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Topological order has been proposed to go beyond Landau symmetry breaking theory for more than
20 years. But it is still a challenging problem to generally detect it in a generic many-body state. In this
paper, we will introduce a systematic numerical method based on tensor network to calculate modular matrices
in two-dimensional systems, which can fully identify topological order with gapped edge. Moreover, it is
shown numerically that modular matrices, including S and T matrices, are robust characterization to describe
phase transitions between topologically ordered states and trivial states, which can work as topological order
parameters. This method only requires local information of one ground state in the form of a tensor network, and
directly provides the universal data (S and T matrices), without any nonuniversal contributions. Furthermore, it
is generalizable to higher dimensions. Unlike calculating topological entanglement entropy by extrapolating, in
which numerical complexity is exponentially high, this method extracts a much more complete set of topological
data (modular matrices) with much lower numerical cost.
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I. INTRODUCTION

The most basic question in condensed matter is to classify
all different states and phases. Landau symmetry breaking
theory is the first successful step to classify all phases [1–3].
However, the experimental discovery of integer quantum
Hall effect [4] and fractional quantum Hall effect [5] led
condensed matter physics to a new era that goes beyond
Landau theory, in which the most fundamental concept
is topological order [6–8]. Topological order is character-
ized/defined by a new kind of “topological order parameter”:
(a) the topology-dependent ground state degeneracy [6,7]
and (b) the non-Abelian geometric phases S and T of the
degenerate ground states [8–10], where both of them are robust
against any local perturbations that can break any symme-
tries [7]. This is just like superfluid order being character-
ized/defined by zero viscosity and quantized vorticity that are
robust against any local perturbations that preserve the U (1)
symmetry.

Recently, it was found that, microscopically, topolog-
ical order is related to long-range entanglement [11,12].
In fact, we can regard topological order as a pattern of
long-range entanglement [13] defined through local unitary
(LU) transformations [14–16]. Chiral spin liquids [17,18],
integral/fractional quantum Hall states [4,5,19], Z2 spin liquids
[20–22], and non-Abelian fractional quantum Hall states
[23–26] are examples of topologically ordered phases. Topo-
logical order and long-range entanglement are truly new phe-
nomena, which require new mathematical language to describe
them. It appears that tensor category theory [13,14,27–29]
and simple current algebra [23,30–32] (or pattern of zeros
[33–41]) may be part of the new mathematical language.
For (2+1)-dimensional topological orders (with gapped or
gappless edge) that have only Abelian statistics, we find that
we can use integer K matrices to classify them [42–47].

As proposed in Refs. [8–10], the non-Abelian geometric
phases of the degenerate ground states, i.e., the modular
matrices generated by Dehn twist and 90◦ rotation, are
effective topological order parameters that can be used to

characterize topological order. References [48–51] make the
first step to calculate numerically modular matrices using
various methods. Actually, the relation of tensor network states
(TNS) and topological order has already been investigated
by several papers [52,53]. References [54–57] concluded that
gauge-symmetry structure of TNS will give rise to infor-
mation of topological order. Unlike calculating topological
entanglement entropy which in principle needs to calculate the
reduced density matrix with exponentially high computational
cost, extracting topological data through the gauge-symmetry
structure of TNS has acceptable lower cost.

In this paper, we will give a systematical approach to
calculate modular matrices, using the wave-function overlap
method proposed in Refs. [58,59]. Our approach is based on
TNS and gauge-symmetry preserved tensor renormalization
group. Gauge-symmetry preserved RG differs from original
tensor RG (TRG) in the sense that every step of TRG will
keep the gauge-symmetry structure invariant and manifest.
The paper is organized as follows: (I) we will first review
the basic ideas of modular matrices and TRG; (II) we will
explain the systematical method to calculate modular matrices
based on TRG; (III) we will show the numerical results
of modular matrices for the toric code and double-semion
topological orders [14,20–22,27], which clearly identifies the
correct topological order and characterizes phase transitions.

II. REVIEW OF MODULAR MATRICES

Modular matrices, or T and S matrices, are generated
respectively by Dehn twist (twist) and 90◦ rotation on torus.
The operation of twist can be defined by cutting up a torus
along one axis, twisting the edge by 360◦, and gluing the two
edges back.

The elements of the universal T and S matrices are given
by [58,59]

〈ψi |T̂ |ψj 〉 = e−A/ξ 2+o(1/A)Tij ,

〈ψi |Ŝ|ψj 〉 = e−A/ξ 2+o(1/A)Sij , (1)
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where |ψi〉 form a set of orthonormal basis for degenerate
ground space; and T̂ and Ŝ are the operators that generate the
twist and the rotation on torus. A is the area of the system and
ξ is of the order of correlation length which is not universal.

The T and S matrices encode all the information of
quasiparticles statistics and their fusion [60,61]. It was also
conjectured that the T and S matrices form a complete and
one-to-one characterization of topological orders with gapped
edge [8–10] and can replace the fixed-point tensor description
to give us a more physical label for topological order.

III. REVIEW OF TENSOR RENORMALIZATION GROUP

To be specific, TRG here means double tensor renormal-
ization group [62]. Essentially, a translation invariant TNS can
be written by definition as

|ψ〉 =
∑

m1m2...

tTr(T m1T m2 . . . T mN )|m1〉|m2〉 . . . |mN 〉, (2)

where T mi ’s are local tensors with physical index mi defined
either on links or vertices; and mi’s are local Hilbert space
basis. (Sometimes mi is not written out explicitly if there is no
ambiguity.) tTr means contracting over all internal indices of
local tensors pair by pair. The norm of the state is given by

〈ψ |ψ〉 = tTr(T T . . . T ), (3)

where T is the local double tensor, which is formed by T � and
T tracing out a physical degree of freedom:

T =
∑
mi

T mi�T mi . (4)

The essence of double TRG is to find fewer double tensors
T ′, which keeps the norm approximately invariant. That is,

〈ψ |ψ〉 � tTr(T ′T ′ . . . T ′). (5)

This approximation can be done nonuniquely. And SVD
TRG approach shall be utilized in this paper for its convenience
and low cost. The procedure of SVD RG approach is
graphically explained in Figs. 1(c) and 1(d). Step (c) is to
perform local SVD to decompose double tensor T into T 1

and T 2. In order to prevent the bond dimension of internal
indices from growing exponentially, only a finite number Dcut

of singular values are kept. Step (d) is to do coarse graining;
the tensors on new smaller squares will form a new double
tensor T ′. After steps (c) and (d), half of the tensors will be
contracted. For a translation invariant TNS, after enough steps
of SVD TRG, the double tensor will flow to the fixed point
double tensor, T fp, which plays an essential role in the next
section. Topological data can be extracted from T fp.

Note that the above TRG approach suffers from the
necessary symmetry condition [54]. If the gauge symmetry is
not preserved in each step of TRG, the approach will be ruined
by errors. And, more importantly, the RG flow will arrive at
some wrong fixed point tensors. Gauge-symmetry-preserved
TRG is introduced in the next section in order to prevent this
happening. Another reason that normal TRG is not suitable
here is that during TRG, the gauge symmetry information is
lost. So that in order to reproduce all topological data, the
gauge symmetry should be preserved.

FIG. 1. (Color online) Illustration for symmetry-preserved ten-
sor renormalization group. First (a) before SVD, block diagonalize
double tensor T according to the Z2 symmetry rule; α + β + γ + δ

and α′ + β ′ + γ ′ + δ′ are both even numbers. Therefore, the indices
of each block matrices Bee, Beo, Boe, Boo represent whether α + β

and α′ + β ′ are even or odd. (b) Perform SVD in each block matrices
and recombine the tensors coming out of SVD into tensor T 1 and
T 2, according to the rule α + β + ε ′, α′ + β ′ + ε, γ + δ + ε ′, and
γ ′ + δ′ + ε are all even numbers. That is, tensor T 1 and T 2 both obey
Z2 gauge symmetry. Figures 1(c) and 1(d) are the same procedures
as TRG. Figure 1(c) is to use SVD to decompose T into T 1 and T 2.
Only Dcut numbers of singular values will be kept. Figure 1(d) is
coarse graining. The four tensors on the small square will form a new
double tensor T ′. Note that T3 and T4 are outcoming tensors that are
cut in another direction.

IV. MODULAR MATRICES BY
GAUGE-SYMMETRY-PRESERVED

TENSOR RENORMALIZATION GROUP

In Refs. [55–57], the gauge structure of TNS is analyzed.
It was concluded that by inserting gauge transformation
tensors to TNS, a set of bases for the degenerate ground
space will be obtained. More specifically, the ground states
could be labeled as |ψ(g,h)〉, where g,h are gauge tensors
acting on internal indices in two directions. Different ground
states can be transformed to each other by applying gauge
tensors on internal indices of a TNS. Therefore, it is natural
to think that since all ground states could be obtained, by
calculating all overlaps 〈ψi |T̂ |ψj 〉 and 〈ψi |Ŝ|ψj 〉, the whole
modular matrices could be calculated. However, it is difficult to
compute the overlap directly and keep track of the nonuniversal
contributions. See Eq. (1).

TRG will help reduce the difficulty, since one fixed
point double tensor essentially represents the whole lattice.
Calculating on one double tensor is much easier and size effects
do not appear. However, normal TRG is not suitable here since
gauge symmetry needs to be preserved through every tensor
RG step in order to insert gauge transformation tensors.

To be more specific, let us consider the case of Z2

topological order, which also makes it clear in the next
section. As already known in Refs. [55–57], tensor network
representation for Z2 topological state has Z2 gauge symmetry.
The double tensor Tαα�ββ�γ γ �δδ� will have a Z2 × Z2 gauge
symmetry, where α,α�,β,β�,γ,γ �,δ,δ� = 0,1, and α,β,γ,δ

are indices coming from T , while α�,β�,γ �,δ� are indices
coming from T �. So the double tensor with Z2 gauge symmetry
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FIG. 2. (Color online) Modular matrices from the fixed point
double tensor T fp. Eight legs of T fp will all be traced over because
of torus geometry. (a) By inserting Z2 gauge tensors g,h,g′,h′

into T fp, T fp(g,h|g′,h′) is obtained; and tracing over eight legs of
T fp(g,h|g′,h′) will give rise to overlaps of 〈ψ(g′,h′)|ψ(g,h)〉, where
|ψ(g,h)〉 labels different ground states with gauge symmetry on
boundary. The elements of T and S matrices are just reshuffling of
〈ψ(g′,h′)|ψ(g,h)〉, as illustrated in (b) and (c). Figure 2(b) represents
90◦ rotation and (c) represents twist.

satisfies

Tα′α�′β ′β�′γ ′γ �′δ′δ�′ = Tαα�ββ�γ γ �δδ�Aαα′Aββ ′Aγγ ′

×Aδδ′Bα�α�′Bβ�β�′Bγ �γ �′Bδ�δ�′ , (6)

where repeated indices imply summation and tensor A,B ∈
{I,σz} generates the Z2 × Z2 gauge symmetry on both layers
of double tensor, which only act on internal indices. If a double
tensor has such a gauge symmetry, its elements are nonzero
only when α + β + γ + δ and α� + β� + γ � + δ� are both
even [63].

In order to keep Z2 × Z2 gauge symmetry manifest at each
RG step, we develop gauge-symmetry-preserved tensor RG
(GSPTRG). Essentially, it differs from normal TRG only when
we do SVD. The double tensor needs to be block diagonalized
by even or odd of its indices, and then SVD is performed in
each block and recombines the tensors coming out of SVD
into one tensor, just as the way to block diagonalize it. In each
block, the tensor elements have the same even or odd indices,
which therefore is key to preserving Z2 symmetry manifest.
The procedures are also explained in Fig. 1.

After several steps of GSPTRG (cf. Fig. 3), double tensor
will flow to the gauge-symmetry-preserved fixed point tensor.
Equivalent to calculating the overlap by brute force, we can
obtain the modular matrices by the following three steps:
(1) inserting gauge symmetry tensors into a double tensor;
(2) performing rotation and twist on one layer of a fixed point
double tensor; (3) tracing out rest indices.

The procedures are also explained in Fig. 2. Actually
the inner product of ground states (〈ψ(g′,h′)|ψ(g,h)〉) (each
ground state is obtained by inserting gauge tensors on
boundary) in topological phase will be diagonal with each
element modulo 1. The elements of T and S matrices are just
reshuffling of elements (〈ψ(g′,h′)|ψ(g,h)〉). More explicitly

for the Z2 topological state

〈ψ(g′,h′)|T̂ |ψ(g,h)〉 = 〈ψ(g′,h′)|ψ(g,gh)〉, (7)

〈ψ(g′,h′)|Ŝ|ψ(g,h)〉 = 〈ψ(g′,h′)|ψ(h,g−1)〉. (8)

V. MODULAR MATRICES FOR Z2 TOPOLOGICAL ORDER

Toric code model [64] is the simplest model that realizes
the Z2 topological order [20,21]. Local physical states are
defined on every link with spin up and down. In the notation
of string-net states, spin up represents a string while spin
down represents no string. Essentially, the Z2 topological
state can be written as equal superposition of all closed string
loops:

|ψTC〉 =
∑
X

|X〉, (9)

where X represents a closed loop, and the normalization factor
is implicit in the above equation.

When putting the Z2 topologically ordered state on a torus,
the ground state degeneracy is four and the quasiparticles are
usually labeled by {1,e,m,em}. T and S matrices in the twist
basis [59] are given in Fig. 3(c) for g > 0.802.

It is easy to represent |ψTC〉 in terms of a tensor network.
For the sake of convenience, we replace local physical states
|1〉 and |0〉 with |11〉 and |00〉, respectively. And combine
each |1〉 and |0〉 to its nearest sites. So local physical states
now are on vertices without extending Hilbert space. Here we
choose the parametrization of Z2 topological state utilized in
Ref. [13]

T
(αβγ δ)
αβγ δ = gα+β+γ+δ when α + β + γ + δ even

Rest elements of T are zeros.

When g = 1, it is |ψTC〉 while when g = 0, it is a trivial state
|0000 . . . 0〉. Of course, when g is driven from zero to 1, it
must undergo a phase transition.

We calculate T and S matrices along g. We find that when
0 � g < 0.802, all components of T and S matrices are 1,
because the gauge twisting does not produce other ground
states in the trivial phase. When 0.802 � g < 1, it belongs
to Z2 topological phase, since the T and S matrices for each
g ∈ (0.802,1] agree with that of Z2 topological phase [59]
[see Fig. 3(c)].

VI. MODULAR MATRICES FOR
DOUBLE-SEMION MODEL

The double-semion model [14,27,65] is another topologi-
cally ordered state with two semions of statistics θ = ±π/2.
In the notation of string-net states, the double-semion ground
state can also be written as superposition of all closed string
loops:

|ψDS〉 =
∑
X

(−)Nloops |X〉, (10)

where X represents a closed loop, and Nloops the number
of loops. The above double-semion state can be described
by a TNS with the following tensors T and Gm at g = 1
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FIG. 3. (Color online) Trace of modular matrices S and T as functions of g display a very sharp phase transition at critical point gc as
increasing RG steps, for both Z2 and double-semion topological order. The Z2 topological order transition point coincides exactly with the
results in Ref. [13] by another characterization.

(see Fig. 4):

T(αα′)(ββ ′)(γ γ ′)(δδ′) = tαβγ ′δ′δαβ ′δβγ δγ ′δδδ′α′ ,

t1000 = t1101 = −1, other tαβγ ′δ′ = 1;

Gm
(αα′)(ββ ′) = gm

αα′δαβδα′β ′ , g1
10 = g1

01 = g,

g0
00 = g0

11 = 1, g1
00 = g1

00 = g0
10 = g0

01 = 0.

(11)

Note that if we view α = β ′, β = γ , γ ′ = δ, and δ′ = α′ as
indices that label “virtual qubits” in the squares, then the
strings can be viewed as domain wall between the “0” and
“1” states of the qubits. Also if we choose tαβγ ′δ′ = 1, the
above tensors will describe the Z2 topologically ordered state
discussed previously.

The Z2 gauge symmetry is generated by σx ⊗ σx acting
on each internal indices (αα′) followed by a transformation
generated by ui

αα′ , i = t,l,b,r acting on the links of the four
orientations. Here ui

αα′ must satisfy

fαβγ ′δ′ = ut
βγ ′u

b
αδ′u

l
βαur

γ ′δ′ , (12)

where

f1000 = f0111 = f0010 = f1101 = −1, others fαβγ ′δ′ = 1.

(13)

Furthermore, ui
αα′ must also satisfy

gm
αα′ = (

ut
αα′

)∗
gm

αα′
(
ub

αα′
)∗

,

gm
αα′ = (

ul
αα′

)∗
gm

αα′
(
ur

αα′
)∗

. (14)
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FIG. 4. (Color online) T tensor and the Gm tensor that describes
the ground state wave function of the double semion model. The
“virtual qubits” are in the “1” state in the shaded squares and in the
“0” state in other squares. The red line is the domain wall (string)
between 0 and 1 states of the virtual qubits. The blue (black) dots
represent tαβγ ′δ′ = −1 (tαβγ ′δ′ = 1).

We find that

ut = ub =
(

1 −1
1 1

)
, ur = ul =

(
1 1

−1 1

)
, (15)

See [57] for a general analysis of twisted gauge structures.
After the GSPTRG calculation, we find a phase transition

at gc = 0.802. The S and T matrices for the nontrivial phase
with g ∈ (0.802,1] are given by Fig. 3(f), which agrees with the
modular matrices for the double semion model in string basis
[66]. For the trivial phase near g = 0, the modular matrices
become Tαβ = Sαβ = δα,0δβ,0.

VII. CONCLUSION

We have developed a systematic approach, gauge-
symmetry-preserved tensor renormalization, to calculate mod-
ular matrices from a generic many-body wave function
described by a tensor network. The modular matrices can
be viewed as very robust topological order parameters
that only change at phase transitions. The tensor network
approach gives rise to S and T matrices in a particular
basis which is different from the standard quasipartical basis
[8–10,48–51,60,61]. The trivial phase will result in trivial mod-
ular matrices S = 1 and T = 1 (since there is no degeneracy on
a torus), and the topological phase will give rise to nontrivial
modular matrices, which contain topological information, such
as quasiparticle information, like statistic angle, fusion rule,
quantum dimension, etc.

In particular, a general algorithm can be developed: the
tensor network ansatz can be imposed with gauge symmetry
G (or MPO symmetry, see below) in the beginning, and the
corresponding update algorithm, which is used to find ground
states, also preserves such a gauge symmetry. Therefore,
if the topological phase indeed has such a gauge theory
description, the ansatz obviously is better than the normal
tensor network ansatz. In Appendix B we perform such a
benchmark computation using the Z2 phase of the Kitaev
honeycomb model [67]. There we prepare an arbitrary tensor
with Z2 symmetry, find the ground state (locally) numerically
by gauge-symmetry-preserved update, and from there compute
the modular matrices. A similar tensor network computation
of the Kitaev honeycomb model is developed in Ref. [68]
where Z2 gauge structure is also imposed but expressed by
Grassmann tensor network. The energy and nearest neighbor
correlation are computed there.

After the completion of this paper, the notion of (twisted)
G injectivity of [56,57] was generalized to the matrix product
operator (MPO) case in [69] and it was shown that any string-
net model is included with this generalization. The method
developed in this paper can thus similarly be generalized to
any MPO symmetry and does not need any group structure
(and thus is not restricted to twisted discrete gauge theories).

The universal wave function overlap [59] (1) applies to
any dimension and has already been investigated in exactly
solvable models in 3+1 dimensions (3+1D) [70–72]. The
method outlined in this paper can similarly be generalized to
higher dimensions to extract universal topological information
from generic gapped ground states.

Finally, we note that although the universal wave function
overlap [59] works for any topological order, the machinery
developed in this paper in 2+1D only works for nonchiral
topological order (gapped boundaries) as formulated here.
This is only because the tensor network techniques used
are best understood for nonchiral topological order, but a
generalization for chiral topological order would be both
interesting and important.

ACKNOWLEDGMENTS

The authors appreciate helpful discussions with Lukasz
Cincio, Guifre Vidal, Zheng-Cheng Gu, Tian Lan, Fang-Zhou
Liu, and Oliver Buerschaper. This research is supported by
NSF Grant No. DMR-1005541, NSFC Grant No. 11074140,
and NSFC Grant No. 11274192. It is also supported by the
John Templeton Foundation. Research at Perimeter Institute
is supported by the Government of Canada through Industry
Canada and by the Province of Ontario through the Ministry
of Research.

APPENDIX A: ROBUSTNESS OF MODULAR MATRICES
UNDER Z2 PERTURBATIONS

In the phase diagram Fig. 3, it is already demonstrated that T
and S matrices are very robust characterizations of topological
order, which only depend on the phase. In order to address this
issue more explicitly, we will perturb Z2 topological state at
g = 1, while the perturbation also respects internal Z2 gauge
symmetry, i.e., the perturbation tensor T ′ is written as

T
′α′β ′γ ′δ′
αβγ δ = εr when α + β + γ + δ even, (A1)

where r is a uniform distributed random number ranging from
[−1,1] depending on α′,β ′,γ ′,δ′,α,β,γ,δ; and ε represents
perturbation strength starting from zero. The initial tensor
before RG will be T + T ′.

As already shown in Ref. [13], Z2 topological phase is
robust under tensor perturbations which respect the Z2 gauge
symmetry, while fragile under perturbations breaking the Z2

gauge symmetry. Here we start from perturbed tensor T + T ′
and calculate modular matrices for different ε’s, which will
demonstrate the robustness of this topological characterization
(Fig. 5).

Numerically it demonstrates that when 0 � ε � 0.35, T

and S matrices are always Eq. (10). However, when ε >

0.35, the perturbations will possibly break the topological
phase (and possibly not). In this case, T and S matrices
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FIG. 5. Phase diagram under perturbation.

have three possibilities as shown in the figure. Anyway, this
calculation clearly demonstrates modular matrices are robust
characterizations of topological phase.

APPENDIX B: GAUGE-SYMMETRY-PRESERVED UPDATE

For a typical tensor network algorithm, there are two main
steps: updating local tensors to lower the energy to ground state
energy and contracting all local tensors to compute physical
quantities and norms. Here we only point out some details
in the gauge-symmetry-preserved update algorithm, since the
details in contraction have already been reviewed in the main
text to some extent.

We choose a Kitaev honeycomb model as a benchmark.
Kitaev honeycomb model is defined on the honeycomb lattice
with spins on each site and different interactions along the
three different links connected to each site,

H = −Jx

∑
x links

σx
i σ x

j − Jy

∑
y links

σ
y

i σ
y

j − Jz

∑
z links

σ z
i σ z

j .

Jγ are coupling constants along the γ link. For simplicity we
will assume they are all positive. For the coupling constants
Jγ satisfying Jx + Jy < Jz (or other permutations), a gapped
phase will be acquired that indeed is a toric code phase by
perturbation analysis [67].

We impose Z2 gauge symmetry on our tensor network
ansatz. That is, local tensors should satisfy

T m
ijk = 0, if i + j + k odd. (B1)

FIG. 6. (Color online) Illustration of gauge-symmetry-preserved
simple update. Figure 6(a) shows that tenor T1 and T2 are contracted
and act with a local imaginary evolution operator represented by the
blue box. The legs with arrows are physical indices while legs without
arrows are internal indices. (b) Block diagonalization according to
internal indices. Bee and Boo represent the matrices with both legs even
and odd. (c) Bee and Boo are SVD-ed. (d) The outcoming matrices
are recombined into the original form as in (a).

Other elements of tensors are random in the initial states before
simple update. Gauge-symmetry-preserved update differs
from simple update only when we do SVD. Again, what we
need to do in the SVD approach is the following three steps:
block diagonalization according to gauge symmetry, SVD in
each block, and rearrange the outcoming tensors back to the
original form. Note that the gauge symmetry only acts on
internal indices, so that block diagonalization only happens for
internal indices. The procedure is also summarized in Fig. 6.

We randomly pick up a few points in the gapped phase of the
Kitaev honeycomb model, using a gauge-symmetry-preserved
update to obtain the ground states by Z2 symmetric ansatz
(B1). Modular matrices are calculated by the method explained
in the main text, and the result is exactly the same matrices
found in the main text:

S =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠ , T =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ . (B2)
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