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Abstract

Traditional queueing network models assume infinite queue capacities due to the complexity of capturing inter-

actions between finite capacity queues. Accounting for this correlation can help explain how congestion propagates

through a network. Joint queue-length distribution can be accurately estimated through simulation. Nonetheless, sim-

ulation is a computationally intensive technique, and its use for optimization purposes is challenging. By modeling

the system analytically, we lose accuracy but gain efficiency and adaptability and can contribute novel information to

a variety of congestion related problems, such as traffic signal optimization.

We formulate an analytical technique that combines queueing theory with aggregation-disaggregation techniques

in order to approximate the joint network distribution, considering an aggregate description of the network. We

propose a stationary formulation. We consider a tandem network with three queues.

The model is validated by comparing the aggregate joint distribution of the three queue system with the exact

results determined by a simulation over several scenarios. It derives a good approximation of aggregate joint distribu-

tions.

Keywords: queueing theory, aggregation-disaggregation, congestion

1. Introduction

As congestion increases so does the dependency between links. Thus, it is important to model these dependencies

in order to provide more accurate estimates of path, or network-wide, performance measures. This paper proposes a

methodology to analytically approximate the joint distribution of queue-lengths over a network. The main challenges

that arise in such an approach are the dimensionality and the complexity of modeling network-wide dependency

analytically.

We focus on analytical approaches due to their computational efficiency and differentiability, which make them

suitable to embed within traditional optimization frameworks, in order to address a variety of urban transporta-

tion problems. We consider a probabilistic setting and combine a queueing network model with an aggregation-

disaggregation technique in order to approximate network-wide distributions.

Traditional queueing network models assume infinite queue (space) capacities due to the complexities of capturing

interactions between finite capacity queues through blocking. Blocking occurs when a vehicle has completed its
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service at a given queue, but cannot proceed downstream because the downstream queue is full. This is referred to as

spillback in urban transportation. This phenomenon is not captured with infinite capacity queues, but is prevalent in

congested networks. Finite capacity queues can allow us to describe spillbacks. Nonetheless, providing an analytical

and tractable description of these is challenging [3].

The second main challenge is the dimensionality of the network-wide queue-length distribution. For a system

of m queues, each with space capacity K (hereafter referred to as capacity), the state space of the joint system is

(K + 1)m. This is computationally intensive to solve exactly even for small values of m and K. In order to address this

we resort to an aggregation-disaggregation mechanism. We simplify the state space of the full network by aggregating

it, reducing the dimensionality of the joint distribution.

Section 3 presents the methodology. Section 4 validates this method versus simulated results, considering linear

(i.e. tandem) topology networks and various demand/supply scenarios. Section 5 briefly presents the main conclusions

and discusses ongoing and future work.

2. Literature review

A method for calculating steady state distributions of Markov chains was proposed by Takahashi [9]. The nu-

merical method is appropriate when the state space can naturally be divided into disjoint sets, exploiting the structure

of the chain for computational efficiency. This approach considers transitions between disaggregate states within an

aggregate state as well as between aggregate states and individual disaggregate states.

Song and Takahashi [8] studied the application of the cross aggregation method, a nested family of approximate

models that assumes different levels of dependence among queues, to tandem queueing systems of any size. By

considering approximate models of subnetworks of various sizes, the method provides a series of stationary state

probabilities for the subsystems, and relies on an assumption on the independence among nodes not in the same

subsystem. The method requires computation that approximately scales linearly in the number of queues. Song and

Takahashi examined tandem queueing systems with multiple servers and finite buffers, with exponentially distributed

inter-arrival and service times, focusing on subsystems with one, two, or three queues. They conclude that the subsys-

tem approach, which reduces the number of variables, can yield very accurate state probabilities for most situations.

Specifically, in examining three queue subsystems, the relative error in both the marginal probabilities and the aver-

age number of customers were below 2% or 3%. Song and Takahashi do not aggregate within individual queues, an

application explored by Dallery and Frein [2] and Boxma and Konheim [1].

A survey of aggregation-disaggregation techniques was done by Schweitzer [7]. He first summarizes the stationary

aggregation-disaggregation approach, explaining the system of equations representing the stationary equilibrium of a

large Markov-chain, which assumes that the state space is finite and large, as well as aperiodic and communicative.

When exact aggregation and disaggregation equations are known, this distribution can be calculated by decompos-

ing the system of equations and iteratively solving each set. He also specifies alternate formulations to the exact

aggregation and disaggregation equations as well as iterative procedure used in solving the exact equations.

3. Model formulation

3.1. Aggregation-disaggregation framework

In order to address the dimensionality issues mentioned in the previous section, we use the aggregation technique

described by Schweitzer [6]. This technique is formulated for both stationary and transient models. The aggregation-

disaggregation techniques assume that the state space of the Markov chain is finite and large and the chain is aperiodic

and communicative, which is the case of the urban transportation network models that we are considering.

The exact solution of the stationary distribution a large Markov chain with state space Ω is given by the global

balance equations:

πi

∑
j∈Ω\i
λi j =

∑
j∈Ω\i
π jλ ji, (1)

and the normalizing constraint: ∑
i∈Ω
πi = 1, (2)
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where πi is the probability of being in the disaggregate state i and λi j is the transition rate from disaggregate state

i to disaggregate state j.
Schweitzer proposes partitioning the N states of the Markov chain into N̄ aggregate states, such that N̄ � N, and

Ω = {1, 2, ...,N} = ⋃N̄
a=1Ωa, where Ω represents the complete state space, Ωa an aggregate state. The probability of

being in a given aggregate state, π̄a, is defined as:

π̄a =
∑
i∈Ωa

πi, 1 ≤ a ≤ N̄.

At equilibrium, transition rates out of an aggregate state, a, equal the transition rates into a from aggregate states

b � a, i.e.:

π̄a

∑
b�a

λ̄ab =
∑
b�a

π̄bλ̄ba, 1 ≤ a ≤ N̄ (3)

with the normalizing constraint:
N̄∑

a=1

π̄a = 1. (4)

where, λ̄ab is the transition rate from aggregate state a to aggregate state b.

The aggregate transition rates are related to the disaggregate transitions made from all disaggregate states in

aggregate state a to all disaggregate states in aggregate state b, through:

λ̄ab =

∑
j∈Ωa

∑
i∈Ωb
π jλ ji∑

k∈Ωa
πk

, b � a. (5)

The transition rate into and out of a disaggregate state i must also be equal, i.e.:

πi

∑
j∈Ω\i
λi j =

∑
j∈Ωa\i

π jλ ji +
∑
b�a

π̄bλ̂bi, i ∈ Ωa, 1 ≤ a ≤ N̄, (6)

where disaggregate state i resides in the aggregate state a, and λ̂bi is the transition rate from aggregate state b to

disaggregate state i. This rate is given by:

λ̂bi =

∑
j∈Ωb
π jλ ji∑

k∈Ωb
πk
. (7)

Equation (6) sets the transitions out of disaggregate state i ∈ Ωa equal to the sum of the transitions made into i from

j ∈ Ωa, j � i and from aggregate states b � a into i. Schweitzer suggests to iteratively solve the Equations (3) and (6)

for the stationary distribution of the system.

We illustrate Schweitzer’s approach for a single finite capacity M/M/1/K queue and consider stationary analysis.

An M/M/1/K has service and inter-arrival times distributed as exponential variables and a finite capacity queue with a

single server. In this paper, we will present the formulation for tandem topology networks. The generalization to finite

capacity queueing networks with arbitrary topology is straightforward. We describe the state of the single queue by

the number of users or vehicles in the queue. The state space is thus given byΩ = {0, 1, ..,K}. The corresponding state

transition diagram is displayed in Figure 1. Each circle denotes a state. The arrows denote possible transitions between

the states, with their corresponding rates. In this case, arrivals are determined by the arrival rate, λ, and departures are

determined by the service rate, μ. Assume we would like to aggregate the K + 1 states into the following three states:

the queue is empty, the queue is full, or neither. The choice of these three states is based on insights from vehicle

traffic node models, where between-link interactions are mainly determined based on whether a vehicle is ready to be

sent downstream (i.e. non-empty queue) and whether there is space downstream to receive this vehicle (i.e. non-full

queue). The new aggregate states are depicted in Figure 2. There are now 3 aggregate states, state 0, state K, and the

state defined by the dashed line in Figure 2. The aggregate system is now fully described by a set of four rates: λ, μ,
λ̄, and μ̄, where μ̄ and λ̄ describe the transition rates from the new aggregate state to one of the other states. In Figure

3, the aggregate states 0, 1 and 2, denote, respectively, the disaggregate states 0, {1, ...,K − 1}, and K.
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Figure 1: Single queue

Figure 2: Single aggregate queue

3.2. Stationary formulation for a single queue
In this section, we apply the aggregation-disaggregation technique to a single queue. This will give us insights

into how to approximate the aggregate transition rates, so as to derive accurate aggregate distributions. For a single

queue, as in Figure 1, given an external arrival rate, λ ≥ 0, service rate, μ > 0, and queue capacity, K ∈ Z+, the steady

state queue-length probabilities are known exactly and are given by:

πn = Pr{N = n} = (1 − ρ)ρn

1 − ρK+1
, ∀ n ∈ [0,K] (8)

where ρ = λ/μ, and N is the random variable that denotes the number of users in the queue (i.e. total number of users

or vehicles in the system).

As described in Section 2.1, the K + 1 states can be aggregated into three different states. The aggregate state

is then described by the random variable NA. Figure 3 represents this aggregated system. If the queue is empty

(Ω0 = {N = 0}), then NA = 0. If it is neither empty nor full (Ω1 = {N ∈ [1,K − 1]}), NA = 1. If the queue is full

(Ω2 = {N = K}), then NA = 2. The probabilities of these aggregate states are denoted by π̄i = Pr{NA = i} = ∑ j∈Ωi
π j.

In steady state these probabilities satisfy the global balance equations, which are given by:

λπ̄0 = μ̄π̄1

μπ̄2 = λ̄π̄1∑
i π̄i = 1

(9)

where μ̄ and λ̄ are given by (5):

λ̄ =

∑
j∈Ω1

∑
i∈Ω2
π jλ ji∑

k∈Ω1
πk

=

∑
j∈Ω1
π jλ j,K∑

k∈Ω1
πk

(10)

μ̄ =

∑
j∈Ω1

∑
i∈Ω0
π jμ ji∑

k∈Ω1
πk

=

∑
j∈Ω1
π jμ j,0∑

k∈Ω1
πk
, (11)

since Ω0 and Ω2 are associated with the disaggregate states {0} and {K}. In the one-queue case, this implies:

λi,K =

{
0 if i � {K − 1}
λ if i = {K − 1}

Figure 3: Simplified single aggregate queue
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and:

μi,0 =

{
0 if i � {1}
μ if i = {1}

This implies, from (6) and (7) that:

λ̄ =
πK−1λ∑
k∈Ω1
πk
= λ

Pr{N = K − 1}
Pr{NA = 1} = λ Pr{N = K − 1 | NA = 1} (12)

μ̄ =
π1μ∑

k∈Ω1
πk
= μ

Pr{N = 1}
Pr{NA = 1} = μ Pr{N = 1 | NA = 1}. (13)

These equations state that the aggregate transition rates are the disaggregate transition rates, μ and λ, multiplied by the

conditional probability that the queue is in the adjacent disaggregate state, given that it is in the aggregate state 1. In

the case of a single queue, we can solve for λ̄ and μ̄ using (8). Thus, the exact joint aggregate distribution, represented

by the linear system of equations in (9), can be solved.

In general, we denote:

αe = Pr{N = 1 | NA = 1} (14)

α f = Pr{N = K − 1 | NA = 1}. (15)

3.3. Stationary formulation for a tandem network

A network of M/M/1/K queues presents additional problems not faced in the single queue scenario. If the system

has two queues in tandem, then service completions by the upstream queue may be blocked by a full downstream

queue (i.e. spillbacks may occur). This implies that the service rates of the upstream queue will change if it is

blocked by the downstream queue, affecting both the aggregate and disaggregate transition rates. Thus, we need to

approximate the conditional probabilities described in the previous section (Equations (14) and (15)) as well as the

corresponding service rates (that may vary depending on whether there is blocking, and if so which queue is at the

source of the blocking).

We consider a system of three linear (i.e. tandem) queues, with external arrivals to the first queue and external

departures solely from the third queue. This is the simplest topology where a queue is affected by both upstream and

downstream traffic conditions. We denote the external arrival rate to the first queue, γ ≥ 0, service rates, μi > 0, and

queue capacities, Ki ∈ Z+, for each queue i ∈ {1, 2, 3}, where 1 (resp. 3) denotes the most upstream (resp. downstream)

queue.

The possible aggregate and disaggregate states of a queue are given in Table 1. A queue is in state 0 if it is

empty, 2 if it is full and not blocked, and 1 if it is not blocked and neither full nor empty. The subscript represents a

blocked queue, which occurs when a queue has a service completion and the downstream queue is full. Accounting

for blocking captures additional detail about the effective service rates, (the realized rate of service, rather than the

rate the queue is capable of serving at) that would otherwise be lost.

Table 1: Mapping from disaggregate to aggregate states

Aggregate (N) Disaggregate (NA)

0 {0} empty

1 [1,Ki − 1] not blocked, neither empty nor full

2 {Ki} not blocked and full

1B [1,Ki − 1]B blocked, neither empty nor full

2B {Ki}B blocked and full

Let Ni denote the random variable that represents the number of users in each queue, distinguishing between

whether the queue is blocked or not. The disaggregate joint distribution of the three queue system is denoted by

Pr{N1 = i,N2 = j,N3 = k}, ∀ i ∈ {0, 1, 1B, ...,K1,K1,B}, j ∈ {0, 1, 1B, ...,K2,K2,B}, k ∈ {0, 1, ...,K3}.
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The aggregate three queue system is represented by a set of states s = (i, j, k), where i, j ∈ {0, 1, 1B, 2, 2B},
k ∈ {0, 1, 2}. The random variable Ni,A represents the aggregate number of users in queue i, as well as whether or note

the queue is blocked, such that the aggregate joint distribution of the system is given by:

π̄s = Pr{N1,A = i,N2,A = j,N3,A = k}, i, j ∈ {0, 1, 1B, 2, 2B}, k ∈ {0, 1, 2}.
There are a total of 41 possible joint aggregate states. Thus, the dimension of the state space is now independent of

the space capacity of the individual queues.

If an individual queue, i, is in the aggregate state 0, 2, or 2B, then the disaggregate state of the queue is known

(see Table 1). If it is in aggregate state 1 or 1B, then the disaggregate state is in the interval [1,Ki − 1]. Transitions

from state 1 or 1B only occur when the disaggregate state is either 1 or Ki − 1. Given that the queue is in the aggregate

state 1 or 1B, we need to approximate the conditional probability that it is in the disaggregate state 1 or Ki − 1, (see

Equations (12) and (13)). Thus we need to approximate the parameters αe and α f , defined in Equations (14) and (15).

Assume that the marginal disaggregate queue length distributions have the functional form of Equation (8). Then αe

and α f can be approximated as follows, note that the queue index i has been dropped for clarity:

αe = Pr{N = 1 | NA = 1} = Pr{N = 1,NA = 1}
Pr{NA = 1} =

Pr{N = 1}
Pr{NA = 1}

α f = Pr{N = K − 1 | NA = 1} = Pr{N = K − 1,NA = 1}
Pr{NA = 1} =

Pr{N = K − 1}
Pr{NA = 1}

where, for ρ = λ
μ
:

Pr{N = 1} = (1 − ρ)ρ
1 − ρK+1

, Pr{N = K − 1} = (1 − ρ)ρK−1

1 − ρK+1

Pr{NA = 1} =
K−1∑
j=1

(1 − ρ)ρ j

1 − ρK+1

Then:

αe =

(1−ρ)ρ
1−ρK+1∑K−1

j=1
(1−ρ)ρ j

1−ρK+1

=

K−1∑
j=1

ρ

ρ j =

K−2∑
j=0

1

ρ j =
1 − ρ

1 − ρK−1
(16)

α f =

(1−ρ)ρK−1

1−ρK+1∑K−1
j=1

(1−ρ)ρ j

1−ρK+1

=

K−1∑
j=1

ρK−1

ρ j = ρ
K−2

K−2∑
j=0

1

ρ j =
(1 − ρ)ρK−2

1 − ρK−1
(17)

Thus, αe and α f depend on K and on ρ. This functional form is clearly a good approximation in light traffic

conditions, where the queues in a network behave as if they are independent. In order to also use this to accurately

approximate the conditional probabilities under congested traffic, we will propose approximations for ρ. For a given

aggregate state, we define ρ as the ratio between the prevailing arrival rate and the prevailing service rate. These

prevailing rates vary depending on whether a queue is blocked and which queue it is being blocked by. Our model

distinguishes between six different cases to determine these rates, as listed in Table 2 and detailed in the next para-

graph.

Recall that αe (resp. α f ) represents the conditional probability of a queue being in disaggregate state 1 (resp. K−1)

given that it is in aggregate state 1 or 1B. To approximate this conditional probability, we enumerate the possible states

of the downstream queues.

Lines 1 through 3 of Table 2 consider the cases where the first queue is not blocked, is blocked by the second

queue, or is blocked by the third queue, respectively. These three cases have separate prevailing service rates, μ1, μ2,

and μ3, respectively. For example, line 3 indicates that if the first queue is blocked and the second and third queues are

full, then we assume that the third queue is blocking both queues 1 and 2 and thus the prevailing service rate is that of

the third queue (i.e. the third queue is the active bottleneck). In all three cases (lines 1 − 3), the prevailing arrival rate

is the external arrival rate, γ.
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Table 2: Values of λ and μ, conditioned on the state of the downstream queues

Conditions Prevailing arrival rate Prevailing service rate

Queue 1

α1 N2,A � 2 γ μ1

α2 N2,A = 2, N3,A � 2 γ μ2

α3 N2,A = 2, N3,A = 2 γ μ3

Queue 2

α4 N3,A � 2 Pr{N1,A � 0}μ1 μ2

α5 N3,A = 2 Pr{N1,A � 0}μ1 μ3

Queue 3

α6 No conditions Pr{N2,A � 0}μ2 μ3

Lines 4 and 5 of Table 2 consider the cases where the second queue is not blocked and blocked by the third queue.

The prevailing arrival rate to the second queue for an arbitrarily small time interval is approximated by the service

rate of the first queue multiplied by the probability that the first queue is nonempty. The prevailing service rate is

conditioned on the state of the third queue. If it is not full, then we say that the second queue serves at rate μ2,

otherwise it serves at rate μ3.

Line 6 of Table 2 states that the third queue cannot be blocked. The prevailing arrival rate to the third queue is

approximated for an arbitrarily small time interval as the service rate of the second queue multiplied by the probability

that the second queue is nonempty.

The stationary aggregate joint distribution, π̄ is obtained by solving the nonlinear system of equations given by the

global balance equations:

π̄Q = 0, (18)

where Q is the transition matrix, which contains the rates at which there are transitions between aggregate states.

Element Qi, j is the transition rate from state i to state j. The transition rate matrix is a described by the external arrival

rate (γ), the service rates (μ), and the parameters αe and α f , which themselves depend on γ, μ, and K.

4. Experiments

Table 3: Experiments

Scenario 1 2 3 4 5 6 7 8 9

γ 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8

μ {2,2,2} {2,2,2} {2,2,2} {6,4,2} {6,4,2} {6,4,2} {2,3,6} {2,3,6} {2,3,6}
K {2,2,2} {5,5,5} {10,10,10} {2,2,2} {5,5,5} {10,10,10} {2,2,2} {5,5,5} {10,10,10}

We compare the results of the stationary model with the results given by a discrete event simulator over nine

scenarios with differing service rates and queue capacities, shown in Table 3. For the stationary case, we consider

100,000 separate replications, each with a run time of 10,000. The model results are simplified into 27 states, such that

the aggregate states {1,2} count as both blocked and unblocked. The error is calculated by determining the Euclidean

norm of the difference between the simulation and analytical model predictions.

For scenarios 1, 4, and 7, with queue capacities of {2,2,2}, the aggregate state 1 maps directly onto one state,

and thus the approximations of αe and α f are exact and equal to 1. In these cases, the errors between the model and

simulation results are very small, see Figure 4, and fall within the error bars. Thus errors in other scenarios may be

attributed to approximations of αe and α f .

Outside of scenarios with queue capacities of {2,2,2}, the model also approximates scenarios 5 and 6 very well.

Scenarios 5 and 6 have increasing service rates of {2,4,6} and queue capacities of {5,5,5} and {10,10,10}, respectively.

In these scenarios, any arrival to a full first queue is lost, and the service rates increase as a user moves through the

system, reducing the chances that the second or third queue becomes full and causes spillback. As a result, the system
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Figure 4: Stationary distributions for all scenarios. The blue circles represent the model predictions, and the red crosses represent the simulation

results, with error bars for the simplified 27 states.

is closer in behavior to three separate finite capacity queues. Since the method utilizes the known distribution of a

single finite capacity queue, it accurately models these scenarios.

In scenarios 2 and 3, which have constant service rates of {2,2,2} and queue capacities of {5,5,5} and {10,10,10},
our model provides a very good approximation. The model overestimates the probability of the first queue being

empty, states {1 − 9}, and underestimates the first queue being full, states {19 − 27}.
Scenarios 8 and 9 are the least accurate estimations. These scenarios have decreasing service rates of {6,4,2} and

queue capacities of {5,5,5} and {10,10,10}, so that blocking is mostly likely to occur as a result of the third queue. The

resulting error is approximately 0.08, and likely due to the increased probability of blocking states when compared to

the other seven scenarios.

5. Conclusion

We proposed an analytical technique that approximates the stationary joint aggregate distribution of three tandem

queues. The method combines a queueing network model with an aggregation/disaggregation technique. The model

was validated versus simulated results. These methods are currently being extended to tandem networks of any

length by considering subsystems of three queues and imposing consistency between overlapping subsystems using

the cross aggregation method, similar to that proposed by Song and Takahashi [8]. We can also incorporate external

arrivals to multiple queues, providing a more similar comparison to actual road networks. The method currently under

development also allows for external arrivals and departures to occur at any queue of the network. We are currently

using this model along with its urban traffic formulation, defined by Osorio and Bierlaire [3], to address a traffic signal

control problem, and to evaluate the added value of accounting for between-queue dependencies.
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