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Abstract

In this paper, we establish the ergodicity of the Airy line ensemble with respect to
horizontal shifts. This shows that it is the only candidate for Conjecture 3.2 in [3],
regarding the classification of ergodic line ensembles satisfying a certain Brownian
Gibbs property after a parabolic shift.
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1 Introduction

The Airy2 process was introduced in [8] and describes fluctuations in random ma-
trices, random surfaces and KPZ growth models. For instance, the Airy2 process de-
scribes the scaling limit of the largest eigenvalue in GUE Dyson’s Brownian motion as
the number of eigenvalues goes to infinity. For more information and background, see
[8, 7, 3, 4, 9] and reference therein.

One illuminating way to view the Airy2 process is as the top line of the Airy line en-
semble whose finite dimensional distributions are described by a determinantal process
with the extended Airy2 kernel as its correlation kernel. This determinantal process
was introduced in [8] and the existence of a continuous version was established in [3].
In the Dyson’s Brownian motion context, the Airy line ensemble describes the limiting
measure focusing on the top collection of evolving eigenvalues.

The Airy2 process is stationary with respect to horizontal shifts and Equation (5.15)
in [8] showed that it satisfies the strong mixing condition and hence is ergodic. In
this paper, we extend this result to the Airy line ensemble. This shows that it is the
only candidate for Conjecture 3.2 in [3], regarding the classification of ergodic line
ensembles satisfying a certain Brownian Gibbs property after a parabolic shift.

1.1 The Airy line ensemble and the Brownian Gibbs property

In order to define the Airy line ensemble we first introduce the concept of a line
ensemble and the Brownian Gibbs line ensembles. We follow the notations of [3].

Definition 1.1. Let Σ be a (possibly infinite) interval of Z, and let Λ be an interval of R.
Consider the set X of continuous functions f : Σ × Λ → R endowed with the topology
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Ergodicity of the Airy line ensemble

of uniform convergence on compact subsets of Σ × Λ. Let C denote the sigma-field
generated by Borel sets in X.

A Σ-indexed line ensemble L is a random variable defined on a probability space
(Ω,B,P), taking values in X such that L is a (B, C)-measurable function. Intuitively, L is
a collection of random continuous curves (even though we use the word “line” we are
referring to continuous curves), indexed by Σ, each of which maps Λ into R. We will
often slightly abuse notation and write L : Σ × Λ → R, even though it is not L which is
such a function, but rather L(ω) for each ω ∈ Ω. Furthermore, we write Li := (L(ω))(i, ·)
for the line indexed by i ∈ Σ.

We turn now to formulating the Brownian Gibbs property.

Definition 1.2. Let {x1 > · · · > xk} and {y1 > · · · > yk} be two sets of real numbers.
Let a, b ∈ R satisfy a < b, and let f, g : [a, b] → R∗ (where R∗ = R ∪ {−∞,+∞}) be
two given continuous functions that satisfy f(r) > g(r) for all r ∈ [a, b] as well as the
boundary conditions f(a) > x1, f(b) > y1 and g(a) < xk, g(b) < yk.

The (f, g)-avoiding Brownian line ensemble on the interval [a, b] with entrance data
(x1, . . . , xk) and exit data (y1, . . . , yk) is a line ensemble Q with Σ = {1, . . . , k}, Λ = [a, b]

and with the law of Q equal to the law of k independent Brownian bridges with diffusion
coefficient 1 {Bi : [a, b] → R}ki=1 from Bi(a) = xi to Bi(b) = yi conditioned on the event
that f(r) > B1(r) > B2(r) > · · · > Bk(r) > g(r) for all r ∈ [a, b]. Note that any such line
ensemble Q is necessarily non-intersecting.

Now fix an interval Σ ⊆ Z and Λ ⊆ R and let K = {k1, k1 + 1, . . . , k2 − 1, k2} ⊂ Σ and
a, b ∈ Λ, with a < b. Set f = Lk1−1 and g = Lk2+1 with the convention that if k1 − 1 /∈ Σ

then f ≡ +∞ and likewise if k2 + 1 /∈ Σ then g ≡ −∞. Write DK,a,b = K × (a, b) and
Dc
K,a,b = (Σ× Λ) \DK,a,b. A Σ-indexed line ensemble L : Σ× Λ→ R is said to have the

Brownian Gibbs property if

Law
(
L
∣∣
DK,a,b

conditional on L
∣∣
Dc

K,a,b

)
= Law(Q),

where Qi = Q̃i−k1+1 and Q̃ is the (f, g)-avoiding Brownian line ensemble on [a, b] with
entrance data

(
Lk1(s), . . . ,Lk2(s)

)
and exit data

(
Lk1(t), . . . ,Lk2(t)

)
. Note that Q̃ is in-

troduced because, by definition, any such (f, g)-avoiding Brownian line ensemble is
indexed from 1 to k2 − k1 + 1, but we want Q to be indexed from k1 to k2.

Definition 1.3. The Airy line ensemble is a N × R indexed line ensemble which we
denote by A. Given I ⊂ R, let A(I) = {A(i, t)|i ∈ N, t ∈ I}. The defining property of A
is the following: for all I = {t1 · · · , tn}, and n ≥ 1, as a point process on I ×R, A(I) is a
determinantal process whose kernel is the extended Airy2 kernel Kext

2 such that

Kext
2 (s, x; t, y) =


∫ ∞

0

dλ e−λ(s−t) Ai(x+ λ) Ai(y + λ) if s ≥ t,

−
∫ 0

−∞
dλ e−λ(s−t) Ai(x+ λ) Ai(y + λ) if s < t,

(1.1)

where Ai(·) is the Airy function.

It is not a priori clear that there exists a continuous line ensemble satisfying the
correlation functions in Definition 1.3. [3] showed that the Airy line ensemble exists
and satisfies the Brownian Gibbs property after a parabolic shift. To be precise, we
have
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Ergodicity of the Airy line ensemble

Theorem 1.4 (Theorem 3.1 in [3]). There is a unique N × R indexed line ensemble A
satisfying Definition 1.3. Moreover, the line ensemble L given by

Li(x) =
1√
2

(Ai(x)− x2) (1.2)

satisfies the Brownian Gibbs property.

Definition 1.5. The top line of the Airy line ensemble is called Airy2 process.

1.2 Main result and motivation

From the definition of the extended Airy2 kernel (1.1), the Airy line ensemble and
its marginal, the Airy2 process (i.e. A1), are invariant under horizontal shift in the
x−coordinate (i.e. are stationary). It is proved in [8] that the Airy2 process is ergodic,
and in fact, satisfies the strong mixing condition. (Technical details regarding ergodicity
are provided in Section 1.3). In this paper, we show that:

Theorem 1.6. The Airy line ensemble is ergodic with respect to horizontal shifts.

Theorem 1.6 can be seen as a multi-line extension of the ergodicity of the Airy2

process. Besides its independent interest, one motivation for this result is our desire to
classify stationary ergodic line ensembles which display the Brownian Gibbs property
after the parabolic shift given by (1.2).

According to Theorem 1.4, Li(x) = 1√
2
(Ai(x) − x2) satisfies the Brownian Gibbs

property. In [3], the authors formulated a conjecture which was originally suggested by
Scott Sheffield:

Conjecture 1.7 (Conjecture 3.2 of [3]). Let Θ = {θs|s ∈ R} denote the horizontal shift
group of N×R-indexed line ensembles. More precisely, given a line ensemble L, let

θsLi(x) = Li(x+ s) ∀i ∈ N, x ∈ R.

We say that anN×R-indexed line ensemble L is horizontal shift-invariant if θsL is equal
in distribution to L for each s ∈ R. Let GΘ be the set of Brownian Gibbs line ensemble
measure L’s such that 21/2Li(x) + x2 is horizontal shift-invariant. Then as a convex set,
the extremal points of GΘ consists of {Lc|c ∈ R} where

Lci (x) =
1√
2

(Ai(x)− x2) + c (1.3)

and A is the Airy line ensemble.

Beyond its intrinsic interest, this conjecture is worth investigating in light of its
possible use as an invariance principle for deriving convergence of systems to the Airy
line ensemble. As such, the characterization could serve as a route to universality
results. For example, Section 2.3.3 in [2] suggests a possible route to prove that the
KPZ line ensemble converges to the Airy line ensemble minus a parabola (and hence
the narrow-wedge initial data KPZ equation converges to the Airy2 process minus a
parabola) based on the above conjecture.

In Section 3 we will prove that Theorem 1.6 implies:

Theorem 1.8. Lc defined in Conjecture 1.7 are extremal Brownian Gibbs line ensem-
bles.

Theorem 1.8 reduces Conjecture 1.7 to the following:
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Conjecture 1.9. Given c ∈ R, there is a unique Brownian Gibbs line ensemble L ∈ GΘ

such that
E
[
L1(x) + 2−1/2x2

]
= c

for all x ∈ R.

When Conjecture 1.7 was formulated in [3], it was not shown that Lc defined in (1.3)
are extremal. Therefore even if the uniqueness in Conjecture 1.9 was established, it
would not necessarily follow that extremal points in GΘ were related to the Airy line
ensemble. Theorem 1.8 rules out the possibility that the Airy line ensemble is a non-
trivial convex combination of extremal points in GΘ, thus reducing Conjecture 1.7 to
Conjecture 1.9.

1.3 Ergodicity of the Airy line ensemble

We recall some basic facts in ergodic theory in the context of N × R-indexed line
ensemble. As a matter of convention, all line ensembles are assumed to be indexed by
N×R unless otherwise noted.

Recall Θ = {θs|s ∈ R} is the horizontal shift group of N×R-indexed line ensembles.

Definition 1.10. Suppose L is a horizontal shift-invariant line ensemble on the proba-
bility space (Ω, C,P). We say A ∈ C is shift-invariant if θsA := {θsω |ω ∈ A} = A for all
s ∈ R. Then L is ergodic if for all shift-invariant A, P[A] = 0 or 1.

It is well known that ergodicity follows from the strong mixing condition.

Definition 1.11. Suppose L is a horizontal shift-invariant line ensemble on the proba-
bility space (Ω, C,P). L is said to satisfy the strong mixing condition if for all A,B ∈ C,

lim
T→∞

P[θTA,B] = P[A]P[B].

Proposition 1.12. If a horizontal shift-invariant line ensemble L satisfies the strong
mixing condition, it is ergodic.

Proof. Suppose A is shift-invariant. Then P[θTA,A] = P[A]. Let T tend to infinity, by
the strong mixing condition, P[A] = P[A]2, which means P[A] = 0 or 1.

To prove Theorem 1.6, we actually prove a stronger result:

Proposition 1.13. The Airy line ensemble satisfies the strong mixing condition given
in Definition 1.11.

Now we consider the Airy line ensemble A. Fix m ∈ N and t1 < t2 < · · · < tm. The
Airy line ensemble restricted toN×{t1, t2, · · · , tm} is a point process on {t1, t2, · · · , tm}×
R. For 1 ≤ i ≤ m and ki ∈ N, suppose I = {Iji |1 ≤ j ≤ ki} is a collection of intervals on
N×R satisfying

{Iji }1≤j≤ki are disjoint intervals on {ti} ×R for all i, and

inf
{
x
∣∣∃1 ≤ i ≤ m, 1 ≤ j ≤ ki such that (ti, x) ∈ Iji

}
> −∞. (1.4)

Let N Iji denote the number of particles in Iji and let

G(t1, t2 · · · , tm, I) =
{
A ∈ C|A ∈ σ

(
{N Iji |1 ≤ i ≤ m, 1 ≤ j ≤ ki}

)}
.

We prove Proposition 1.13 by showing that
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Lemma 1.14. Fix m ∈ N, t1 < t2 < · · · < tm and I, for A,B ∈ G(t1, t2, · · · , tm, I),

lim
T→∞

P[θT (A), B] = P[A]P[B]. (1.5)

Proof of Proposition 1.13 based on Lemma 1.14 . Recall a result in measure theory (see,
for example,[6]),

Theorem 1.15. Let (X, C,P) be a probability space. Let B ⊂ C an algebra generating
C. Then for all A ∈ Cand ε > 0, we can find A′ ∈ B such that µ(A∆A′) ≤ ε. Here
A∆A′ = A\A′ +A′\A is the symmetric difference of A and A′.

Let F be the σ-algebra generated by the Airy line ensemble and F ′ be the union of all
G(t1, t2 · · · , tm, I) where (t1, t2 · · · , tm) varies over all finite collections of real numbers
and I varies over all finite collections of intervals satisfying (1.4). Since

G(t1, t2 · · · , tm, I) ∪ G(t′1, t
′
2 · · · , t′n, I ′) ⊂ G(t1, t2 · · · , tm, t′1, t′2 · · · , t′n, I ∪ I ′)

for all choices of (t1, t2 · · · , tm, I) and (t′1, t
′
2 · · · , t′n, I ′), F ′ is an algebra. Furthermore, if

we restrict the Airy line ensemble to N×Q, then ∀i ∈ N, r ∈ Q, Ai(r) is measurable with
respect to the σ-algebra generated by F ′. By the continuity of the Airy line ensemble,
F equals to the σ-algebra generated by F ′.

Therefore for A,B ∈ F and ε > 0, there exist A′, B′ ∈ F ′ such that P[A∆A′] < ε,
P[B∆B′] < ε. By Lemma 1.14,

lim
T→∞

P[θT (A′), B′] = P[A′]P[B′].

Since ε can be arbitrarily small,

lim
T→∞

P[θT (A), B] = P[A]P[B].

1.4 Strategy and outline

Now we sketch our strategy for proving our main results, Theorem 1.6 and 1.8.
From the argument above, Lemma 1.14 implies Proposition 1.13, which further implies
Theorem 1.6. Thus Theorem 1.6 boils down to proving Lemma 1.14, which is the content
of Section 2.

Since N Iji are discrete random variables, their joint distribution is governed by the
moment generating function. By a standard fact in determinantal point process (Lemma
2.1), the generating function can be expressed as a Fredholm determinant of Kext

2 on
L2({t1, t2, · · · , tm} ×R).

Since there is a time shift T in Lemma 1.14, we need to consider 2m time moments.
The trace class operator involved in the left hand side of (1.5) can be regarded as a 2m

by 2m operator valued matrix. Based on the known estimates of Airy2 kernel, one can
show that as a 2 by 2 block matrix of block size m, the “off diagonal” terms will vanish
as T → ∞. This shows the factorization of the generating function (Lemma 2.2). Then
using complex analysis of several variables one can extract Lemma 1.14 from Lemma
2.2.

To prove Theorem 1.8, we follow the standard method in [5]. As shown in Chapter
14 of [5], given a translation group and a Gibbs specification, for the set of translation
invariant Gibbs measures defined on S = Zd, extremal points coincide with ergodic ones
with respect to the translation group. In our case, the underlying space is S = R ×N.
Thanks to the fact that the Airy line ensemble is a collection of continuous curves [3],
the same argument in [5] works for the Airy line ensemble. The details are provided in
Section 3.

ECP 19 (2014), paper 49.
Page 5/11

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3504
http://ecp.ejpecp.org/


Ergodicity of the Airy line ensemble

2 Strong mixing for N Iji

2.1 Express the generating function by Fredholm determinant

We first recall a useful formula from determinantal point process. It appears in [1]
as formula (2.4).

Lemma 2.1. Suppose X is a determinantal point process on a locally compact space of
X with kernel K. Let φ be a function on X such that the kernel (1−φ(x))K(x, y) defines
a trace class operator (1− φ)K in L2(X ). Then

E
[ ∏
xi∈X

φ(xi)
]

= det
(
1− (1− φ)K

)
. (2.1)

Fix z1, z2, · · · , zm ∈ C such that |zi| ≤ 1 for all i. Let I1, I2, · · · , Im be a family of
pairwise disjoint subsets of X and Q is a multiplication operator defined by

Qf(x) =

m∑
i=1

(1− zi)1x∈Iif(x). (2.2)

Denote NIi(1 ≤ i ≤ m) to be the number of particles in Ii of the random configuration
X. Specifying

φ(x) =

m∑
i=1

zi1x∈Ii + 1x∈∩m
i=1I

c
i

in Lemma 2.1 leads to

E
[ m∏
i=1

z
NIi
i

]
= det(I −QK)L2(X ). (2.3)

2.2 Proof of Lemma 1.14

Let the Airy Hamiltonian be defined as

H = −∆ + x.

H has the shifted Airy functions Aiλ(x) = Ai(x − λ) as its generalized eigenfunctions:
HAiλ(x) = λAiλ(x). Define the Airy2 kernel K2 as the projection of H onto its negative
generalized eigenspace:

K2(x, y) =

∫ ∞
0

dλAi(x+ λ) Ai(y + λ).

Consider t1 < t2 < · · · < tn, ti ∈ R. For 1 ≤ i ≤ n, suppose {Iji }1≤j≤ki are intervals
on {ti} ×R satisfying the condition in (1.4) and

M0 = − inf{x |(ti, x) ∈ Iji for some i, 1 ≤ j ≤ ki}. (2.4)

Let N Iji be the number of particles in the interval Iji .
From Lemma 2.1 and (2.3), for {zji |1 ≤ i ≤ n, 1 ≤ j ≤ ki, |z

j
i | ≤ 1}

E
[ n∏
i=1

ki∏
j=1

(zji )
NI

j
i
]

= det(I −QKext
2 )L2({t1,t2,··· ,tn}×R), (2.5)

where Q is a multiplication operator defined as

Qf(t, x) =
∑

1≤i≤n
1≤j≤ki

(1− zji )1(t,x)∈Iji
f(t, x) (2.6)
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for all f ∈ L2({t1, t2, · · · , tn} ×R).

For the rest of the section we regard QKext
2 as an n×n operator valued matrix where

[QKext
2 ]ij = Qtie

(ti−tj)HK21i≥j +Qtie
(ti−tj)H(K2 − I)1i<j . (2.7)

We write det
(
I−[QKext

2 ]1≤i,j≤n
)

to be the Fredholm determinant of QKext
2 . For 1 ≤ m ≤

n, we write [QKext
2 ]1≤i,j≤m as the operator corresponding to the submatrix of QKext

2

which consists of entries indexed by {1, · · · ,m}×{1, · · · ,m} and det(I− [QKext
2 ]1≤i,j≤m)

as its Fredholm determinant. det
(
I − [QKext

2 ]m+1≤i,j≤n
)

is defined in the same manner.
According to the convention above,

E

[
n∏
i=1

ki∏
j=1

(zji )
NI

j
i

]
= det

(
I − [QKext

2 ]1≤i,j≤n
)
. (2.8)

Now we assume n = 2m is an even number and {t1 < t2 < · · · < tm} is a fixed set
of real numbers. {tm+1, tm+2 · · · , tn} is a shift of {t1, t2, · · · , tm} by T . To be precise,
tm+i = ti + T for all 1 ≤ i ≤ m.

Similar to (2.8), we have

E

[
m∏
i=1

ki∏
j=1

(zji )
NI

j
i

]
= det

(
I − [QKext

2 ]1≤i,j≤m
)
,

E

[
n∏

i=m+1

ki∏
j=1

(zji )
NI

j
i

]
= det

(
I − [QKext

2 ]m+1≤i,j≤n
)
. (2.9)

Lemma 2.2. Let

R(z, T ) = E

[
n∏
i=1

ki∏
j=1

(zji )
NI

j
i

]
− E

[
m∏
i=1

ki∏
j=1

(zji )
NI

j
i

]
E

[
n∏

i=m+1

ki∏
j=1

(zji )
NI

j
i

]
= det

(
I − [QKext

2 ]1≤i,j≤n
)
− det

(
I − [QKext

2 ]1≤i,j≤m
)

det
(
I − [QKext

2 ]m+1≤i,j≤n
)
.

(2.10)

then lim
T→∞

R(z, T ) = 0 for all z.

We postpone the proof of Lemma 2.2 to Section 2.3. Now we prove Lemma 1.14
based on it. Let N j

i ∈ N for all 1 ≤ i ≤ n, 1 ≤ j ≤ ki. Define the partial differential
operators

∂1,n =
∂

n∑
i=1

ki∑
j=1

Nj
i

n∏
i=1

ki∏
j=1

∂(zji )
Nj

i

, ∂1,m =
∂

m∑
i=1

ki∑
j=1

Nj
i

m∏
i=1

ki∏
j=1

∂(zji )
Nj

i

, ∂m+1,n =
∂

n∑
i=m+1

ki∑
j=1

Nj
i

n∏
i=m+1

ki∏
j=1

∂(zji )
Nj

i

. (2.11)

Then by Lemma 2.2

∂1,nE

[
n∏
i=1

ki∏
j=1

(zji )
NI

j
i

]

=∂1,mE

[
m∏
i=1

ki∏
j=1

(zji )
NI

j
i

]
∂m+1,nE

[
n∏

i=m+1

ki∏
j=1

(zji )
NI

j
i

]
+ ∂1,nR(z, T ). (2.12)
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R(z, T ) is analytic function bounded by 2 when |z| < 1. By Montel’s theorem [10,
Theorem 1.4.31], every subsequence of R(z, T ) has a further subsequence which con-
verges locally uniformly. This implies that lim

T→∞
R(z, T ) = 0 locally uniformly in |z| < 1.

By the Cauchy inequalities [10, Theorem 1.3.3], the magnitude of partial derivatives of
an analytic function at a certain point is controlled by the magnitude of the function
around that point. Therefore ∂1,nR(z, T ) converges uniformly for |z| < 1. In particular,
lim
T→∞

∂1,nR(0, T ) = 0.

Let

A′ = {N Iji = N j
i for all 1 ≤ i ≤ m, 1 ≤ j ≤ ki},

B′ = {N Iji = N j
i+m for all 1 ≤ i ≤ m, 1 ≤ j ≤ ki}.

Taking z = 0 in (2.12) we have

P[A′, θTB
′] = P[A′]P[θTB

′] + o(1) = P[A′]P[B′] + o(1) as T →∞, (2.13)

where the second equality is due to the horizontal shift invariance of the Airy line en-
semble.

Therefore for all A,B ∈ G(t1, · · · , tm, I),

lim
T→∞

P[A, θTB] = P[A]P[B]. (2.14)

This finishes the proof of Lemma 1.14.

2.3 Proof of Lemma 2.2

The proof of Lemma 2.2 uses the following fact.

Lemma 2.3. Let Pa be the multiplication operator of 1x>a and y > 0. Then PaK2,
Pae
−yH(I −K2) and PaeyHK2 are trace class operators. Moreover,

lim
y→∞

‖Pae−yH(I −K2)‖1 = lim
y→∞

‖PaeyHK2‖1 = 0. (2.15)

Proof. Let ϕ(x) = (1 + x2)1/2 and define the multiplication operator Mf(x) = ϕ(x)f(x).
In the proof of Proposition 3.2 in [4], it was shown that∥∥∥Pae−yHM∥∥∥

2
≤ C. (2.16)

where ‖ · ‖2 is the Hilbert-Schmidt norm. Actually by taking n = 2 in the proof of
Proposition 3.2 in [4], we have∥∥∥Pae−yHM∥∥∥

2
=
∥∥∥[e−yH − (I − Pa)e−yH

]
M
∥∥∥

2
≤ C.

On the other hand

‖M−1eyHK2

∥∥2

2
=

∫
R2

dx dz

∫
(−∞,0]2

dλ dλ̃ ϕ(x)−2e(λ+λ̃)y Ai(x− λ) Ai(z − λ)

·Ai(x− λ̃) Ai(z − λ̃)

=

∫ ∞
−∞

dx

∫ 0

−∞
dλϕ(x)−2e2λy Ai(x− λ)2

≤ c

2y
‖ϕ−1‖22,

(2.17)
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where c = maxx∈R Ai(x)2 <∞.
Similarly,

‖M−1e−yH(I −K2)
∥∥2

2
≤ c

2y
‖ϕ−1‖22. (2.18)

Since ‖AB‖1 ≤ ‖A‖2‖B‖2,

‖PaK‖1 ≤ ‖PaeyHM‖2‖M−1e−yHK‖2 <∞.

Fix b > 0, there exists a constant Cb such that

‖PaeyHK‖1 ≤ ‖Pae−bHM‖2‖M−1e−(y−b)HK‖2 ≤
Cb
y
,

‖Pae−yH(I −K)‖1 ≤ ‖Pae−bHM‖2‖M−1e−(y−b)H(I −K)‖2 ≤
Cb
y
.

This finishes the proof.

To prove Lemma 2.2, we come back to (2.7).

R(z, T ) = det
(
I − [QKext

2 ]1≤i,j≤n
)
− det

(
I − [QKext

2 ]1≤i,j≤m
)

det
(
I − [QKext

2 ]m+1≤i,j≤n
)
.

(2.19)
By condition (1.4), we can always replace Qti by QtiPa for a < −M0. Therefore from

Lemma 2.3,

lim
T→∞

‖Qtie(ti−tj)HK2‖1 = 0, 1 ≤ j ≤ m < i ≤ n,

lim
T→∞

‖Qtie(ti−tj)H(K2 − I)‖1 = 0, 1 ≤ i ≤ m < j ≤ n.

Since Fredholm determinant is continuous respect to trace norm, lim
T→∞

R(z, T ) = 0.

3 Extremal Gibbs measure and ergodicity

3.1 The Gibbs property of the Airy line ensemble

We first adjust the notations to make it consistent with those in [5].
Let S = N×R denote the parameter set and (Ω,F ,P) denote the probability space

of the Airy line ensemble. Canonically, we choose Ω to be the set of continuous func-
tions from S to R and F be the Borel σ−algebra with respect to the locally uniformly
convergence topology. Let L be the set of all allowable finite non-empty subsets of S.
Here allowable sets are those of the form {k1, · · · , k2} × (a, b). Let TΛ = FS\Λ where Λ

runs through L and FS\Λ be the σ-algebra of the Airy line ensemble restricted to S\Λ.
From Theorem 1.4, the Airy line ensemble satisfies certain Gibbs property, which we

formulate now.
Let {x1 > · · · > xk} and {y1 > · · · > yk} be two sets of real numbers. Let a, b ∈ R

satisfy a < b, and let f, g : [a, b]→ R∗ (where R∗ = R∪{−∞,+∞}) be two given continu-
ous functions that satisfy f(r) > g(r) for all r ∈ [a, b] as well as the boundary conditions
f(a) > x1, f(b) > y1 and g(a) < xk, g(b) < yk. The shifted (f, g)-avoiding Brownian line
ensemble on the interval [a, b] with entrance data (x1, . . . , xk) and exit data (y1, . . . , yk) is
a line ensemble L such that 2−1/2(L−x2) is a

(
2−1/2(f−x2), 2−1/2(g−x2)

)
-avoiding Brow-

nian line ensemble on the interval [a, b] with entrance data
(
2−1/2(x1−a2), . . . , 2−1/2(xk−

a2)
)

and exit data
(
2−1/2(y1 − b2), . . . , 2−1/2(yk − b2)

)
.
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Definition 3.1. Suppose Λ = {k1, · · · , κ2} × (a, b) and γΛ is a probability kernel from
(Ω,TΛ) to (Ω,F ) defined as follows:

For ω ∈ Ω, γΛ(·|ω) coincides with ω outside Λ; in Λ, γΛ(·|ω) is the law of the shifted(
ω(k1−1, ·)

∣∣
[a,b]

, ω(k2 +1, ·)
∣∣
[a,b]

)
-avoiding Brownian line ensemble on [a, b] with entrance

data
(
ω(k1, a) . . . , ω(k2, a)

)
and exit data

(
ω(k1, b) . . . , ω(k2, b)

)
. Here we make the con-

vention that ω(0, x) =∞.

γ =
(
γΛ

)
Λ∈L

is the family of Gibbs specifications that describes the Gibbs property
of the Airy line ensemble. Since the Airy line ensemble is stationary, γ is also horizontal
shift-invariant, which means

γΛ+T (θTA|θTω) = γΛ(A|ω), (Λ ∈ L , T ∈ R, ω ∈ Ω). (3.1)

With these notations, Theorem 1.8 can be formulated in this way.

Theorem 3.2. Let GΘ(γ) be the simplex of all probability measures µ on (Ω,F ) such
that

µ(θTA) = µ(A) and µ(A|TΛ) = γ(A|·) µ a.s. for all A ∈ F ,Λ ∈ L and T ∈ R. (3.2)

Then the Airy line ensemble is an extreme point of GΘ(γ).

3.2 Proof of Theorem 3.2

Theorem 3.2 follows from a standard result in ergodic theory which is proved as
Corollary 7.4 in [5].

Lemma 3.3. Let (Ω,F ) be a measurable space, Π a non-empty set of probability ker-
nels from F to F , and

PΠ =
{
µ ∈P(Ω,F ) : µπ = µ for all π ∈ Π

}
, (3.3)

be the convex set of all Π−invariant probability measures on (Ω,F ). Let µ ∈ PΠ be
given and IΠ(µ) = ∩π∈ΠIπ(µ) where Iπ(µ) =

{
A ∈ F : π(A|·) = 1A µ-a.s.

}
. Then µ is

extreme if and only if µ is trivial on IΠ(µ).

Define a family Θ̂ = {θ̂t : t ∈ R} of probability kernels θ̂T from F to F by

θ̂t(A|ω) = 1A(θtω) (t ∈ R, A ∈ F , ω ∈ Ω).

Using the notation of Lemma 3.3, PΘ̂ is the set of all horizontal shift-invariant mea-
sures.

By definition, a probability measure µ belongs to GΘ(γ) if and only if µ is preserved
by all probability kernels in

Π = {γΛ : γ ∈ L } ∪PΘ̂.

Therefore µ is an extreme in GΘ(γ) if and only if µ is trivial on IΠ(µ).

We claim that P (the probability measure for the Airy line ensemble) is trivial on
∩t∈QIθ̂t

(µ), which is sufficient to prove Theorem 3.2.

To show the triviality, for given A ∈ ∩t∈QIθ̂t
(µ), let B = ∪t∈QθtA. Then θtB = B for

all t ∈ Q and P[A∆B] ≤
∑
t∈Q

P[A∆θtA] = 0. Therefore P[A] = P[B].

As in the proof of Proposition 1.12, P[B] = lim
n→∞

P[θnB,B] = P2[B], which means

P[A] = P[B] = 0 or 1.
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