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Abstract

An (r, s)-formation is a concatenation of s permutations of r letters. If u is a
sequence with r distinct letters, then let Ex (u, n) be the maximum length of any
r-sparse sequence with n distinct letters which has no subsequence isomorphic to u.
For every sequence u define fw(u), the formation width of u, to be the minimum s
for which there exists r such that there is a subsequence isomorphic to u in every
(r, s)-formation. We use fw(u) to prove upper bounds on Ex (u, n) for sequences u
such that u contains an alternation with the same formation width as u.

We generalize Nivasch’s bounds on Ex ((ab)t, n) by showing that fw((12 . . . l)t) =

2t − 1 and Ex ((12 . . . l)t, n) = n2
1

(t−2)!
α(n)t−2±O(α(n)t−3)

for every l > 2 and t >
3, such that α(n) denotes the inverse Ackermann function. Upper bounds on
Ex ((12 . . . l)t, n) have been used in other papers to bound the maximum number
of edges in k-quasiplanar graphs on n vertices with no pair of edges intersecting in
more than O(1) points.

If u is any sequence of the form avav′a such that a is a letter, v is a nonempty
sequence excluding a with no repeated letters and v′ is obtained from v by only
moving the first letter of v to another place in v, then we show that fw(u) = 4
and Ex (u, n) = Θ(nα(n)). Furthermore we prove that fw(abc(acb)t) = 2t + 1 and

Ex (abc(acb)t, n) = n2
1

(t−1)!
α(n)t−1±O(α(n)t−2)

for every t > 2.
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1 Introduction

A Davenport-Schinzel sequence of order s is a sequence with no adjacent repeated letters
which has no alternating subsequence of length s + 2. Upper bounds on the lengths of
Davenport-Schinzel sequences provide bounds on the complexity of lower envelopes of
solution sets to linear homogeneous differential equations of limited order [3] and on the
complexity of faces in arrangements of arcs with a limited number of crossings [1].

A sequence s contains a sequence u if some subsequence of s can be changed into u
by a one-to-one renaming of its letters. If s does not contain u, then s avoids u. The
sequence s is called r-sparse if any r consecutive letters in s are pairwise different. If u is
a sequence with r distinct letters, then the extremal function Ex (u, n) is the maximum
length of any r-sparse sequence with n distinct letters which avoids u.

A generalized Davenport-Schinzel sequence is an r-sparse sequence with no subsequence
isomorphic to a fixed forbidden sequence with r distinct letters. Fox et al. [5] and Suk et
al. [10] used bounds on the lengths of generalized Davenport-Schinzel sequences to prove
that k-quasiplanar graphs on n vertices with no pair of edges intersecting in more than
t points have at most (n log n)2α(n)

c
edges, where α(n) denotes the inverse Ackermann

function and c is a constant that depends only on k and t.
If a and b are single letters, then Ex (a, n) = 0,Ex (ab, n) = 1,Ex (aba, n) = n and

Ex (abab, n) = 2n − 1. Nivasch [8] and Klazar [7] determined that Ex (ababa, n) ∼
2nα(n). Agarwal, Sharir, and Shor [2] proved the lower bound and Nivasch [8] proved
the upper bound to show that if u is an alternation of length 2t + 4, then Ex (u, n) =

n2
1
t!
α(n)t±O(α(n)t−1) for t > 1.
If u is a sequence with r distinct letters and c > r, then let Exc(u, n) be the maximum

length of any c-sparse sequence with n distinct letters which avoids u. Klazar [6] showed
that Exc(u, n) = Θ(Exd(u, n)) for all fixed c, d > r.

Lemma 1. [6] If u is a sequence with r distinct letters, then Exd(u, n) 6 Exc(u, n) 6
(1 + Exc(u, d− 1))Exd(u, n) for all n > 1 and d > c > r.

An (r, s)-formation is a concatenation of s permutations of r distinct letters. For
example abcddcbaadbc is a (4, 3)-formation.

Definition 2. Fr,s(n) is the maximum length of any r-sparse sequence with n distinct
letters that avoids every (r, s)-formation.

Klazar [6] proved that Fr,2(n) = O(n) and Fr,3(n) = O(n) for every r. Nivasch [8]
proved that Fr,4(n) = Θ(nα(n)) for r > 2. Agarwal, Sharir, and Shor [2] proved the lower

bound and Nivasch [8] proved the upper bound to show that Fr,s(n) = n2
1
t!
α(n)t±O(α(n)t−1)

for all r > 2 and odd s > 5 with t = s−3
2

.
Nivasch [8] proved that Ex (u, n) 6 Fr,s−r+1(n) for any sequence u with r distinct

letters and length s by showing that every (r, s− r + 1) formation contains u.

Definition 3. The formation width of u, denoted by fw(u), is the minimum value of s such
that there exists an r for which every (r, s)-formation contains u. The formation length
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of u, denoted by fl(u), is the minimum value of r such that every (r, fw(u))-formation
contains u.

By Nivasch’s proof, fw(u) 6 s− r+ 1 for every sequence u with r distinct letters and
length s. The next two facts follow from the definition of fw .

Lemma 4. If u contains v, then fw(v) 6 fw(u).

Lemma 5. If u begins with the letter a, then fw(au) = fw(u) + 1.

Lemma 1 implies that fw(u) and fl(u) can be used to obtain upper bounds on Ex (u, n).

Lemma 6. For any sequence u with r distinct letters and fixed c with c > r,Exc(u, n) =
O(Ffl(u),fw(u)(n)).

In this paper we use fw(u) primarily in order to prove tight upper bounds on Ex (u, n)
for several classes of sequences u such that u contains an alternation with the same for-
mation width as u. We also bound and evaluate fw for various other families of sequences
in order to develop a classification of all sequences in terms of their formation widths.

If αt is an alternation of length t for t > 2, then fw(αt) 6 t − 1 since every (r, t − 1)
formation contains αt for r > 2. Any (r, t−2)-formation in which order of letters reverses
in adjacent permutations avoids αt, so fw(αt) = t− 1. Pettie [9] used the fact that every
(4, 4)-formation contains abcacbc to prove the upper bound Ex (abcacbc, n) = O(nα(n)).
Since any (r, 3) formation with order reversing in adjacent permutations would avoid
abcacbc, then fw(abcacbc) = 4. Similarly fw(abcadcbd) = 4.

Definition 7. An (r, s)-formation f is called binary if there exists a permutation p on r
letters such that every permutation in f is either the same as p or the reverse of p.

Most of the proofs in this paper depend on the fact that if u is a sequence with r
distinct letters, then every binary (r, s)-formation contains u if and only if s > fw(u). We
use the following notation to describe binary formations more concisely.

Definition 8. Ic is the increasing sequence 1 . . . c on c letters and Dc is the decreasing
sequence c . . . 1 on c letters. Given a permutation π ∈ Sc, the sequences Iπ and Dπ are
π(1) . . . π(c) and π(c) . . . π(1) respectively.

We focus especially on two classes of binary formations in order to derive bounds
on fw(u). The sequence up(l, t) is Il repeated t times, and alt(l, t) is a concatenation
of t permutations, starting with Il and alternating between Il and Dl. For example,
up(3, 3) = 123123123 and alt(3, 3) = 123321123.

Definition 9. If u is a sequence with c distinct letters, then l(u) is the smallest k such
that up(c, k) contains u, and r(u) is the smallest k such that alt(c, k) contains u.
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Then fw(u) > l(u) and fw(u) > r(u). We evaluate both l(u) and r(u) for every binary
formation u.

In Section 2 we prove that γ(r, s) = (r−1)2
s−1

+1 is the minimum value for which every
(γ(r, s), s)-formation contains a binary (r, s)-formation. It follows that if u has r distinct
letters, then fw(u) is the minimum s for which every binary (r, s)-formation contains u.

In Section 3 we prove that fw(u) = t − 1 for every sequence u with two distinct
letters and length t. We also determine every sequence u for which fw(u) 6 3. In
addition, we show that fw(up(c, t)) = 2t − 1 for all c > 2 and t > 1. This implies that

Ex (up(l, t), n) = n2
1

(t−2)!
α(n)t−2±O(α(n)t−3) for all l > 2 and t > 3 and that fw(u) 6 2l(u)−1

for every sequence u.
In Section 4.1 we compute l(u) and use the result to bound fw(u) up to a factor of 2

for every binary formation u. In particular we prove the following bounds on fw(u).

Theorem 10. Fix c > 2 and let u = Ie1c D
e2
c I

e3
c . . .Lenc , where L is I if n is odd and

D if n is even, and ei > 0 for all i. Define A =
∑

i>1 e2i−1 and B =
∑

i>1 e2i. Let
M = max(A,B) and let m = min(A,B). Then (c − 1)m + M + bn

2
c 6 fw(u) 6 2(c −

1)m+ 2M + 2bn
2
c − 1.

In Section 4.2 we compute r(u) for every binary formation u. Specifically we prove
that if c > 2, then r(Ie1c D

e2
c I

e3
c . . .Lenc ) = 2

∑n
i=1 ei − n, where L is I if n is odd and D if

n is even.
In Section 5 we use fw(u) to derive tight bounds on Ex (u, n) for other sequences u

besides up(l, t). Let u be any sequence of the form avav′a such that a is a letter, v is
a nonempty sequence excluding a with no repeated letters and v′ is obtained from v by
only moving the first letter of v to another place in v. We show that fw(u) = 4, implying

that Ex (u, n) = Θ(nα(n)). We also prove that Ex (abc(acb)t, n) = n2
1

(t−1)!
α(n)t−1±O(α(n)t−2)

for all t > 2.
In Section 6 we compute fw for various classes of binary formations. In particular we

show for c > 2 and k > 1 that fw(IcDcIc) = c+ 3, fw(IkcDc) = c+ 2k−1, fw(IcDcIcDc) =
2c+ 3, fw(alt(c, 2k)) > k(c+ 2)− 1, and fw(alt(c, 2k + 1)) > k(c+ 2) + 1.

In Section 7 we discuss some unresolved questions.

2 An extension of the Erdos-Szekeres theorem

The following upper bound is obtained by iterating the Erdos-Szekeres theorem as in [6].

Lemma 11. Every ((r − 1)2
s−1

+ 1, s)-formation contains a binary (r, s)-formation.

Proof. We prove by induction on s that every ((r − 1)2
s−1

+ 1, s)-formation contains a
binary (r, s)-formation. Clearly this is true for s = 1. For the inductive hypothesis fix
s and suppose for every r > 1 that each ((r − 1)2

s−1
+ 1, s)-formation contains a binary

(r, s)-formation.
Consider any ((r−1)2

s
+1, s+1)-formation F . Without loss of generality suppose that

the first permutation of F is I(r−1)2s+1. By inductive hypothesis the first s permutations
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of F contain a binary ((r− 1)2 + 1, s)-formation f . By the Erdos-Szekeres theorem, every
sequence of (x−1)2 + 1 distinct integers contains an increasing or decreasing subsequence
of length x. Therefore the last permutation of F contains an increasing or decreasing
subsequence of length r on the letters of f . Thus F contains a binary (r, s+1)-formation.

Corollary 12. If u has r distinct letters, then every binary (r, s)-formation contains u if
and only if s > fw(u).

Proof. If for some s every binary (r, s)-formation contains u, then there exists a function
γ(r, s) such that every (γ(r, s), s)-formation contains u. Thus fw(u) 6 s.

If some binary (r, s−1)-formation f avoids u, then for every z > r the binary (z, s−1)-
formations which contain f will avoid u. Hence fw(u) > s− 1.

Corollary 13. If u is a nonempty sequence and v is obtained from u by inserting a single
occurrence of a letter which has no occurrence in u, then fw(u) = fw(v).

Proof. If u has r distinct letters, then every binary (2r+ 1, fw(u))-formation F with first
permutation I2r+1 has a copy of u using only the even numbers 2, . . . , 2r. Since there is
at least one odd number between every pair of even numbers in F , then the copy of u in
F can be extended to a copy of v using an odd number.

Corollary 14. If u has r distinct letters, then fl(u) 6 (r − 1)2
fw(u)−1

+ 1.

Proof. Since every binary (r, fw(u))-formation contains u, then every ((r − 1)2
fw(u)−1

+
1, fw(u))-formation contains u.

The next theorem shows that the upper bound in Lemma 11 is tight.

Theorem 15. For every r, s > 1 there exists a ((r−1)2
s−1
, s)-formation that avoids every

binary (r, s)-formation.

Proof. We construct the desired formation F (r, s) one permutation at a time. Define an α-
block in F (r, s) to be a block of numbers in a permutation from positions (k−1)(r−1)α+1
to k(r − 1)α for some k. For k 6 s − 1 define a k-swap on a permutation of length
(r− 1)2

s−1
as follows: For every even i, 1 < i 6 2k, a k-swap reverses the placement of the

(i − 1)2s−k−1-blocks in each i2s−k−1-block. For example if (r, s) = (3, 3), then a 1-swap
on 1234567890ABCDEF produces CDEF90AB56781234.

Let permutation 1 of F (r, s) be the identity permutation on the letters 1, . . . , (r−1)2
s−1

.
To form permutation k+1 of F (r, s), perform a k-swap on permutation k. The next lemma
about F (r, s) will imply that F (r, s) avoids every binary (r, s)-formation.

Lemma 16. Consider any set B of distinct numbers occurring in each of the first k
permutations of F (r, s) with the same or reverse order in adjacent permutations. Let
i(k) =

∑k−1
j=1 ej2

k−j−1 where ej = 1 if the elements in B reverse order from permutation j
to permutation j + 1 and ej = 0 otherwise. Then in permutation k the elements of B are
contained in different i(k)2s−k-blocks, but the same (i(k) + 1)2s−k-block.
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Proof. We induct on k. When k = 1, i(k) = 0. The entire permutation is a 2s−1-block
and 0-blocks are individual elements, so the lemma is true when k = 1.

For the inductive hypothesis, suppose that in permutation k the elements of B are
contained in a single (i(k) + 1)2s−k-block but different i(k)2s−k-blocks. Consider any set
B of distinct numbers occurring in each of the first k+ 1 permutations of F (r, s) with the
same or reverse order in adjacent permutations.

Now consider the k-swap that sends permutation k of F (r, s) to permutation k + 1.
The parts of the swap that reverse the placement of the (j − 1)2s−k−1-blocks in each
j2s−k−1-block for even j > 2i(k) + 4 do not affect the order of the elements of B since the
elements of B are contained in a single (2i(k) + 2)2s−k−1-block.

The parts of the swap that reverse the placement of the (j − 1)2s−k−1-blocks in each
j2s−k−1-block for even j 6 2i(k) also do not affect the order of the elements of B since the
elements of B are contained in different (2i(k))2s−k−1-blocks. Thus the only part of the
swap which is relevant to the order of the elements in B is the reversal of the placement
of the (2i(k) + 1)2s−k−1-blocks inside each (2i(k) + 2)2s−k−1-block.

If the order of elements in B reverses from permutation k to permutation k + 1, then
i(k+1) = 2i(k)+1. All the elements of B must be contained in different (2i(k)+1)2s−k−1-
blocks, or else the k-swap would not reverse their order. By inductive hypothesis the
elements of B are contained in the same (i(k + 1) + 1)2s−k−1-block.

If the order of elements in B is the same in permutation k and permutation k+1, then
i(k+1) = 2i(k). The elements of B must be contained in the same (2i(k)+1)2s−k−1-block,
or else the k-swap would not preserve their order. By inductive hypothesis the elements
of B are contained in different i(k + 1)2s−k−1-blocks.

Given any set B of distinct numbers contained in every permutation of F (r, s) whose
order either stays the same or reverses between adjacent permutations, there is some i such
that the elements of B are in different i-blocks, but the same (i+ 1)-block of permutation
s. Since there are r− 1 i-blocks in each (i+ 1)-block, then r− 1 is the maximum possible
number of elements in B.

3 Using binary formations to compute fw

If u has one distinct letter, then fw(u) is the length of u. If u has two distinct letters,
then fw(u) also depends only on the length of u.

Lemma 17. If u has two distinct letters and length t, then fw(u) = t− 1.

Proof. By Lemma 5 it suffices to prove this lemma for sequences with different first and
second letters. The upper bound follows since every (2, t− 1)-formation contains u. For
the lower bound it suffices to construct a (2, t − 1) formation f(u) which only contains
copies of u for which the last letter of the copy of u is the last letter of f(u). Therefore
the (2, t− 2)-formation in the first t− 2 permutations of f(u) avoids u, so fw(u) > t− 2
by Corollary 12.
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Assume without loss of generality that u starts with xy. Construct f(u) by ignoring
the leading x and replacing every x in u by ba and every y by ab. Let u′ denote the
sequence obtained by deleting the last letter of u. We prove by induction on the length
of u that f(u) contains only copies of u for which the last letter of the copy of u is the
last letter of f(u). The first case to consider is u = xy.

Since f(xy) = ab, then f(xy) contains exactly one copy of the sequence xy and the
last letter of the copy of xy is the last letter of f(xy). Suppose by inductive hypothesis
that f(u′) contains only copies of u′ for which the last letter of the copy of u′ is the last
letter of f(u′). If the last two letters of u are the same, then the first letter of the last
permutation of f(u) is different from the last letter of f(u′), so the last letter of f(u) will
be the last letter of any copy of u in f(u). If the last two letters of u are different, then
the first letter of the last permutation of f(u) is the same as the last letter of f(u′), so
the last letter of f(u) will be the last letter of any copy of u in f(u).

If u has at least three distinct letters, then fw(u) cannot be determined solely from
the length of u and the number of distinct letters in u. For example fw(abcabc) = 3 and
fw(abccba) = 4.

The next lemma identifies all sequences u for which fw(u) = 3. As a result of Corollary
13, deleting any letters which occur just once in u will not change the value of fw(u) unless
u has no other letters. We call a sequence reduced if every distinct letter in the sequence
occurs at least twice.

By Lemma 17, fw(u) = 1 if and only if u is nonempty and each distinct letter in u
occurs once, and fw(u) = 2 if and only if one letter in u occurs twice and every other
distinct letter occurs once.

Lemma 18. If u is reduced and fw(u) = 3, then either there exists some l > 2 for which
u is isomorphic to up(l, 2) or u is isomorphic to one of the sequences aaa, aabb, abba,
abcacb, abcbac, abccab, or abcdbadc.

Proof. Since u is reduced, then every distinct letter in u occurs at least twice. If any
letter in u occurs three times, then it is the only letter in u and u is isomorphic to aaa,
or else fw(u) > 4 by Lemma 17. If u is not isomorphic to aaa, then every distinct letter
in u occurs twice.

Suppose u is not isomorphic to up(l, 2) for any l > 2. Then there exist two distinct
letters x and y in u for which the subsequence consisting of occurrences of x and y is
isomorphic to aabb or abba. If x and y are the only distinct letters in u, then u is
isomorphic to aabb or abba.

If u has three distinct letters, then u is isomorphic to a sequence obtained by adding
two occurrences of c anywhere in aabb or abba, so we consider 30 cases. If u had the form
xxv or vxx for some letter x and sequence v of length 4 with two distinct letters not
equal to x, then fw(v) = 3 by Lemma 17, so fw(u) = 4 by Lemma 5. This eliminates the
cases aabbcc, aabcbc, aacbbc, aabccb, aacbcb, aaccbb, acacbb, caacbb, accabb, cacabb, ccaabb,
abbacc, and ccabba.

The binary (3, 3)-formation xyzxyzxyz avoids caabbc, abbcca, accbba, cabbac, acbbca,
and abccba. The binary (3, 3)-formation xyzzyxxyz avoids acabcb, abcbca, and acbcba.
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The binary (3, 3)-formation xyzzyxzyx avoids acabbc and cacbba. So its reverse avoids
caabcb and abbcac. Thus each of these sequences have formation width at least 4 by
Corollary 12.

If u is one of the remaining sequences abcbac, acbbac, cabbca, or cabcba, then fw(u) = 3.
Thus every reduced sequence u with three distinct letters for which fw(u) = 3 is a (3, 2)-
formation. Note that acbbac and cabbca are isomorphic to abccab, and cabcba is isomorphic
to abcacb.

If u has four distinct letters, then u is isomorphic to a sequence obtained by adding
two occurrences of d to the sequence abcabc, abcacb, abcbac, or abccab. If u was not a
(4, 2)-formation, then u would contain a reduced sequence v with three distinct letters
which was not a (3, 2)-formation, so fw(u) > 4.

We consider each (4, 2)-formation with first permutation abcd. The binary (4, 3)-
formation xyzwxyzwxyzw avoids abcdadcb, abcdbdca, abcdcbad, abcdcbda, abcddacb, abcd-
dbac, abcddbca, abcddcab, and abcddcba. The binary (4, 3)-formation xyzwxyzwwzyx
avoids abcdbacd, abcdcabd, and abcdcadb. The binary (4, 3)-formation xyzwwzyxxyzw
avoids abcdacbd, abcdacdb, abcdbcad, abcdbcda, abcdcdab, and abcdcdba. The binary (4, 3)-
formation xyzwwzyxwzyx avoids abcdabdc, abcdadbc, abcdbdac, and abcddabc. Thus each
of these (4, 2)-formations have formation width at least 4 by Corollary 12.

If u is abcdbadc, then fw(u) = 3. If u had five distinct letters, then u must be a
(5, 2)-formation or else fw(u) > 4. If u was any (5, 2)-formation with first permutation
abcde, then every (4, 2)-formation in u would be isomorphic to abcdbadc or up(4, 2). It
is impossible for a (5, 2)-formation to have both a subsequence isomorphic to abcdbadc
and another subsequence isomorphic to up(4, 2), so every (4, 2)-formation in u would be
isomorphic to abcdbadc or else u would be isomorphic to up(5, 2). In particular u must
have both abcdbadc and acdecaed as subsequences, a contradiction.

If u had r distinct letters for some r > 5 and u was not isomorphic to up(r, 2), then u
would contain a subsequence of length 10 with five distinct letters that was not isomorphic
to up(5, 2), so fw(u) > 3.

The last lemma can also be verified by using the formation width algorithm in the
appendix. The next lemma provides an upper bound on fw(u) for every binary formation
u. It is tight if u = up(l, t) for any l > 2 and t > 1.

Lemma 19. Let u = Ie1c D
e2
c I

e3
c . . .Lenc , where L is I if n is odd and D if n is even so that

ei > 0 for each i and
∑n

i=1 ei = k. Then fw(u) 6 c(k − em) + 2em − 1 for all m.

Proof. Let k1 =
∑m−1

i=1 ei and k2 =
∑j

i=m+1 ei. In any binary (c, c(k − em) + 2em − 1)-
formation f , there is a copy of up(c, em) in permutations ck1 + 1 through ck1 + 2em− 1 of
f by the pigeonhole principle. This copy of up(c, em) can be extended to make a copy of
u in f by using one letter from each of the remaining ck1 + ck2 permutations of f . Thus
fw(u) 6 c(k − em) + 2em − 1 by Corollary 12.

Theorem 20. fw(up(l, t)) = 2t− 1 for every l > 2 and t > 1.

Proof. For the lower bound fw(up(l, t)) > fw((ab)t) = 2t− 1 since up(l, t) contains (ab)t.
The upper bound fw(up(l, t)) 6 2t− 1 follows from Lemma 19.

the electronic journal of combinatorics 21(3) (2014), #P3.24 8



Therefore fw(u) = 2t − 1 for every sequence u such that u contains (ab)t and there
exists l > 2 for which up(l, t) contains u. As a corollary this implies the upper bounds
in the next result, which gives nearly tight asymptotic bounds on Ex (up(l, t), n). The
lower bounds in the next corollary follow from the lower bounds on Ex ((ab)t, n) in [2] by
Lemma 1.

Corollary 21. Ex (up(l, t), n) = n2
1

(t−2)!
α(n)t−2±O(α(n)t−3) for all l > 2 and t > 3.

As a result, the constant c improves in the (n log n)2α(n)
c

upper bound from [10] on
the maximum number of edges in k-quasiplanar graphs on n vertices with no pair of edges
intersecting in more than O(1) points, since their proof used the bounds Ex (up(l, t), n) 6
nl2lt−3(10l)10α(n)

lt
from [6].

4 Bounding the formation width of binary forma-

tions

In this section we compute the exact values of l(u) and r(u) for all binary formations u.
This yields upper and lower bounds on fw(u) which differ by at most a factor of two for
each binary formation u.

4.1 Computing l

If π ∈ Sc and u is a sequence on the letters 1, . . . , c, then let lπ(u) = k if u is a subsequence
of Ikπ but u is not a subsequence of Ik−1π . It follows that l(u) = minπ∈Sc{lπ(u)}.

Lemma 22. If lπ(Ic) = a and lπ(Dc) = b, then a+ b = c+ 1.

Proof. Represent the permutation π by the set of points (i, π(i)). Connect points (i, π(i))
and (j, π(j)) if i < j and π(j) = π(i) + 1. This partitions the points into a connected
sections. In a different representation connect points (i, π(i)) and (j, π(j)) if i < j and
π(j) = π(i)− 1. This partitions the points into b connected sections.

We count the total number of endpoints of connected sections of points in both rep-
resentations in two ways so that each connected section of points is considered to have
two endpoints, even when the section consists of a single point. Since every connected
section has two endpoints, then there are a total of 2(a + b) endpoints. Alternatively
every point (i, π(i)) contributes two endpoints, unless π(i) = 1 or π(i) = c, in which
case (i, π(i)) contributes three endpoints. Thus there are a total of 2c + 2 endpoints, so
a+ b = c+ 1.

Corollary 23. l(IcDc) = c+ 1 for every c > 1.

Corollary 24. fw(IcDc) = c+ 1 for every c > 1.

Proof. The upper bound is trivial. The lower bound follows since Icc avoids IcDc.
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If u and v are sequences on the letters 1, . . . , c, then lπ(u) + lπ(v) − 1 6 lπ(uv) 6
lπ(u) + lπ(v). Say that u and v π-overlap if lπ(uv) = lπ(u) + lπ(v) − 1. Then u and v
π-overlap if and only if the last letter of u and the first letter of v π-overlap.

For each π ∈ Sc, the sequences Ic and Dc do not π-overlap since the last letter of Ic
is the first letter of Dc, and Dc and Ic do not π-overlap since the last letter of Dc is the
first letter of Ic. Furthermore if c > 2, then exactly one of the two sequences Ic or Dc

π-overlaps itself, depending on the order in which the first and last letters of Ic occur in
Iπ. Moreover for any sequence u, if lπ(u) = 1 then u does not π-overlap itself.

The next theorem implies Theorem 10 since l(u) 6 fw(u) 6 2l(u)− 1.

Theorem 25. Fix c > 2 and let u = Ie1c D
e2
c I

e3
c . . .Lenc , where L is I if n is odd and

D if n is even, and ei > 0 for all i. Define A =
∑

i>1 e2i−1 and B =
∑

i>1 e2i. Let
M = max(A,B) and let m = min(A,B). Then l(u) = (c− 1)m+M + bn

2
c.

Proof. Fix an arbitrary π ∈ Sc and let lπ(Ic) = a and lπ(Dc) = b. We show lπ(u) >
(c− 1)m+M + bn

2
c by considering two cases depending on whether Ic or Dc π-overlaps

itself.
Case 1: Ic π-overlaps itself.
In this case lπ(Ieic ) = (a − 1)ei + 1 and lπ(Dei

c ) = bei. Since Ic and Dc do not π-
overlap and Dc and Ic do not π-overlap, then lπ(u) = (a − 1)A + bB + dn

2
e. Lemma 22

implies that (a − 1) + b = c, while b > 0 and a > 1 since Ic π-overlaps itself. Then
lπ(u) > (c− 1)m+M + dn

2
e.

Case 2: Dc π-overlaps itself.
In this case lπ(Ieic ) = aei and lπ(Dei

c ) = (b− 1)ei + 1, so lπ(u) = aA+ (b− 1)B + bn
2
c.

Moreover a+ (b− 1) = c, a > 0, and b > 1. Then lπ(u) > (c− 1)m+M + bn
2
c.

Thus in either case lπ(u) > (c− 1)m+M + bn
2
c. If A > B, then this value is attained

by letting π be the identity permutation. If B > A, then this value is attained by letting
π(1) = 1 and π(i) = c+ 2− i for 2 6 i 6 c.

4.2 Computing r

For every binary formation u we compute r(u), and we identify when r(u) > l(u).

Theorem 26. If c > 2 and ei > 0 for all i, then r(Ie1c D
e2
c I

e3
c . . .Lenc ) = 2

∑n
i=1 ei − n,

where L is I if n is odd and D if n is even.

Proof. First we show that r(Ixc ) = 2x−1 for every x > 0. The upper bound is trivial. For
the lower bound we also show that alt(c, 2x− 1) has the subsequence Ixπ only if π(c) = c.

We proceed by induction on x. Clearly r(Ic) = 1. In addition, Iπ is a subsequence of
Ic only if π is the identity permutation, so π(c) = c. For the inductive hypothesis assume
that r(Ixc ) = 2x − 1 and that alt(c, 2x − 1) has the subsequence Ixπ only if π(c) = c.
We claim that r(Ix+1

c ) = 2x + 1 and that alt(c, 2x + 1) has the subsequence Ix+1
π only if

π(c) = c.
Let π be an arbitrary permutation. We will first show that Ix+1

π is not a subsequence
of alt(c, 2x). Suppose for contradiction that Ix+1

π is a subsequence of alt(c, 2x). Then Ixπ

the electronic journal of combinatorics 21(3) (2014), #P3.24 10



is a subsequence of alt(c, 2x − 1), so π(c) = c. Then the last letter in Ix+1
π must be the

first letter of the last permutation of alt(c, 2x), a contradiction. Thus r(Ix+1
c ) = 2x + 1.

We still must show that alt(c, 2x+ 1) has the subsequence Ix+1
π only if π(c) = c.

Suppose π(c) = i for some 1 6 i < c, and assume for contradiction that Ix+1
π is a

subsequence of alt(c, 2x + 1). Since Ixπ is not a subsequence of alt(c, 2x − 1), then the
second to last i in Ix+1

π must occur in the second to last permutation of alt(c, 2x + 1)
and the last i in Ix+1

π must occur in the last permutation of alt(c, 2x + 1). Since i < c,
then there are at most c− 2 distinct letters between the occurrences of i in the last two
permutations of alt(c, 2x + 1), a contradiction. Thus alt(c, 2x + 1) has the subsequence
Ix+1
π only if π(c) = c. This completes the induction.

By symmetry we find that r(Dx
c ) = 2x − 1 for every x > 0. We now prove the claim

that r(Ie1c D
e2
c I

e3
c . . .Lenc ) = 2

∑n
i=1 ei − n. The upper bound is trivial since the copy of

Ie1c D
e2
c I

e3
c . . .Lenc can be selected greedily from left to right in alt(c, 2

∑n
i=1 ei−n). For the

lower bound, suppose for some k and permutation π that alt(c, k) has the subsequence
Ie1π D

e2
π I

e3
π . . .Lenπ with n sections of the form Ixπ or Dx

π. No section Ixπ or Dx
π can occur in

fewer than 2x−1 adjacent permutations of alt(c, k). Furthermore no different sections have
letters occurring in the same permutation. Thus alt(c, k) contains at least 2

∑n
i=1 ei − n

permutations, so k > 2
∑n

i=1 ei − n.

Corollary 27. Fix c > 2 and let u = Ie1c D
e2
c I

e3
c . . .Lenc , where L is I if n is odd and D

if n is even, and ei > 0 for all i. Define A =
∑

i>1 e2i−1 and B =
∑

i>1 e2i. Let M =
max(A,B) and let m = min(A,B). Then r(u) > l(u) if and only if M > (c−3)m+n+bn

2
c.

Proof. This follows from setting 2
∑n

i=1 ei − n > (c − 1)m + M + bn
2
c since

∑n
i=1 ei =

m+M .

5 Further bounds on extremal functions using fw

The lemmas in this section use Corollary 12 to identify sequences u with fw(u) > 3 for
which fw(u) provides tight upper bounds on Ex (u, n), starting with an infinite set of
sequences which contain ababa.

Lemma 28. If u is any sequence of the form avav′a such that a is a letter, v is a nonempty
sequence excluding a with no repeated letters and v′ is obtained from v by only moving the
first letter of v to another place in v, then fw(u) = 4.

Proof. Since u contains an alternation of length 5, then fw(u) > 4. Suppose u has r
distinct letters for r > 2. In order to prove that fw(u) 6 4, it suffices by Corollary 12 to
show that u is contained in every binary (r, 4)-formation. First note that binary (r, 4)-
formations isomorphic to I4r or I3rDr contain a copy of u which uses every letter in the
first permutation.

Furthermore if the position in v′ of the occurrence of the first letter of v is right after
the occurrence in v′ of the ith letter of v, then I2rDrIr has a subsequence u′ isomorphic to
u such that the jth letter of u′ is given by (r − i + j − 2 mod r) + 1 for each 1 6 j 6 r.
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In particular the subsequence u′ includes the last i + 1 letters in the first permutation
of I2rDrIr, all of the letters except r − i + 1 in the second permutation, the single letter
r− i+ 1 in the third permutation, and the first r− i letters in the last permutation. Thus
every binary (r, 4)-formation isomorphic to I2rDrIr contains a copy of u.

Since every other binary (r, 4)-formation has a subsequence isomorphic to IrD
2
r , then

it suffices to observe that IrD
2
r contains a copy of u that uses every letter in the third

permutation.

Corollary 29. If u is any sequence of the form avav′a such that a is a letter, v is a
nonempty sequence excluding a with no repeated letters and v′ is obtained from v by only
moving the first letter of v to another place in v, then Ex (u, n) = Θ(nα(n)).

Proof. The upper bound follows from the last lemma and Lemma 6, while the lower bound
follows by Lemma 1 since u contains ababa.

The next corollary is obtained by reversing the sequences considered in the last lemma.

Corollary 30. If u is any sequence of the form avav′a such that a is a letter, v is
a nonempty sequence excluding a with no repeated letters and v′ is obtained from v by
moving a single letter in v to the end of v, then fw(u) = 4 and Ex (u, n) = Θ(nα(n)).

The next lemma implies that if v and v′ are nonempty permutations of the same
distinct letters excluding a, then fw(avav′a) = 4 if and only if v′ is obtained from v by
only moving the first letter of v to another place in v or by only moving a single letter in
v to the end of v.

Lemma 31. Let u be any sequence of the form avav′a such that a is a letter, v is a
nonempty sequence excluding a with no repeated letters, and v′ is a permutation of v
which cannot be obtained from v by only moving the first letter of v to another place in v
or by only moving a single letter in v to the end of v. Then fw(u) > 4.

Proof. First note that fw(x) > 4 if x is abcdadbca, abcdadcba, abcdeabdcea, or abcdeacbeda.
This can be verified using the formation width algorithm in the appendix. Suppose u is
a sequence of the form 0v0v′0 for which fw(u) = 4, v is the sequence 12 . . . r, and v′

is the permutation π1π2 . . . πr of 12 . . . r. Since u avoids abcdadbca and abcdadcba, then
πi 6 i+ 1 for each 1 6 i 6 r.

Consider two cases. In the first case, π1 = 1. If πi = i for each 1 6 i 6 r, then
fw(u) = 4 since fw(up(r+ 1, 2)) = 3. Otherwise let m be minimal for which πm = m+ 1.
Then πj = j for each j < m. Since u avoids abcdeabdcea, then πr = m. Moreover
πj = j + 1 for m 6 j < r since πi 6 i + 1 for each 1 6 i 6 r. Thus v′ can be obtained
from v by only moving a single letter in v to the end of v.

In the second case, π1 = 2. Let m be the index for which πm = 1. Then πj = j+ 1 for
1 6 j < m since πi 6 i + 1 for each 1 6 i 6 r. Since u avoids abcdeacbeda, then πj = j
for each j > m. Thus v′ can be obtained from v by only moving the first letter of v to
another place in v.
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For t 6 4 the next lemma exhibits sequences with three distinct letters and t occur-
rences of each letter which contain (ab)t and have formation width 2t− 1.

Lemma 32. If t is 2, 3, or 4 and z is any sequence of the form ax1ax2 . . . axt such
that a is a letter and xi is a sequence equal to either bc or cb for each 1 6 i 6 t, then
fw(z) = 2t− 1.

Proof. The lower bound follows since z contains (ab)t. By Corollary 12, the upper bound
is verified by checking that every binary (3, 2t − 1)-formation contains z. The appendix
has a program for running this check.

Corollary 33. If t is 3 or 4 and z is any sequence of the form ax1ax2 . . . axt such that
a is a letter and xi is a sequence equal to either bc or cb for each 1 6 i 6 t, then

Ex (z, n) = n2
1

(t−2)!
α(n)t−2±O(α(n)t−3).

Proof. The upper bounds follow from the last lemma and Lemma 6. The lower bounds
follow from the lower bounds on Ex ((ab)t, n) in [2] by Lemma 1.

There are sequences z of the form ax1ax2ax3ax4ax5 such that a is a letter and xi is
a sequence equal to either bc or cb for each 1 6 i 6 5 for which fw(z) > 9. For example
fw(abcacbacbabcacb) = 10.

The following lemma presents another infinite class of forbidden sequences with three
distinct letters for which formation width yields tight bounds on extremal functions.

Lemma 34. fw(abc(acb)t) = 2t+ 1 for t > 0.

Proof. The proof is trivial for t = 0, so suppose that t > 0. Since abc(acb)t contains
an alternation of length 2t + 2, then fw(abc(acb)t) > 2t + 1. In order to prove that
fw(abc(acb)t) 6 2t + 1, it suffices by Corollary 12 to show that every binary (3, 2t + 1)-
formation contains abc(acb)t.

Consider any binary (3, 2t+ 1)-formation f with permutations xyz and zyx. Without
loss of generality suppose that the last 2t − 1 permutations of f have the subsequence
(xyz)t. Then f has the subsequence xzy(xyz)t unless the first six letters of f are zyxxyz.
If the first six letters of f are zyxxyz, then f has the subsequence zyx(zxy)t.

Corollary 35. Ex (abc(acb)t, n) = n2
1

(t−1)!
α(n)t−1±O(α(n)t−2) for t > 2.

Proof. The upper bounds follow from the last lemma and Lemma 6. The lower bounds
follow from the lower bounds on Ex ((ab)t, n) in [2] by Lemma 1.

6 Further bounds on fw

For c > 2 the bounds on l(u) imply that (c + 1)k 6 fw(alt(c, 2k)) 6 2(c + 1)k − 1 and
(c + 1)k + 1 6 fw(alt(c, 2k + 1)) 6 2(c + 1)k + 1 for every k. In this section we derive
improved bounds on fw(alt(c, 2k)) and fw(alt(c, 2k + 1)) using Corollary 12.

First we compute fw(alt(c, 3)) for all c > 2. Pettie showed in [9] that Ex (alt(c, 3), n) =
O(n).
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Theorem 36. If c > 2, then fw(IcDcIc) = c+ 3.

Proof. First we prove for every permutation π ∈ Sc that IπDπIπ is not a subsequence
of the binary (c, c + 2)-formation IccD

2
c . Assume for contradiction that IccD

2
c has the

subsequence IπDπIπ for some permutation π ∈ Sc. Since l(IcDc) = c+ 1 by Corollary 23,
then the last letter of Dπ must be in the first Dc in IccD

2
c . However, the first letter of Iπ

is the same as the last letter of Dπ, so the first letter of the last Iπ in IπDπIπ must be
in the last Dc in IccD

2
c . Then Iπ = Dc, so the last letter of Dπ is c. This would imply

that Iccc has the subsequence IπDπ. Since the last letter of Icc is c, then IπDπ would be
a subsequence of Icc , a contradiction. Thus IccD

2
c does not have IπDπIπ as a subsequence

for any permutation π ∈ Sc. Thus fw(IcDcIc) > c+ 2 by Corollary 12.
It remains to show that every binary (c, c+ 3)-formation f has a subsequence IπDπIπ

for some permutation π ∈ Sc. Without loss of generality suppose the first permutation of
f is Ic. If f is Ic+3

c , then f has IcDcIc as a subsequence. If f has an alternation of Ic and
Dc terms of length at least 3, then also f must have IcDcIc as a subsequence. Otherwise
f has the form IacD

b
c with a + b = c + 3, a > 0 and b > 0. If a 6 2, then f has IcDcIc

as a subsequence. If b 6 2, then f has DcIcDc as a subsequence. Otherwise f has the
subsequence IπDπIπ, such that Iπ is the sequence Ib−2c . . . (b−1) consisting of the integers
from 1 to b − 2 followed by the integers in reverse from c to b − 1. In other words Iπ is
obtained by reversing the last a − 1 letters of Ic. Thus fw(IcDcIc) 6 c + 3 by Corollary
12.

The next two lemmas are used for the lower bounds in the remaining theorems.

Lemma 37. If c > 2 and π ∈ Sc, then IπDπ is a subsequence of IccDc if and only if
π(1) < π(2).

Proof. Let π ∈ Sc and suppose IπDπ is a subsequence of IccDc. Then the last letter of
IπDπ, namely π(1), occurs in the last Dc of IccDc since l(IcDc) = c+ 1 by Corollary 23. If
π(1) is not the only letter of IπDπ occurring in the last Dc, then π(2)π(1) is a subsequence
of Dc. This is possible only if π(1) < π(2).

If the final Dc contains no letters in IπDπ besides π(1), then the last π(2) in IπDπ

occurs in some Ic. If π(1) > π(2), then the last π(1) in IπDπ can be replaced with the
π(1) in the same permutation as the last π(2) in IπDπ. This would imply that IπDπ is a
subsequence of Icc , which is impossible since l(IcDc) = c+ 1. Thus π(1) < π(2).

For the other direction suppose that π(1) < π(2). Then IπDπ is a subsequence of Ic+1
c

with exactly one letter in the last permutation of Ic+1
c . Thus IπDπ is a subsequence of

IccDc.

Define the reverse permutation πr ∈ Sc so that πr(i) = c+ 1− i for 1 6 i 6 c.

Corollary 38. If c > 2 and π ∈ Sc, then IπDπ is a subsequence of DcI
c
c if and only if

π(2) < π(1).

Proof. By reflection, IπDπ is a subsequence of DcI
c
c if and only if IπDπ is a subsequence of

Dc
cIc. Moreover IπDπ is a subsequence of Dc

cIc if and only if πr(IπDπ) is a subsequence of
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IccDc. By Lemma 37, πr(IπDπ) is a subsequence of IccDc if and only if πr(π(1)) < πr(π(2)).
Since πr(π(1)) < πr(π(2)) if and only if π(2) < π(1), then IπDπ is a subsequence of DcI

c
c

if and only if π(2) < π(1).

Using these facts we determine fw(IkcDc) and fw(alt(c, 4)). Pettie in [9] showed bounds
of Θ(nα(n)) on the maximum lengths of sequences with n distinct letters avoiding both
ababab and alt(c, 4) for some c. This improved an upper bound by Ezra, Aronov, and
Sharir in [4] on the complexity of the union of n δ-fat triangles.

Theorem 39. If c > 2 and k > 1, then fw(IkcDc) = c+ 2k − 1.

Proof. The upper bound follows since fw(IkcDc) 6 fw(Ikc ) + c.
For the lower bound let Tk be the (c, c+ 2k− 2)-formation obtained by concatenating

alt(c, 2k − 2) and Icc . We show that Tk avoids IkcDc by induction on k. This is clearly
true for k = 1 since l(IcDc) = c+ 1 by Corollary 23. For the inductive hypothesis assume
that Tk avoids IkcDc. Suppose for contradiction that Tk+1 has the subsequence Ik+1

π Dπ for
some permutation π ∈ Sc.

The proof of Theorem 26 showed that r(Ikc ) = 2k − 1 and Ikπ is a subsequence of
alt(c, 2k − 1) only if π(c) = c, so the last IπDπ of Ik+1

π Dπ must be a subsequence of the
rightmost DcI

c
c in Tk+1. Then π(1) > π(2).

Since Tk avoids IkcDc, then the first letter π(1) of the second Iπ in Ik+1
π Dπ must occur

in the initial IcDc of Tk+1. Thus π(1)π(2)π(1) must be a subsequence of IcDc. This
contradicts π(1) > π(2), so Tk+1 avoids Ik+1

c Dc. Thus fw(IkcDc) > c + 2k − 2 for every
c > 2 and k > 1 by Corollary 12.

Theorem 40. If c > 2, then fw(IcDcIcDc) = 2c+ 3.

Proof. Since c+ fw(IcDcIc) > fw(IcDcIcDc), then 2c+3 > fw(IcDcIcDc). As for the lower
bound, the (c, 2c+2)-formation F = IccD

2
cI

c
c avoids IπDπIπDπ for all permutations π ∈ Sc.

To see this assume for contradiction that F contains IπDπIπDπ for some permutation
π ∈ Sc. Since Icc does not contain IπDπ by Corollary 23, then the first IπDπ is in the
first IccDc of F and the second IπDπ is in the last DcI

c
c of F . This is a contradiction by

Lemma 37 and Corollary 38. Thus fw(IcDcIcDc) > 2c+ 2 by Corollary 12.

We extend the technique used in the last proof to get an improved lower bound on
fw(alt(c, k)) for all c > 2 and k > 5.

Theorem 41. If c > 2 and k > 1, then fw(alt(c, 2k)) > k(c+2)−1 and fw(alt(c, 2k+1)) >
k(c+ 2) + 1.

Proof. Define T1 = Icc , T2k = T2k−1D
2
c , and T2k+1 = T2kI

c
c for k > 1. We prove that Tk−1

avoids alt(c, k) by induction on k. This implies that fw(alt(c, 2k)) > k(c + 2) − 2 and
fw(alt(c, 2k + 1)) > k(c+ 2) by Corollary 12. Theorems 36 and 40 proved that T2 avoids
alt(c, 3) and T3 avoids alt(c, 4).

For the inductive hypothesis there are two cases. First assume that Tj−1 avoids alt(c, j)
for all j 6 2k−1, but suppose for contradiction that T2k−1 has the subsequence (IπDπ)k for
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some permutation π ∈ Sc. Let G be the leftmost (IπDπ)k−1 in the subsequence (IπDπ)k.
Since the leftmost T2k−3 in T2k−1 avoids alt(c, 2k − 2), then the last letter of G must
occur somewhere in the rightmost D2

cI
c
c in T2k−1. Moreover the letter directly after G in

(IπDπ)k is the same as the last letter of G, so these two letters cannot occur in the same
permutation. Thus the last IπDπ in (IπDπ)k must be a subsequence of the last DcI

c
c in

T2k−1. Then π(2) < π(1) by Corollary 38.
Let H be the rightmost (IπDπ)k−1 in the subsequence (IπDπ)k. Since the rightmost

T2k−3 in T2k−1 avoids alt(c, 2k−2), then the first letter of H must occur somewhere in the
leftmost IccD

2
c in T2k−1. Moreover the letter directly before H in (IπDπ)k is the same as

the first letter of H, so these two letters cannot occur in the same permutation. Thus the
first IπDπ in (IπDπ)k must be a subsequence of the first IccDc in T2k−1. Then π(1) < π(2)
by Lemma 37, a contradiction.

For the second case of the inductive hypothesis, assume that Tj−1 avoids alt(c, j) for
all j 6 2k, but suppose for contradiction that T2k has the subsequence (IπDπ)kIπ for
some permutation π ∈ Sc. Let G be the leftmost (IπDπ)k in the subsequence (IπDπ)kIπ.
Since the leftmost T2k−1 in T2k avoids G, then the last letter of G must occur in the
last D2

c in T2k. The last letter of G is equal to the first letter of the last permutation
of (IπDπ)kIπ, so the last Iπ of (IπDπ)kIπ must be a subsequence of the final Dc in T2k.
Therefore Iπ = Dc, so the last letter of Dπ is c. This implies that (IπDπ)k is a subsequence
of T2k−1c, so (IπDπ)k would be a subsequence of T2k−1, a contradiction. Thus (IπDπ)kIπ
is not a subsequence of T2k for any permutation π ∈ Sc.

7 Open Problems

Many questions about formation width are left unresolved by the results in this paper.
We found several classes of sequences u for which u contained an alternation with the
same formation width as u, which implied tight bounds on Ex (u, n). One problem is to
find all sequences u for which u contains an alternation with the same formation width
as u.

We showed that fw(abc(acb)t) = 2t+1 for t > 0, which implied that Ex (abc(acb)t, n) =

n2
1

(t−1)!
α(n)t−1±O(α(n)t−2) for t > 2. We conjecture the following result, which would imply

nearly tight bounds on Ex (abc(acb)tabc, n).

Conjecture 42. fw(abc(acb)tabc) = 2t+ 3 for t > 0.

We identified the set of all sequences u for which fw(u) 6 3. These are all the sequences
for which the value of fw(u) implies linear bounds on Ex (u, n). A next step would be to
identify all sequences u for which fw(u) 6 4, since these are all of the sequences for which
the value of fw(u) implies O(nα(n)) upper bounds on Ex (u, n).

We also determined the values of l(u) and r(u) for every binary formation u. Since
both of these functions provide lower bounds on fw(u), it would be useful to compute the
values of l(u) and r(u) for every sequence u.

On a related note, the values of l(u) implied bounds on fw(u) within a factor of 2 for
every binary formation u. What is the exact value of fw(u) for every binary formation u?
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We also obtained bounds on fw(alt(c, k)) for every k > 1. In particular we determined
the exact values for k 6 4. What is the exact value of fw(alt(c, k)) for each k > 5?

In addition we proved that fl(u) 6 (r−1)2
fw(u)−1

+ 1 for all sequences u with r distinct
letters. What is the exact value of fl(u) for every sequence u?
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A Algorithm for computing fw

The following algorithm for computing fw(u) is an implementation in Python of the
method for computing formation width in Corollary 12. Specifically if u is a nonempty se-
quence with r distinct letters, then the algorithm increments s starting from 1 until it finds
that every binary (r, s)-formation contains u. The longest common subsequence functions
are from the post by MarkF6 at http://stackoverflow.com/questions/10746282/longest-
common-subsequence-of-three-strings.

import string

from collections import defaultdict

from itertools import permutations

#computes longest common subsequence:

def lcs_grid(xs, ys):

grid = defaultdict(lambda: defaultdict(lambda: (0,"")))

for i,x in enumerate(xs):

for j,y in enumerate(ys):

if x == y:

grid[i][j] = (grid[i-1][j-1][0]+1,"\\")

else:

if grid[i-1][j][0] > grid[i][j-1][0]:

grid[i][j] = (grid[i-1][j][0],"<")

else:

grid[i][j] = (grid[i][j-1][0],"^")

return grid

def lcs2(xs,ys):

grid = lcs_grid(xs,ys)

i, j = len(xs) - 1, len(ys) - 1

best = []

length,move = grid[i][j]

while length:

if move == "\\":

best.append(xs[i])

i -= 1

j -= 1

elif move == "^":

j -= 1

elif move == "<":

i -= 1

length,move = grid[i][j]

best.reverse()
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return best

#determines whether one sequence is a subsequence of another:

def issubseq(seq, subseq):

if len(lcs2(seq, subseq)) == len(subseq):

return True

else:

return False

#constructs set of binary (l, s)-formations:

def rsform(l,s):

rsformset = set()

if s == 0:

return rsformset

rsformset1 = set()

q = tuple(range(l))

q1 = q[::-1]

rsformset.add(q)

for i in range(s-1):

for rsform in rsformset:

t = rsform+q

rsformset1.add(t)

t = rsform+q1

rsformset1.add(t)

rsformset.clear()

for rsform in rsformset1:

rsformset.add(rsform)

rsformset1.clear()

return rsformset

#determines the formation width of u:

def formwidth(u, l):

count = 0

s=1

v = list(u)

while True:

count = 0

for rsforms in rsform(l, s):

for perms in permutations(range(l)):

for i in range(len(u)):
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v[i] = perms[u[i]]

if issubseq(rsforms, v):

count = count+1

break

if count == len(rsform(l, s)):

return s

else:

s = s+1

def fw(u):

t = set(u)

return formwidth(u, len(t))

#u must be nonempty tuple with letters 0,1,2,..., e.g.:

print fw((0,1,2,3,4,5,0,2,3,1,4,5,0))
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