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Abstract 

   The recently developed modified Donnan (mD) model provides a simple and useful description of 

the electrical double layer in microporous carbon electrodes, suitable for incorporation in porous 

electrode theory.  By postulating an attractive excess chemical potential for each ion in the micropores 

that is inversely proportional to the total ion concentration, we show that experimental data for 

capacitive deionization (CDI) can be accurately predicted over a wide range of applied voltages and 

salt concentrations. Since the ion spacing and Bjerrum length are each comparable to the micropore 

size (few nm), we postulate that the attraction results from fluctuating bare Coulomb interactions 

between individual ions and the metallic pore surfaces (image forces) that are not captured by mean-

field theories, such as the Poisson-Boltzmann-Stern model or its mathematical limit for overlapping 

double layers, the Donnan model. Using reasonable estimates of the micropore permittivity and mean 

size (and no other fitting parameters), we propose a simple theory that predicts the attractive chemical 

potential inferred from experiments. As additional evidence for attractive forces, we present data for 

salt adsorption in uncharged microporous carbons, also predicted by the theory.  

 

1. Introduction 

   Electrodes made of porous carbons can be utilized to desalinate water in a technique called 

capacitive deionization (CDI) in which a cell is constructed by placing two porous carbon electrodes 

parallel to one another [1-12]. A cell voltage difference is applied between the electrodes, leading to 

an electrical and ionic current in the direction from one electrode to the other. The water flowing 

through the cell is partially desalinated because ions are adsorbed in their respective counterelectrode. 

CDI is in essence a purely capacitive process, based on the storage (electrosorption) of ions in the 

electrical double layer (EDL) that forms within the electrolyte-filled micropores of the carbon upon 

applying a cell voltage (the measurable voltage difference applied between anode and cathode). In 

CDI, the cathode (anode) is defined as the electrode that adsorbs the cations (anions) during the 

desalination step. Note that while counterions are adsorbed, co-ions are expelled from the EDLs, 

leading to a diminished desalination and a so-called “charge efficiency” Λ lower than unity [13-20]. 

The charge efficiency Λ is defined for a 1:1 salt solution (NaCl) as the ratio of salt adsorption by a CDI 

electrode cell pair, divided by the charge stored in an electrode. It is typically defined for a cycle where 

the salt adsorption step is long enough for equilibrium to be reached [21]. The charge efficiency 
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describes the ratio of salt adsorption over charge, for a cycle where the cell voltage Vcell is switched 

periodically between two values, with the high value applied during salt adsorption, and the low value 

during salt desorption. The low cell voltage is most often Vcell=0 V, applied by simply electrically short-

circuiting the two cells during the salt desorption step. As we will demonstrate in this work, the charge 

efficiency Λ is a very powerful concept to test the suitability of EDL models proposed for ion 

adsorption in electrified materials. 

   In a porous carbon material where pores are electrolyte-filled, the surface charge is screened by the 

adsorption of counterions, and by the desorption of co-ions. The ratio between counterion adsorption, 

and co-ion desorption, depends on the surface charge. At low surface charge the ratio is one, since 

for each pair of electrons transferred to a carbon particle, one cation is adsorbed and one anion is 

expelled, a phenomenon called “ion swapping” by Wu et al. [22]. This local conservation of the total 

ion density is a general feature of the linear response of an electrolyte to an applied voltage smaller 

than the thermal voltage [23-25]. When in the opposite electrode the same occurs, the charge 

efficiency Λ of the electrode pair will be zero: there is no net salt adsorption from the electrolyte 

solution flowing in between the two electrodes. In the opposite extreme of a very high surface charge 

we approach the limit where counterion adsorption is responsible for 100% of the charge screening 

and we come closer to the limit of Λ=1 where for each electron transferred between the electrodes 

one salt molecule is removed from the solution flowing in between the electrodes [7].  This regime 

exemplifies the strongly nonlinear response of an electrolyte to a large voltage, greatly exceeding the 

thermal voltage [23, 24]. Correct prediction of the charge efficiency is one requirement of a suitable 

EDL model. 

   Contrary to what has often been reported over the past decades [2, 26-32], it is not the mesopores 

(2-50 nm), but the micropores (< 2 nm), that are the most effective in achieving a high desalination 

capacity by CDI [33, 34]. Interestingly, already in 1999, based on capacitance measurements in 30% 

H2SO4 solutions, Lin et al. [35] identified the pore range 0.8-2 nm as the optimum size for EDL 

formation. The microporous activated carbon MSP-20 (micropore volume 0.96 mL/g, 98 % of all pores 

are microporous), has the highest reported desalination capacity, of 16.8 mg/g (per g of active 

material), when tested at 5 mM NaCl and a 1.2 V cell voltage [34, 36]. In these micropores, typically 

the Debye length λD will be of the order of, or larger than, the pore size. In water at room temperature, 

the length scale λD (in nm) can be approximated by λD~10/√c∞ with c∞ the salt concentration in mM. 

This implies that the Debye length is around λD~3 nm for c∞=10 mM. Note that the Debye length is not 

based on the salt concentration within the EDL, but on the salt concentration c∞ outside the region of 

EDL overlap, thus in the interparticle pores outside the carbon particles. Because of the high ratio of 

Debye length over pore size, in constructing a simple EDL model, it is a good approach for such 

microporous materials to assume full overlap of the two diffuse Gouy-Chapman layers [19, 37] 

extending from each side of the pore, leading to an EDL model based on the Donnan concept, in 

which the electrical potential makes a distinct jump from a value in the space outside the carbon 

particles to another value within the carbon micropores, without a further dependence of potential on 

the exact distance to the carbon walls, see Figure 1b [21, 25, 38-41]. The Donnan approximation is 

the mathematical limit of the mean-field Poisson-Boltzmann (PB) theory for overlapping diffuse double 
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layers, when the Debye length greatly exceeds pore size. In this limit the exact pore geometry is no 

longer of importance in PB theory, and neither is the surface area. Instead, only the pore volume 

matters. As an example of the validity of the Donnan model, for a slit-shaped pore with 1 M volumetric 

charge density and for an external salt concentration of c∞=10 mM, for any pore size below 10 nm the 

charge efficiency Λ according to the PB-equation is ~0.98, in exact agreement with the Donnan model. 

Similar Donnan concepts are used in the field of membrane science [42, 43], polyelectrolyte theory 

[44, 45] and colloidal sedimentation [46, 47]. 

   To describe experimental data for desalination in CDI, the most simple Donnan approach, where 

only the jump in potential from outside to inside the pore is considered, must be extended in two ways. 

First of all, an additional capacitance must be included which is located between the ionic diffuse 

charge and the electronic charge in the carbon. This capacitance may be due to a voltage drop within 

the carbon itself (space charge layer, or quantum capacitance) [48]. Another reason can be the fact 

that the ionic charge and electronic charge cannot come infinitely close, e.g., due to the finite ion size, 

and a dielectric layer of atomic dimension is located in between, called the Stern layer, see Fig. 1. In 

this work we describe this additional capacitance using the Stern layer-concept. Secondly, to describe 

data it was found necessary to include an excess chemical potential, -µatt, that describes an additional 

attraction of each ion to the micropore. This attraction may result from chemical effects [49, 50], but 

below we propose a quantitative theory based on electrostatic image forces [51, 52], not captured by 

the classical mean-field approximation of the Donnan model. 
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Fig. 1. Schematic view of electrical double layer models used for microporous carbon electrodes. 
Solid and dashed lines sketch the potential profile, and outside the Stern layers also indicate the 
profile of counterion concentration. a) Gouy-Chapman-Stern theory for a planar wall without electrical 
double layer (EDL) overlap. The intersection of Stern layer and diffuse layer is the Stern plane, or 
outer Helmholtz plane. b) Modified Donnan model. The strong overlap of the diffuse layers (solid line) 
results in a fairly constant value of diffuse layer potential and ion concentration across the pore 
(unvarying with pore position), the more so the smaller the pores. In the Donnan model this potential 
and the ion concentrations are set to a constant value (horizontal dashed line).  
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   Because of its mathematical simplicity, this modified Donnan (mD) model is readily included in a full 

1D or 2D porous electrode theory and therefore not only describes the equilibrium EDL structure, but 

can also be used in a model for the dynamics of CDI [37, 40, 53-55]. Despite this success, it was 

found that the mD model is problematic when describing simultaneously multiple data sets in a range 

of values of the external salt concentration. Even when data at just two salt concentrations are 

simultaneously considered, such as for NaCl solutions with 5 mM and 20 mM salt concentration, it 

was problematic for the mD model to describe both data sets accurately. Extending the measurement 

range to 100 mM and beyond, these problems aggravate, see the mismatch between data and theory 

in Fig. 3 in ref. [38]. We ascribe this problem to the constancy of µatt in the standard version of the mD 

model. One extreme consequence of this assumption is that the model predicts unrealistically high 

salt adsorptions when uncharged carbon is contacted with water of seawater concentration (~0.5 M), 

e.g. for a typical value of µatt=2.0 kT and c∞=0.5 M, it predicts an excess salt concentration in 

uncharged carbons of 3.19 M (with the excess ion concentration twice this value), which is very 

unrealistic.  

   In this manuscript we present a physical theory of electrical double layers (EDLs) in microporous 

carbon electrodes that explains why µatt is not a constant but in effect decreases at increasing values 

of micropore total ion concentration. In this way the spurious effect of the prediction of a very high salt 

adsorption of carbons brought in contact with seawater, is avoided. Section 2 describes the theory 

together with the implementation of the mD model for CDI. In Section 3 we collect various published 

data sets of CDI using commercial film electrodes based on activated carbon powders, and fit the 

data with a simple equation for µatt inversely dependent on the micropore ion concentration, consistent 

with our model of image forces. This is a simple theory that has the advantage over more 

comprehensive and detailed EDL models [22, 56-64] that it can be readily included in a full porous 

electrode transport theory. Now that µatt is no longer a constant but a function of the total ion 

concentration in the pore, which via the Boltzmann relation depends on µatt, a coupled set of algebraic 

equations results to describe charge and salt adsorption in the micropores of porous carbons. We will 

demonstrate that across many data sets, this modification improves the predictive power of the mD 

model very substantially, without predicting extreme salt adsorption at a high salinity anymore. 

 

2. Theory 

 

2.1 General description of modified Donnan model 

   To describe the structure of the EDL in microporous carbons, the modified Donnan (mD) model can 

be used, which relates the ion concentrations inside carbon particles (in the intraparticle pore space, 

or micropores, “mi”) to the concentration outside the carbon particles (interparticle pore space, or 

macropores) [65, 66]. At equilibrium, there is no transport across the electrode, and the macropore 

concentration is equal to that of the external solution outside the porous electrode, which we will 

describe using the subscript “∞”. 
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   In general, in the mD model the micropore ion concentration relates to that outside the pores 

according to the Boltzmann equilibrium, 

( )mi,i ,i i d att,iexpc c z∞= ⋅ − ⋅ ∆φ + µ  (1) 

where zi is the valency of the ion, and ∆φd the Donnan potential, i.e., the potential increase when 

going from outside to inside the carbon pore. This is a dimensionless number and can be multiplied by 

the thermal voltage VT=RT/F to obtain the Donnan voltage with dimension V.   

   The Donnan voltage is a potential of mean force derived from the Poisson-Boltzmann mean-field 

theory, which assumes that the electric field felt by individual ions is generated self-consistently by the 

local mean charge density. Therefore, the excess chemical potential of each ion, -µatt, has a 

contribution from electrostatic correlations, which is generally attractive if dominated by image forces 

in a metallic micropore, as described below. We use µatt as a dimensionless number which can be 

multiplied by kT to obtain an energy per ion with dimension J.  

  In the mD model we consider that outside the carbon particles there is charge neutrality,  

i ,i
i

0z c∞⋅ =∑  (2) 

while inside the carbon micropores, the micropore ionic charge density (per unit micropore volume, 

dimension mol/m3=mM) is given by 

mi i mi,i
i

z cσ = ⋅∑ . (3) 

   This ionic charge is compensated by the electronic charge in the carbon matrix: σmi=-σelec. In using 

this simple equation we explicitly exclude the possibility of chemical surface charge effects, but such 

an effect can be included [54]. Eq. 3 describes local electroneutrality in the micropores, a well-known 

concept frequently used in other fields as well, such as in polyelectrolyte theory [44, 45], ion-exchange 

membranes [42, 43], and colloidal sedimentation [46, 47]. The ionic charge density relates to the 

Stern layer potential difference, ∆φSt, according to 

mi St,vol St T /C V Fσ = − ⋅ ∆φ ⋅  (4) 

where CSt,vol is a volumetric Stern layer capacity in F/m3. For CSt,vol we use the expression 
2

St,vol St,vol,0 miC C= + α ⋅ σ  (5) 

where the second term empirically describes the experimental observation that the Stern layer 

capacity goes up with micropore charge, where α is a factor determined by fitting the model to the 

data [33, 67-69]. To consider a full cell we must add to Eqs. 1-5 (evaluated for both electrodes) the 

fact that the applied cell voltage relates to the EDL voltages in each electrode according to 

cell T d St d Stcathode anode
/V V = ∆φ + ∆φ + ∆φ + ∆φ . (6) 

   Allowing for unequal electrode mass, we have as an additional constraint that the electronic charge 

in one electrode plus that in the other, sum up to zero, 

mi,cathode elec,cathode elec,anode mi,anodemCmA - mCmA -σ ⋅ = σ ⋅ = σ = σ  (7) 

where mCmA is the mass ratio cathode-to-anode. In an adsorption/desorption cycle, the adsorption of 

a certain ion i by the cell pair, per gram of both electrodes combined, is given by [39]   

( ) ( )cathode 0 anode 0
i mi mi,i mi,i mi,i mi,i

mCmA 1
mCmA+1 mCmA+1

c c c c
 Γ = υ ⋅ ⋅ − + ⋅ − 
 

 (8) 
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where superscript “0” refers to the discharge step, when typically a zero cell voltage is applied 

between anode and cathode. In Eq. 8, υmi is the micropore volume per gram of electrode which in an 

electrode film is the product of the mass fraction of porous carbon in an electrode, e.g. 0.85, and the 

pore volume per gram of carbon, as measured for instance by N2 adsorption analysis. The question of 

which pore volume to use (i.e., based on which pore size range) is an intricate question addressed in 

ref. [34]. 

   This set of equations describes the mD model for general mixtures of ions, and includes the 

possibility of unequal electrode masses (e.g., a larger anode than cathode) and unequal values for µatt 

for the different ions. For the specific case of a 1:1 salt as NaCl, the cation adsorption equals the 

anion adsorption, and thus Eq. 8 also describes the salt adsorption, Γsalt, in a cycle. The charge per 

gram of both electrodes Σ is given by  ( ) ( )anode anode,0
mi mi mi/ mCmA+1Σ = υ ⋅ σ − σ . The ratio of these two 

numbers is the charge efficiency of a CDI cycle,  Λ, see Fig. 5, for various values of mCmA.  

 

2.3 Equal electrode mass 

   Next we limit ourselves to the case that there is an equal mass of anode and cathode, i.e., the two 

electrodes are the same, and thus σelec,cathode+σelec,anode=0. After solving Eqs. 1-5 for each electrode 

separately, together with Eq. 6, we can calculate the electrode charge, and salt adsorption by the cell.  

   Multiplying micropore charge density σmi (for which we can take any of the values considered in 

Eq. 7, ionic or electronic, in the anode or in the cathode, as they are all the same when mCmA=1) by 

Faraday’s constant, F, and by the volume of micropores per gram of electrode, υmi, we obtain for the 

charge ΣF in C/g,  

01
F mi mi mi2 FΣ = ⋅ ⋅ υ ⋅ σ − σ  (9) 

and for the ion adsorption of a cell pair,  

( )cathode cathode,0 anode anode,01
i mi mi,i mi,i mi,i mi,i2 c c c cΓ = ⋅ υ ⋅ − + − . (10) 

   In case the cell voltage is set to zero during discharge, then (without chemical charge on the carbon 

walls) 0
mi,i 0σ =  and cathode,0 anode,0 0

mi,i mi,i mi,ic c c= = .  

 

2.4 Monovalent salt solution – equal electrode mass 

   Next we focus on a 1:1 salt such as NaCl, in addition to assuming that the two electrodes have the 

same mass. In the case of a 1:1 salt, c∞,cation is equal to c∞,anion and we can equate both to the external 

salt concentration, c∞. From this point onward, we will assume µatt to be the same for Na+ as Cl- [see 

note 1 at end of manuscript]. For a 1:1 single-salt solution, combination of Eqs. 1-5 leads to 

( ) ( )mi cation,mi anion,mi att d2 exp sinhc c c∞σ = − = − ⋅ ⋅ µ ⋅ ∆φ  (11) 

and 

( ) ( )ions,mi cation,mi anion,mi att d2 exp coshc c c c∞= + = ⋅ ⋅ µ ⋅ ∆φ . (12) 

   Because of symmetry, in this situation Eq. 6 simplifies to 

cell T d St/ 2V V = ⋅ ∆φ + ∆φ    (13) 
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while only one electrode needs to be considered. For a 1:1 salt, the amount of anion adsorption by the 

cell pair equals the amount of cation adsorption, and thus Γcation=Γanion=Γsalt. 

   The charge efficiency, being the measurable equilbrium ratio of salt adsorption Γsalt over charge Σ is 

now given by (clearly defined as an integral quantity) 

0
dions,mi ions,misalt

mi

tanh
2

c c ∆φ−Γ
Λ = = =

Σ σ
 (14) 

in case that 1. the reference condition (condition during ion desorption-step) is a zero cell voltage, and 

2. we use the single-pass method of testing, where the salt concentration c∞
 is the same before and 

after applying the voltage. Note that this condition does not apply when the batch mode of CDI testing 

is used where c∞ is different between the end of the charging and the end of the discharging step (see 

ref. [7]). In Eq. 14 the charge Σ, expressed in mol/g, is equal to ΣF divided by F. Eq. 14 demonstrates 

that Λ is not directly dependent of such parameters as µatt, CSt,vol or c∞, but solely depends on ∆φd [16, 

23]. Of course, in an experiment with a certain applied cell voltage, all of these parameters do play a 

role in determining the value of Λ via their influence on ∆φd. An equation similar to Eq. 14 is given in 

the context of ion transport through lipid bilayers as Eqs. 8 and 10 in ref. [70]. 

 

2.5  Simple Theory of Image Forces in Micropores 

   Here, we propose a first approximation of µatt due to image forces between individual ions in the 

micropores and the metallic carbon matrix [71], leading to a simple formula that provides an excellent 

description of our experimental data below. Image forces have been described with discrete dipole 

models for counterion-image monolayers [52], as well as (relatively complicated) extensions of 

Poisson-Boltzmann theory [51]. Simple modified Poisson equations that account for ion-ion Coulomb 

correlations that lead to charge oscillations in single component plasmas [72, 73] and multicomponent 

electrolytes or ionic liquids [74] are beginning to be developed, but image forces at metallic or 

dielectric surfaces have not yet been included.  Moreover, to our knowledge, image forces have never 

been included in any mathematical model for the dynamics of an electrochemical system. 

 

 

Fig. 2.  Sketch of electrostatic image correlations leading to attractive surface forces for all ions in a 
micropore, whose size is comparable to both the Bjerrum length and the mean ion spacing. 
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   Consider a micropore of size λp≈1-5 nm whose effective permittivity, εp, is smaller than that of the 

bulk electrolyte, εb, due to water confinement and the dielectric decrements of solvated ions. The local 

Bjerrum length in the micropore,  

2

B
p4

e
kT

λ =
πε

  (15) 

is larger than its bulk value (λB=0.7 nm in water at room temperature) by a factor of εb/εp≈5-10 and 

thus is comparable to the pore size. As such, ions have strong attractive Coulomb interactions 

 −E
im

> kT  with their image charges from anywhere within the micropore. For a spherical metallic 

micropore of radius λp, the image of an ion of charge q=±ze at radial position r has charge 

p /q q r= λ∓  and radial position 2
p /r r= λ  outside the pore [75], see Fig. 2. The attractive Coulomb 

energy between the ion and its image,  

( )
( )

2

p
im 2 2

p p

( )
4

ze
E r

r

λ
=

πε λ −
 (16) 

diverges at the surface, r→λp, but the Stern layer of solvation keeps the ions far enough away to 

prevent specific adsorption. For consistency with the Donnan model, which assumes constant 

electrochemical potentials within the micropores (outside the Stern layers), we approximate the image 

attraction energy by a constant, equal to its value at the center of the micropore, 

2
2 B

im
p p p

( )
4

ze
E z kT

λ≈ = ⋅ ⋅
πε λ λ

 . (17) 

   This scaling is general and also holds for other geometries, such as parallel-plate or cylindrical 

pores, with a suitable re-definition of λp. The image force on a given ion is significantly reduced by the 

presence of other ions due to Coulomb correlations, which effectively converts the bare ion monopole 

into collections of fluctuating multipoles with more quickly decaying electric fields. The attractive 

excess chemical potential, att im imµ = E P , is thus multiplied by the probability that an ion falls into a 

“correlation hole,” or fluctuating empty region, and feels a bare image force. If the mean volume of a 

correlation hole, 1
ions,mic − , is smaller than the characteristic pore volume, 3

pλ , then the probability that 

a given particle enters a correlation hole scales as 3 1
im p ions,mi( )P c −≈ λ . This implies that the excess 

chemical potential due to image forces is inversely proportional to the total concentration of all ions, 

since the image energy is independent of the sign of the charge. 

   We thus arrive at a very simple formula for the excess attractive chemical potential 

att
ions,mi

E
c

=µ   (18) 

where 

2
B p

4E z kT −= ⋅ ⋅ λ ⋅ λ .  (19) 
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3. Results and Discussion 

   In sections 3.1-3.3 we present a re-analysis of three sets of data of water desalination by CDI using 

commercial composite carbon film electrodes. These data were previously compared with the 

standard mD model (that assumes µatt to be a constant). Here we will demonstrate how making µatt a 

simple function of cions,mi according to Eq. (18) significantly improves the fit to the data, without extra 

fitting parameters. This we call the improved mD model. In the last section 3.4 we analyse 

experiments of salt adsorption in uncharged carbon to have direct access to the energy parameters E 

and µatt and also include ion and pore wall volume effects by using a modified Carnahan-Starling 

equation of state.  

   In all sections 3.1-3.3 the same parameter settings are used, being pmi=0.30 and ρelec=0.55 g/mL, 

thus υmi=pmi/ρelec=0.545 mL/g, CSt,vol,0=0.145 GF/m3, α=30 F⋅m3/mol2, E=300 kT⋅mol/m3. The carbon 

electrodes used in sections 3.1-3.3 are based on a commercial material provided by Voltea B.V. 

(Sassenheim, The Netherlands) which contained activated carbon, polymer binder and carbon black. 

This material was used in all our studies in refs. [21, 25, 38, 39, 76, 77].  

 

3.1 Data for varying cell voltage at two values of salt concentration (5 and 20 mM NaCl) 

   Data for charge and salt adsorption by a symmetric pair of activated carbon electrodes as function 

of salt concentration (5 and 20 mM NaCl) and cell voltage was presented in ref. [16] and was re-

analyzed using the standard mD model in ref. [38]. By “standard” we imply using a fixed value of µatt. 

Though a reasonable good fit was obtained, see Fig. 2b in ref. [38], the effect of salinity c∞ was 

overestimated.  

   To describe in more detail how well the standard mD model fits the data, we make the following 

analysis: As Eq. 11 demonstrates, according to the standard mD approach, there is a direct 

relationship between the ratio σmi/c∞ and ∆φd, and thus, according to Eq. 14, there is also a direct 

relationship between σmi/c∞ and Λ. Thus, two datasets (each for a range of cell voltages) obtained at 

two values of the external salinity, c∞, should overlap. However, as Fig. 3a demonstrates, the two 

datasets do not, and stay well separated. This is direct evidence that the standard mD model with a 

fixed µatt is not accurate enough. A direct check whether a modified mD model works better, is to plot 

the two datasets together with the corresponding two modeling lines (thus for two values of c∞), all in 

one graph, and choose such an x-axis parameter that the modeling lines overlap, and check if now 

the two datasets overlap better. This procedure is followed in Fig. 3b where it is clearly observed that 

when we plot Λ vs. σmi/(c∞/cref)
a with cref=20 mM and the power a equal to a=0.31, the modeling lines 

for the improved mD model collapse on top of one another, and also the data now almost perfectly 

overlap. Note that the value of a=0.31 has no special significance as far as we know, it is just a 

chosen value to make the modeling lines overlap. Clearly, the use of the improved mD model to 

describe µatt as function of cions,mi results in a significantly better fit of the model to the data.  

   Fig. 3c plots the total ion concentration in the micropore volume vs. the micropore charge. In this 

representation we observe again a good fit of the improved mD model to the data. Note that the 

modeling fit in Fig. 3b and 3c is independent of details of the Stern layer (see Eq. 5), and only 
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depends on the value of E and the micropore volume, υmi, see Eqs. 11 and 12. The deviation from the 

100% integral charge efficiency Λ-line (dashed line at angle of 45 degrees) is larger for 20 mM than 

for 5 mM.  

   Note that for both salt concentrations there is a range where the data run parallel to this line. In this 

range, beyond a micropore charge density of ~200 mM, the differential charge efficiency λ is unity and 

if we would stay in this (voltage) range, for each electron transferred between the electrodes, we 

remove one full salt molecule. The parallelism of these two lines is typical of EQCM response of 

carbons, observed for moderate charge densities [78]. Fig. 3d is the classical representation of Λ vs 

Vcell, and we obtain a much better fit than in Fig. 2b in ref. [38], with the influence of the external 

salinity no longer overpredicted. Furthermore, we reproduce in Fig 3e-3g the direct measurement data 

of salt adsorption in mg/g and charge in C/g for this material, and find a very good fit of the model to 

these four data sets [see note 2]. In Fig. 3h we recalculate data and theory to the counterion and 

coion concentrations in the pores, a graph similar to one by Oren and Soffer [13] and by Kastening et 

al. [65, 79]. Analysing the model results, e.g. for c∞=5 mM, the predicted total ion concentration in the 

pores increases from a minimum value of cions,mi=120 mM at zero charge, to about 1000 mM at 

Vcell=1.4 V.  

  With a value of E=300 kT⋅mol/m3, at c∞=5 mM the attraction energy, µatt, is at a maximum of 2.48 kT 

at zero charge, and decreases steadily with charging, to a value of µatt=0.28 kT at Vcell=1.4 V. The 

attractive energy inferred from the experimental data using the mD porous electrode model is 

quantitatively consistent with Eq. (19) from our simple theory of image forces without any fitting 

parameters. Using p 2λ = nm, the experimental value E=0.3 kT·M  implies λB=2.9 nm, or 

p b 00.25 20ε = ε = ε , which is a realistic value for the micropore permittivity. Admittedly, the 

quantitative agreement may be fortuitous and could mask other effects, such as ion adsorption 

equilibria, but it is clear that the overall scale and concentration dependence of the attractive energy 

are consistent with image forces. 

 

 

 

 

 

Fig. 3. Analysis of data of salt adsorption and charge efficiency Λ for NaCl solutions at c∞=5 and 20 
mM for cell voltages up to Vcell=1.4 V. a) Plotting Λ vs. the ratio σmi/c∞ does not lead to overlap of the 
datasets, demonstrating that using µatt=constant in the standard mD model is not correct. b) Plotting Λ 
vs σmi⋅(cref/c∞)a with a=0.31 leads to a perfect overlap of the modeling lines, where µatt=E/cions,mi and 
E=300 kT⋅mol/m3. The datasets now also overlap quite closely demonstrating the relevance of the use 
of the improved mD model (cref=20 mM). c) Using the improved mD model, the total excess micropore 
ion adsorption, cions,mi (equal to salt adsorption in a symmetric cell pair), is plotted vs micropore charge 
density, σmi, showing the expected deviation from the 100% charge efficiency-line. d) Theory of Λ vs 
Vcell according to the improved mD model (compared with data), showing a much smaller influence of 
c∞ on Λ than in the standard mD model, see Fig. 2b in ref. [38]. e)-g) Direct data of salt adsorption Γsalt 
in mg/g and charge ΣF in C/g, compared with the improved mD model. g) Calculated micropore ion 
concentrations as function of electrode charge, again compared with the improved mD model. 
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3.2 Data at one cell voltage level for a range of salt concentrations (2.5-200 mM NaCl) 

   Next, we extend the testing of the same improved mD model to a much larger range of NaCl salt 

concentrations, from 2.5 to 200 mM, all evaluated at 1.2 V cell voltage, see Fig 3 of ref. [38] for NaCl 

salt concentrations ranging from 2.5 mM to 100 mM. In Fig. 4 this range is extended to 200 mM by 

including extra unpublished work related to material in refs. [21, 77]. In ref. [38] using the standard mD 

model it proved impossible to fit the model to the data for the whole range of salinities, with beyond 

c∞=40 mM the charge underestimated, and salt adsorption underestimated even more, leading to an 

underprediction of the charge efficiency, see the line denoted “µatt=constant” in Fig. 4b. The 

experimental observation that the salt adsorption does not change much with external salt 

concentration up to 100 mM, could not be reproduced at all. However, with the modification to make 

µatt inversely proportional to cions,mi, a very good fit to the data is now obtained, both for charge and for 

salt adsorption, as we can observe in Fig. 4a. Fig. 4b presents results of the charge efficiency Λ, 

which is the ratio of salt adsorption to charge (including Faraday’s number to convert charge to 

dimension mol/g), and as can be observed, the improved mD model using µatt=E/cions,mi shows a much 

better fit to the data than the standard mD model which assumes µatt to be constant. 
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Fig. 4. a) Salt adsorption and charge density, and b) charge efficiency Λ, for CDI in a range of NaCl 
salt concentrations (2.5-200 mM) at Vcell=1.2 V. Both in a) and b) solid lines denote calculation results 
of the improved mD model while in b) the dashed line is based on the standard mD model. 
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3.3 Data for unequal electrode mass (5 and 20 mM NaCl) 

   Data for NaCl adsorption in asymmetric CDI systems were presented by Porada et al. [39] That 

work is based on varying the electrode mass ratio, i.e., by placing on one side of the spacer channel 

two or three electrodes on top of one another. In this way a cell is constructed which has two times, or 

three times, the anode mass relative to cathode mass, or vice versa. In Fig. 5 we present the data for 

charge efficiency, Λ, defined as salt adsorption by the cell pair divided by charge, vs the mCmA ratio, 

which is the mass ratio of cathode to anode. Here data are presented at a cell voltage of Vcell=1.0 V 

and a salt concentration of 5 and 20 mM, like Fig. 3c in ref. [39]. Comparing with the fit obtained by 

Porada et al. using a constant value of µatt (dashed lines in Fig. 5), a significantly improved fit is now 

achieved.  
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Fig. 5. Charge efficiency for CDI at unequal mass ratio cathode-to-anode (Vcell=1.0 V). Dashed lines 
show prediction using a fixed µatt in the standard mD model, while the solid lines show results for the 
improved mD model where µatt=E/cions,mi. 
 

3.4 Analysis of data for adsorption of salt in uncharged carbon – measuring µatt 

   A crucial assumption in the mD models is the existence of an attractive energy, µatt, for ions to move 

into carbon micropores, which we attribute to image forces as a first approximation. The existence of 

this energy term implies that uncharged carbons must adsorb some salt, as known from refs. [49, 50]  

and references therein, and as can also be inferred from refs. [65, 80]. In the present section we show 

results of the measurement of µatt by directly measuring the adsorption of NaCl in an activated carbon 

powder (Kuraray YP50-F, Kuraray Chemical, Osaka, Japan). This carbon is mainly microporous with 

0.64 mL/g in the pore size range <2 nm and 0.1 mL/g mesopores [34]. 

   The carbon powder was washed various times in distilled water and filtered, to remove any possible 

ionic/metallic constituents of the carbon, and was finally dried in an oven at 100 oC. A volume of water 

V with pre-defined NaCl concentration was mixed with various amounts of carbon (mass m) in sealed 

flasks. These flasks were gently shaken for 48 hours. The carbon/water slurry is pressed through a 

Millipore Millex-LCR filter (Millipore, Massachusetts, USA) and the supernatant was analyzed to 
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measure the decrease in salt concentration, from which we calculate the salt adsorption. Note that 

both the initial and final salt concentration in the water are analyzed in the same analysis program, 

and the difference is used to calculate salt adsorption. The pH that initially was around pH 6-7 

increased to values pH~9 after soaking with carbon. By IC (ion chromatography) we measure the Cl--

content of the supernatant [see note 3].  

   The excess salt adsorption is calculated from the measured decrease in Cl--concentration, ∆c, in in 

the supernatant (relative to that in the initial solution) according to nsalt,exc=V/m⋅∆c in mol/g, which we 

multiply by υmi=0.64 mL/g to obtain an estimate for the excess salt concentration in the pores, cexc. 

The excess concentration is plotted against the final (after equilibration) salt concentration (again 

based on the measured Cl--concentration) in Fig. 6. By “excess concentration” we mean the 

difference in concentration in the carbon pores, relative to that outside the carbon particles.  
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Fig. 6. Excess adsorption of NaCl in uncharged carbon as function of external salt concentration, c∞. 
Straight dashed line based on standard mD model (constant µatt=0.4 kT), upper curved line based on 
improved mD model as used in sections 3.1-3.3, and lower curved line for extended model including 
ion-volume effects. 
 
 
   As Fig. 6 demonstrates, the measured excess salt adsorption, cexc, as function of the external salt 

concentration, c∞, has a broad maximum in the range from 5 to 100 mM, and beyond that cexc 

decreases gradually. The measured excess adsorption of around 55 mM recalculates to a salt 

adsorption of about 2 mg/g. This number is about a factor of 10 lower than values obtained for mixed 

adsorbents (some containing activated carbon) reported in ref. [81] and a factor 5 lower than values 

for alkali and acid adsorption reported by Garten and Weiss [50]. The standard mD model assuming a 

constant µatt does not describe these data at all. Here in Fig. 6 is plotted a line for µatt=0.4 kT, much 

lower than values for µatt used by us in earlier work, which were mostly around µatt=1.5 kT, but even 

this low value of µatt=0.4 kT results in a model prediction which significantly overpredicts cexc at salt 

concentrations beyond c∞=100 mM. Thus, taking a constant value of µatt does not describe data at all. 

The improved mD model using µatt=E/cions,mi (upper curved line) works much better and more closely 
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describes the fact that cexc levels off with increasing c∞. However, it still does not describe the fact that 

a maximum develops, and that at high c∞ the excess adsorption decreases again. To account for this 

non-monotonic effect we include an ion volume-correction according to a modified Carnahan-Starling 

equation-of-state [44, 45, 47, 63]. For an ion, because of its volume there is an excess, volumetric, 

contribution to the ion chemical potential, both in the external solution and in the micropores. This 

excess contribution is calculated from 

( ) ( ) ( ) ( )− −µ = φ ⋅ − ⋅ φ + ⋅ φ ⋅ − φ = − φ ⋅ − φ −3 32
exc 8 9 3 1 3 1 3  (20) 

where φ is the volume fraction of all ions together. In external solution, to calculate exc
∞µ , we use 

φ=2⋅vion⋅c∞, where v is the ion volume (vion=π/6⋅dion
3, where dion is the ion size) and the factor 2 stems 

from the fact that a salt molecule consists of two ions, while in the carbon pores, to calculate pore
excµ , we 

replace in Eq. (20) φ by φeff, for which we use the empirical expression φeff=v⋅cions,mi+α⋅dion/dpore, 

derived from fitting calculation results of the average density of spherical particles in a planar slit 

based on a weighted-density approximation [82, 83], where α is an empirical correction factor of 

α=0.145 and where dpore is the pore width. For a very large pore, or for very small ions, the correction 

factor tends to zero.  

   The excess salt concentration as plotted in Fig. 6 is given by cexc=½⋅cions,mi-c∞, and is calculated via  

( )pore
ions,mi att exc exc2 expc c ∞

∞= ⋅ ⋅ µ + µ − µ . (21) 

   Eqs. (20)+(21) presents a self-consistent set of equations that can be solved to generate the curves 

in Fig. 6. To calculate the lines for the improved mD model without ion volume effects, φ is set to zero.  

   To obtain the best fit in Fig. 6, we use E=220 kT⋅mol/m3 and for the ion and pore sizes we use 

dion=0.5 nm and dpore=2.5 nm. This pore size is representative for the microporous material used, 

while the E-value is close to that used in sections 3.1-3.3. For the model including volume effects, the 

derived values for the term µatt decrease from µatt=2.47 kT at c∞=5 mM NaCl to µatt=0.46 kT at 200 mM. 

The volume exclusion term, pore
exc exc

∞µ − µ , is quite independent of c∞ at around 0.28 kT. As can be 

observed in Fig. 6, beyond 25 mM a good fit is now obtained. 

   Thus, we conclude that the analysis presented in this section underpins the fact that uncharged 

carbon absorbs salt, and that the data are well described by a model using an attractive energy term 

µatt inversely proportional to the total ion concentration to account for image forces, in combination 

with a correction to include ion volume effects as an extra repelling force which counteracts ion 

adsorption at high salt concentrations. 

 



 
 

16 

4. Conclusions 

   We have demonstrated that to describe charge and salt adsorption in porous carbon electrodes for 

capacitive deionization (CDI), that the predictive power of the modified Donnan model can be 

significantly increased by assuming that the ion attractive energy µatt is no longer a fixed constant, but 

is inversely related to the total ion concentration in the pores. In this way, the anomaly of predicted 

extremely high salt adsorptions in carbons in contact with high-salt solutions such as seawater, is 

resolved. Whereas in the standard mD model, using as an example a constant value of µatt=2.0 kT, 

the excess adsorption of salt from water of a salinity of 0.5 M (sea water) into uncharged carbon is 

predicted to be 3.19 M, in the improved mD model, with E=300 kT⋅mol/m3, this excess adsorption is 

only 0.13 M, a much more realistic value. Actually, extrapolation of data presented in Fig. 6 suggests 

that in a 0.5 M salt solution, the effect of ion volume exclusion may be high enough that instead of an 

excess adsorption, we have less salt in the pores than in the outside solution. The improved Donnan 

model not only has relevance for modeling the EDL structure in porous electrodes for CDI, but also for 

membrane-CDI [84-87], salinity gradient energy [40, 55] and for energy harvesting from treating CO2 

containing power plant flue gas [88, 89].  

  This work also highlights for the first time the important role of electrostatic image forces in porous 

electrodes, which cannot be described by classical mean-field theories. We propose a simple 

approximation that works very well for the data presented here. This result invites further systematic 

testing and more detailed theory. The theory can be extended for larger pores with non-uniform ion 

densities, and by making use of more accurate models of the Stern layer, including its dielectric 

response and specific adsorption of ions. Unlike the situation for biological molecules [90] and ion 

channels [91], where image forces are repulsive due to the low dielectric constant, metallic porous 

electrodes generally exert attractive image forces on ions that contribute to salt adsorption, even at 

zero applied voltage.  

 

Notes 

1. Note that for a symmetric 1:1 salt, and for a symmetric electrode, there is no effect of explicitly considering the 

two values of µatt,j to be different, as long as their average is same. When considering µatt,Na and µatt,Cl to be 

different, still the same model output (charge and salt adsorption versus cell voltage) is generated and only the 

individual Donnan potentials change in both electrodes, one up, one down, with their sum remaining the same. 

However, for asymmetric electrodes, or asymmetric salts (such as CaCl2), and for salt mixtures [25] there is an 

effect of the individual values of µatt,i on the measurable performance of a CDI cell. Of course, it must be the case 

that µatt differs between different ion types as it is known that specific adsorption of ions increases with their size, 

which is correlated with their lower solvation ability: from F- to I-, and from Li+ to Cs+ [92, 93]. 

2. Note that to analyze the data of ref. [16], as presented in Fig. 2, the mass as assumed erroneously in ref. [16] 

to be 10.6 g must be corrected to a mass of 8.5 g, and thus the reported salt adsorption and charge in ref. [16] is 

multiplied by 10.6/8.5; Note that in ref. [38] a correction to 8.0 g was assumed in Fig. 2 there. 

3. Also the Na+-concentration was measured in all samples, using Inductively Coupled Plasma mass 

spectrometry. Analysis of the electrolyte solution prior to contacting with carbon gave a perfect match of Na+-

concentration to Cl--concentration. However, analysis of the supernatant that had been in contact with the carbon 

quite consistently gave a lower Cl--concentration than Na+-concentration, by 1-6 mM (thus more Cl- -adsorption in 

the carbon), in line with the higher reported anion vs cation adsorption for carbons activated beyond 600 oC [50], 

and for mixed adsorbent samples reported in Fig. 2 of ref. [81]. 
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