

purified as described (19).

Synthesis of Dextran-based Clearing Agent

5 mg (10 nmol) of 500 kDa amino dextran purchased from Invitrogen (Carlsbad, CA) with

136 moles of amine per mole dextran was reacted with 3.7 mg (5.3 µmol) DOTA-SCN in 1

mL dimethyl sulfoxide (DMSO) with 1.9 µL (13.6 µmol) triethylamine TEA overnight at

room temperature with mild vortexing. The dextran reaction mixture was diluted with 14

mL 0.4 M sodium acetate pH 5.2 and 53 µmol yttrium nitrate was added. The mixture was

incubated overnight at 37°C, dialyzed against water, and then dried down by vacuum

centrifugation. The dried dextran compound was resuspended in phosphate buffered saline

(PBS) and purified by size exclusion chromatography using a Superdex 75 10/300 GL

column. Fractions containing the dextran compound were combined, dialyzed against water

twice, dried by vacuum centrifugation, resuspended in saline and 0.2 µm filtered. The final

dextran-DOTA-Y contained approximately 130 DOTA molecules as assessed by a TNBSA

assay (Thermo Fisher Scientific, Rockford, IL).

Radiolabeling

DOTA and DOTABn were dissolved at 0.5 mM in ammonium acetate pH 5.6. 1–2

mCi 177LuCl3 (PerkinElmer, Waltham, MA) or 111InCl3 (Cardinal Health, Dublin, OH)

were added to the metal chelate and incubated for 1–2 h at 85–95°C. The radiolabeled

compounds were purified by RP-HPLC (14, 20) with gamma detection on a 4.6 × 75 mm

Symmetry C18 column using a linear gradient from 0% to 40% B over 15 minutes, at a flow

rate of 1 mL/min, where A = 10 mM TEAA and B = methanol. The purified compounds

were dried under vacuum, resuspended in saline, and filter-sterilized.

111In-DOTA-dextran was prepared by synthesizing dextran-DOTA as described above,

without loading with cold yttrium. Dextran-DOTA was incubated with 1–2 mCi 111InCl3 for

1 h at 37°C followed by concentration and dilution with saline as described above.

Animal models

All animal handling was performed in accordance with Beth Israel Deaconess Medical

Center Institutional Animal Care and Use Committee guidelines. LS174T and C6 cells were

obtained from ATCC and maintained under standard conditions. The cell lines were

confirmed to be negative for mycoplasma and mouse pathogens by the Yale Virology Lab.

Xenograft tumors were established in left and right flanks, respectively, of 5–6 week-old

make NCRU-nu/nu mice (Taconic Farms, Hudson, NY) as described previously (19).

Pretargeted protocol

An IgG-basedbispecific antibody (bsAb), Sm3e/C825, that binds to CEA and DOTA-metal

chelates has been previously described (19). The bsAb binds to CEA with an apparent

affinity of ~100 pM and to 177Lu-DOTABn, 177Lu-DOTA, 111In-DOTABn and 111In-

DOTA with affinities of approximately 10 pM, 400 pM, 1 nM, and 20 nM, respectively (18,
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19).500 ug (2.5 nmol)Sm3e/C825 bsAb (19) was intravenously injected into LS174T and C6

(CEA-negative tumor used as a controlfor nonspecific tumor uptake) tumor-bearing mice

followed by intravenous injection of 250 ug (0.45 nmol) dextran clearing agent 24 h later to

clear residual bsAb in the blood prior to administration of the radiolabeled DOTA.100–150

μCi (2–8 pmol) 177Lu-DOTABn, 177Lu-DOTA, 111In-DOTABn or 111In-DOTA was

injected intravenously 1 h following clearing agent administration. Blood was collected

from the tail vein using micro-capillary tubes and counted on a model 1470 Wallac Wizard

(PerkinElmer, Wellesley, MA) 10-detector gamma counter. At various times, mice were

euthanized by intraperitoneal injection of pentobarbital followed by cervical dislocation, a

method consistent with the recommendations of the Panel on Euthanasia of the American

Veterinary Medical Association. Organs and tumors were resected, washed three times in

PBS, weighed, and counted as described above.

Imaging

SPECT/CT (single photon emission computed tomography/computed tomography) scans

and image analyses were performed using a rodent scanner (NanoSPECT/CT, Bioscan,

Washington, DC) equipped with an 8W x-ray source running at 45 kV (177 µA), and a 48

µm pitch CMOS-CCD x-ray detector. Mice were anesthetized in an anesthetic chamber with

isoflurane and transferred to a bed on a gantry for imaging where gas anesthesia was

maintained for the duration of the scan. After acquisition of a CT topogram, helical micro

SPECT was performed using a four-headed gamma camera outfitted with multi-pinhole

collimators (1.4 mm) and a total scan time of 45 min. SPECT images were acquired over

360° in 24 projections each using a 256 × 256 frame size (1.0 mm pixels). Images were

reconstructed with Bioscan HiSPECT iterative reconstruction software and fused with CT

images. Immediately after scanning, mice were sacrificed; tissues and tumors were weighed

and counted as described above.

Mathematical Model

Tumor uptake of radiolabeled small molecules was simulated using a mechanistic

compartmental model extended from previous work (21, 22), with the assumption that

radioisotope that is internalized into cells remains trapped within the cell (Supplementary

Materials and Methods). The tumor concentration of residualizing isotope following a sub-

saturating intravenous injection of radiolabeled small molecule can therefore be described

as:

(1)

(2)

Where Ctumor is the overall concentration of the isotope in the tumor, t is time, Cp0 is the

initial plasma concentration of the radiolabeled small molecule, ke is the rate of endocytosis

(s−1), BP is the binding potential Bmax/KD,Bmax is the concentration of total antigen in the
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tumor and KD is the binding affinity, Ktrans is the transcapillary transport rate (s−1), kcl is the

plasma clearance rate of the small molecule (s−1), and ε is the available volume fraction of

the small molecule in the tumor. Parameter values were measured experimentally as

described or obtained from published literature (Supplementary Table S1).

Using the above model, the concentration of residualized isotope in the tumor as time goes

to infinity is:

(3)

RESULTS

The bispecific antibody Sm3e/C825, composed of the engineered high-affinity antibody

fragment C825 with specificity for DOTA-metal chelates (18), was used in a pretargeted

protocol to target DOTA-chelates to CEA-expressing xenograft tumors. A schematic

depicting the pretargeted approach is shown in Figure 1.C825 binds to different DOTA-

chelates with widely varying affinities dependent on the chelated metal and the presence or

lack of an aminobenzene group attached to a carbon in the macrocycle backbone of DOTA.

The organ/tissue biodistribution at 24 h post-injection of the hapten(177Lu-DOTABn, 177Lu-

DOTA, 111In-DOTABn or 111In-DOTA) was determined in tumor-bearing mice (Figure 2

and Supplementary Table S2). The activity in the LS174T tumor increased with increasing

hapten affinity from 0.5 ± 0.1 %ID/g for 111In-DOTA (KD = 20 nM) to 1.6 ± 0.3 %ID/g

for 111In-DOTABn (KD = 1 nM) to 14.3 ± 1.8 %ID/g for 177Lu-DOTA (KD = 400 pM). The

tumor activity for 177Lu-DOTABn (KD = 10 pM) was 19 ± 4 %ID/g and not significantly

different than that of the 400 pM affinity 177Lu-DOTA. The activity in the C6 antigen-

negative tumor also increased with affinity, due to higher-affinity binding to bsAb retained

nonspecifically through the enhanced permeability and retention (EPR) effect (23).

Activities in non-tumor tissues are also higher for the highest affinity compounds due to

higher affinity binding to residual bsAb. The tumor-to-kidney ratio increased from 1.2 ± 0.4

for ~20 nM to 17 ± 3 for ~400 pM, but then decreased to 10 ± 2 for ~10 pM affinity due to

higher uptake in the kidney yet similar tumor uptake. Similarly, the tumor-to-blood ratio was

highest for 400 pM affinity 177Lu-DOTA at 380 ± 90.

One mouse from each affinity group was imaged by SPECT/CT (Figure 3). For the 111In

isotope, visible tumor signal is observed in the antigen-positive LS174T tumor at 24 h p.i.

for 1 nM 111In-DOTABn, however, no significant signal is observed for 20 nM 111In-

DOTA. For the 177Lu-isotope, excellent tumor targeting is observed for both 400 pM 177Lu-

DOTA and 10 pM 177Lu-DOTABn. Some signal is also observed in the antigen-negative

tumors, as expected from the biodistribution data. It should be noted that while 111In

and 177Lu have similar reconstructed resolutions, the average sensitivity of 111In is about

five times greater than 177Lu in mice (24).

The use of the clearing agent one hour prior to hapten administration resulted in

significantly better tumor-to-background ratios compared to a two-step protocol
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(Supplementary Figure S1). For the pretargeted protocol, the dextran-DOTA compound was

loaded with non-radioactive yttrium as it is one of the metals, when chelated to DOTA and

DOTA-Bn, that exhibits the highest affinity to C8.2.5. The clearingagent clears rapidly from

the blood through the liver and spleen with no observable tumor accumulation

(Supplementary Figure S2).

Because the 177Lu-DOTA compound resulted in the highest tumor-to-background ratios of

the four DOTA haptens, it was further characterized for pretargeted radioimmunotherapy

applications. At 4 h post-injection of 177Lu-DOTA, tumor uptake was 7.44 0.41 %ID/g in

the antigen-positive tumor (Table 1 and Supplementary Figure S3), approximately 90-fold

higher than the tumor uptake observed for 177Lu-DOTA alone (Table 1). Tumor uptake in

the antigen-negative tumor was 9.82 0.35 %ID/g at 4 h, similar to the antigen-positive tumor

due to the EPR effect. Over time, the tumor activity in the antigen-negative tumor decreased

to 4.23 ± 0.54 %ID/g at 24 h and 2.89 ± 2.28 %ID/g at 48 h while the tumor activity in the

antigen-positive tumor increased to 14.3 ± 1.8 %ID/g at 24 h and remained essentially

constant at 48 h. The LS174T tumor-to-blood ratio increased from 18 ± 2 at 4 h to 380 ± 90

at 24 h and was greater than 450 at 48 h (Table 2). At 48 h, the blood activity was not

measurable above background. The LS174T tumor-to-kidney ratio increased from

approximately 8 at 4 h to about 20 at 24 and 48 h.

We developed a mathematical modelbased on an extension to a previously published

compartmental model of tumor uptake of targeted agents (25). The model uses only

measurable parameters, with no fit variables (Supplementary Table S1). The transcapillary

transport rate of the DOTA-based compounds was assumed to be similar to that for Gd-

DTPA (26).This model applies only to residualizing isotopes and targeted molecules that are

not cell permeable. For radiotherapy, the goal is to retain the isotope for an extended period

of time to allow for radioactive decay at the site of the tumor. It is known that radioactive

metals and some forms of iodine are residualizing and retained intracellularly after

internalization (27–29). Derivation of the model is provided in the Supplemental Materials

and Methods. The analytical solution allows straightforward analysis of the effect of

changing parameters on tumor uptake.

(4)

From this equation, we derive a metric for affinity, BP >Ktrans/(ε*ke), for maximum tumor

uptake of isotope for a given radiotherapeutic/antigen system. From this metric, we predict

that faster internalization will lead to a lower affinity requirement and that higher affinity is

required for ligands with faster transcapillary transport and for antigen targets with lower

Bmax.

For the particular system studied here, , therefore it is predicted that

saturating levels of signal should be obtained with . For our measured value
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of, this Bmax = 200 nM, corresponds to Kd < 0.5 nM, consistent with the experimental results

(Figure 4). Equation 4 also predicts a maximal residualized tumor signal of

 for the highest affinity capture; thus for the parameters in this

system, limt→∞ Cresid = 0.3Cpo ≅ 15 %ID/g is the predicted highest dose attainable.

The experimental results of tumor uptake versus affinity compared very well to model

prediction (Figure 4) with the 24 h tumor uptake increasing significantly from single-digit

nanomolar to picomolar affinity and then reaching a plateau.

DISCUSSION

Here, we present a systematic study of the effect of affinity on tumor uptake of DOTA-metal

haptens using a previously engineered bsAb that binds with varying affinities to different

DOTA chelates (18). The effect of binding affinity on tumor uptake has been previously

described for antibodies and antibody fragments (30, 31). However, this is the first time, to

our knowledge, that the effect of binding affinity on tumor targeting of a small molecule has

been studied in vivo with the same target antigen resulting in unaltered internalization

kinetics and Bmax. Four compounds spanning a range of affinities over three orders of

magnitude were studied. We show here that an affinity of 400 pM is required for maximum

uptake in the studied system with an internalization half-life of about 13 h and a Bmax on the

order of 200 nM (105–106 binding sites/cell assuming typical cell densities for a vascular

xenograft tumor (32)). Further improvement in affinity to 10 pM affinity does not

significantly improve tumor uptake.

Tumor uptake of radiolabeled small molecules was simulated using a mechanistic

compartmental model extended from previous work. The experimental results were

consistent with model simulations. We further derived analytical relations to provide design

criteria to guide engineering efforts in the development of small molecule radiotherapeutics.

The design criteria allow for prediction of a target affinity for the development of new

radiotherapeutic agents. These relationships can guide experimental efforts in drug

development.

The experimental and mathematical model results presented here suggest that a plateau

exists for any given ligand/receptor pair such that further improvements in affinity result in

no additional improvement in tumor uptake. The affinity range at which this plateau exists

depends on the Bmax, ke, Ktrans, and ε of the particular ligand and antigen. For example, in

the system studied here, if Bmaxwere reduced from 200 nM to 20 nM, saturating levels of

signal would require a 10-fold improvement in affinity. Beyond a given affinity, additional

affinity improvement may result in decreased therapeutic efficacy in some applications by

resulting in higher background due to improved binding to residual bsAb present at low

concentrations in PRIT applications or improved uptake in normal tissues with low levels of

antigen expression in one-step approaches.

It should be noted that the clearing agent did not appear to completely clear circulating

bsAb, as the amount of background signal increased with increasing hapten affinity (Figure
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2). In addition, the LS174T tumor activity increases from 4 to 24 hours for

pretargeted 177Lu-DOTA (Supplementary Figure S3). While the simplified model presented

here does not take antibody kinetics into account, the correlation of the experimental data

with the model suggest the relationships derived here may be useful in the design of tumor-

targeting small molecules. Additional experiments with more efficient clearing of the bsAb

would provide further data to support the model.

In addition to the affinity series, we present a method for pretargeted radioimmunotherapy

that uses an IgG-scFv bsAb, a dextran-based clearing agent, and radiolabeled DOTA. 177Lu-

DOTA has previously been shown to exhibit very rapid whole-body clearance from mice

(33). Here we demonstrate high LS174T tumor uptake and retention of 177Lu-DOTA with

fast clearance from non-tumor tissue resulting in the highest yet reported tumor-to-kidney

ratios at 48 h p.i. for CEA targeting.

A significant amount of 177Lu-DOTA uptake is observed in the CEA-negative tumors at

early times. The EPR effect results in nonspecific tumor accumulation of high-molecular

weight compounds. While approximately 4-fold higher bsAb uptake is observed in LS174T

tumors versus C6 tumors (19), a significant fraction of the bsAb localized to the LS174T

tumors will be inaccessible to binding due to the ~13 h internalization half-life of CEA (34),

while all bsAb in the C6 tumors will be accessible to hapten binding. This is consistent with

the observation of similarhapten activities in the two tumors at early times. At later times,

unbound antibody slowly intravasates out of the CEA-negative tumor while CEA-bound

antibody in the LS174T tumors internalizes 177Lu-DOTA compounds where the radiolabel

is trapped within the cell.

An engineered IgG-like bsAb was used here to harness the established therapeutic

advantages of IgGs. The bsAb possesses slow blood clearance resulting in high tumor

uptake, retains potentially beneficial secondary immune function, and can be produced and

purified in a fashion identical to that of an IgG (19). The system uses DOTA-chelated metal

as the hapten, with no additional synthesis or modification required. This eliminates any

issues with linker cleavage and peptide stability that have been reported for other haptens in

PRIT applications (35, 36).DOTA chelated to gadolinium has been administered to human

subjects in millimolar concentrations and has an established safety profile. DOTA-metal

chelates exhibit rapid blood clearance and whole-body clearance observed in mice (33)and

humans (37). A particularly useful advantage to the approach described here is that only

radiolabeled DOTA will bind to the pretargeted anti-DOTA binding sites, while unlabeled

DOTA exhibits no observable binding. This results in very high effective specific activity

without requiring complex and time-consuming purification schemes.

While three-step pretargeted radioimmunotherapy adds complexity over two-step

procedures, it allows higher doses of bsAb to be administered resulting in higher achieved

tumor doses as well as more homogenous distribution within the tumor (38). In addition, it

allows for possible secondary immune effects resulting from the retained Fc domain that

may prove significant (39). Two-step approaches may be sufficient for molecular imaging

leading to improved cancer screening and staging(40, 41). However, it is anticipated that the
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increased number of hapten binding sites afforded by three-step approaches will prove

critical for therapy.

We present here a method for pretargeted radioimmunotherapy and use it in a systematic

study of the effect of small molecule affinity on tumor uptake in vivo with affinities

spanning a range of three orders of magnitude. In addition, we develop a mathematical

model of tumor targeting using only known, measured parameters that correlates well with

experimental observations. We predict that this model will be useful for rational design of

new agents and to guide experimental efforts in the development and optimization of

targeted cancer therapeutics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic of Pretargeted Radioimmunotherapy. A bifunctional antibody is administered in

stage 1 and allowed to localize to tumor tissue in stage 2. In stage 3, a dextran clearing agent

is administered. The clearing agent binds to bifunctional antibody in the blood compartment

and clears it quickly as depicted in stage 4. Radiolabeled DOTA is administered in stage 5,

where it binds to bifunctional antibody in vivo and clears rapidly via the kidneys in stage 6.
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Figure 2.
Biodistribution of DOTA compounds with varying affinities. Organ/tissue biodistribution 24

h p.i. (mean ± S.D., n=3) of 177Lu-DOTA-Bn, 177Lu-DOTA, 111In-DOTA-Bn, and 111In-

DOTA. 500 ug Sm3e/C825 bsAb was injected intravenously followed by 250 ug Y-DOTA-

dextran clearing agent 24 h later. Radiolabeled DOTA was injected 1 h after the clearing

agent.
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Figure 3.
SPECT/CT images of pretargeted DOTA compounds with varying affinities. SPECT/CT

maximum intensity projections of tumor mice pretargeted with 111In-DOTA (A), 111In-

DOTA-Bn (B), 177Lu-DOTA (C), and 177Lu-DOTA-Bn (D) 24 h p.i. Note that

visualization of activity in the tumor(s) depends on both tumor activity and tumor size.

Tumors were 0.1–0.4 g in size. Activity is observed in the bladder of some mice due to renal

excretion.
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Figure 4.
24 h tumor uptake for varying affinities: mathematical prediction versus experimental

results. Mathematical prediction (line) and experimental data (squares, mean ± s.d., n=3) of

24 h tumor %ID/g for increasing affinity. Model parameters: t1/2,ke = 13 h, Bmax = 226 nM,

ε= 0.44, t1/2,cl = 2.07 min, Ktrans = 0.0022 s−1.
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Table 1

Biodistribution of pretargeted 177Lu-DOTA

Time post-injectiona

Organ/Tissue 4 h 24 h 48 h

Blood 0.42 ± 0.02 0.04 ± 0.01 < 0.03

Skin 4.68 ± 1.06 1.05 ± 0.25 0.71 ± 0.20

Adipose 2.78 ± 1.08 0.67 ± 0.12 0.60 ± 0.29

Muscle 1.56 ± 0.56 0.41 ± 0.24 0.15 ± 0.07

Bone (femur) 1.49 ± 0.38 0.43 ± 0.12 0.24 ± 0.10

Heart 0.25 ± 0.16 0.05 ± 0.01 0.07 ± 0.03

Lung 1.25 ± 0.43 0.37 ± 0.07 0.21 ± 0.04

Spleen 0.39 ± 0.09 0.29 ± 0.09 0.64 ± 0.60

Liver 0.59 ± 0.21 0.51 ± 0.23 0.56 ± 0.35

Kidneys (both) 0.92 ± 0.05 0.88 ± 0.16 0.62 ± 0.19

Stomach (with contents) 0.21 ± 0.12 0.09 ± 0.07 0.22 ± 0.24

Sm Intestine 0.28 ± 0.02 0.08 ± 0.04 0.14 ± 0.11

Lg Intestine 0.13 ± 0.09 0.52 ± 0.56 0.11 ± 0.04

C6 Tumor 9.82 ± 0.35 (0.26 ± 0.08 g) 4.23 ± 0.54 (0.26 ± 0.07 g) 2.89 ± 2.28 (0.28 ± 0.13 g)

LS174T Tumor 7.44 ± 0.41 (0.09 ± 0.03 g) 14.34 ± 1.83 (0.21 ± 0.10 g) 13.44 ± 3.25 (0.49 ± 0.09 g)

a
Mice were injected with 500 ug bsAb i.v. 24 h later, mice received 250 ug dextran-DOTA i.v. 1 h later, mice received 100–150 uCi of 177Lu-

DOTA i.v. and were sacrificed at 4, 24, and 48 h p.i. Data given as mean ± s.d. (%ID/g, n=3). Tumor weights are provided as mean ± s.d. in
parentheses.
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Table 2

Pretargeted tumor/organ ratios.

Time post-injectiona

Organ/tissue 4 h 24 h 48 h

Blood 18 ± 2 380 ± 90 > 450

Skin 1.7 ± 0.4 14 ± 2 20 ± 8

Adipose 3.2 ± 1.5 23 ± 6 28 ± 13

Muscle 5.3 ± 1.6 57 ± 41 105 ± 40

Bone (femur) 5.3 ± 1.6 38 ± 16 60 ± 19

Heart 49 ± 36 323 ± 108 244 ± 85

Lung 7.2 ± 3.7 39 ± 3 63 ± 6

Spleen 20 ± 5 52 ± 12 40 ± 21

Liver 13.9 ± 3.7 33 ± 11 32 ± 13

Kidneys (both) 8.1 ± 0.2 17 ± 3 22 ± 3

Stomach (with contents) 48 ± 22 252 ± 119 276 ± 236

Sm Intestine 27 ± 4 217 ± 76 183 ± 129

Lg Intestine 80 ± 36 83 ± 53 128 ± 16

C6 Tumor 0.7 ± 0.1 3.4 ± 0.3 10 ± 9

LS174T Tumor 1 1 1

a
Tumor/organ ratios (mean ± s.d., n=3) a Mice were injected with 500 ug bsAb i.v. 24 h later, mice received 250 ug dextran-DOTA i.v. 1 h later,

mice received 100–150 uCi of 177 Lu-DOTA i.v. and were sacrificed at 4, 24, and 48 h p.i.
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