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Abstract

The safe, targeted and effective delivery of gene therapeutics remains a significant barrier to their

broad clinical application. Here we develop a magnetic nucleic acid delivery system composed of

iron oxide nanoparticles and cationic lipid-like materials termed lipidoids. Coated nanoparticles

are capable of delivering DNA and siRNA to cells in culture. The mean hydrodynamic size of

these nanoparticles was systematically varied and optimized for delivery. While nanoparticles of

different sizes showed similar siRNA delivery efficiency, nanoparticles of 50–100 nm displayed

optimal DNA delivery activity. The application of an external magnetic field significantly

enhanced the efficiency of nucleic acid delivery, with performance exceeding that of the

commercially available lipid-based reagent, Lipofectamine 2000. The iron oxide nanoparticle

delivery platform developed here offers the potential for magnetically guided targeting, as well as

an opportunity to combine gene therapy with MRI imaging and magnetic hyperthermia.
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Gene therapy has the potential to treat a broad range of human diseases1. However, the main

barrier to safe and effective gene therapy remains the challenge involved in delivering these

macromolecules2. Viral vectors have shown great efficacy of nucleic acid delivery both in

vitro and in vivo, but serious safety issues continue to be a significant concern; in contrast,

non-viral systems offer a number of potential advantages, including stability, low

immunogenicity and toxicity3. Among the myriad of synthetic gene carriers that have been

studied, iron oxide is an attractive material for drug delivery and theranostics for several

reasons. First, iron oxide is biocompatible and biodegradable. Studies have shown that iron

metabolism occurs in the human body through multiple pathways4, and dextran-coated iron
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oxide nanoparticles have been clinically tested and approved by the FDA5. Second, the

magnetic properties of iron oxide enable targeted delivery by application of an external

magnetic field6. Third, magnetic nanoparticles can be used for MRI imaging and

hyperthermia7.

Functionalization of the iron oxide nanoparticle surface represents one of the key aspects to

developing these materials as drug delivery vehicles8. Highly monodisperse iron oxide

nanoparticles can be produced in large quantities by thermal decomposition9, and the

surfaces of these nanoparticles are most commonly coated with a layer of oleic acid or oleic

amine, which can only be dispersed in a non-polar organic solvent. However, covalent

conjugation of ligands to the iron oxide surface can compromise biocompatibility and

degradability8. Silica-coated magnetic nanoparticles are water soluble and easy to

functionalize, but lack biodegradability10. While catechol is degradable and has strong

adhesion to the iron oxide nanoparticle surface, extra steps are required during modification

to protect the catechol groups from oxidation11. Other functional groups, such as amines12

and carboxylates13, also have affinities for the iron oxide surface. Because this binding is

non-covalent, polymers are often employed to achieve stronger adsorption14. To enhance

stability further, these coating molecules are frequently crosslinked15, which compromises

degradability.

An alternative approach for non-covalent binding to the iron oxide surface relies on

hydrophobic interaction16. In one method, nanoparticles and lipids are first co-precipitated

and then re-dispersed in water17. In another method, the particles and lipids are incorporated

together through an emulsion formed by an organic solvent and water, and the excess

coating material was removed by magnetic separation18. These procedures often produce

particle aggregates of heterogeneous size and lower the final yield. Furthermore, a poorly

assembled lipid coating on the nanoparticle surface can detach during purification and result

in the formation of unstable particle aggregates17.

To address these challenges, we developed a simple method to coat iron oxide nanoparticles

with lipids and lipid-like molecules, which produces stable nanoparticles with low

polydispersity. In this method (Figure 1a), monodisperse iron oxide nanoparticles were first

dispersed along with oleic acid and lipids in chloroform. Instead of completely drying the

particles or forming emulsions, the solvent N-methyl-2-pyrrolidone (NMP) was added to

induce adhesion between the lipids and the nanoparticle surface. Subsequently the

nanoparticle and lipid mixture were sonicated under nitrogen protection. After coating the

nanoparticles, chloroform was thoroughly evaporated away, which prevented phase

separation when particles were transferred to the aqueous phase. Finally, the excess lipids

were removed together with NMP by simply dialyzing the nanoparticles against water. Since

NMP is miscible with both chloroform and water, nanoparticles remain soluble and avoid

precipitation, which is undesirable due to the formation of irreversible aggregates held

together by strong Van der Waals attractions19. Adding NMP also promotes the adhesion of

the lipids to the hydrophobic nanoparticle surface in a mild manner20, so that lipids are able

to fully rearrange and assemble into a more complete layer on the nanoparticle surface21. As

further demonstrated in Figure 1a, siRNA and DNA were then loaded onto the nanoparticle

surface by electrostatic interaction with the cationic lipid coating. Once adsorbed, rather
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than remain exposed at the particle surface, the siRNA and DNA molecules likely further

interact with and rearrange within the lipid coating, which can consist of multiple layers. In

this manner, the nucleic acids may embed within the lipid surface coating and thus be

protected from enzymatic degradation.

16 nm nanoparticles were used in our experiment. An extended period of sonication was

applied to keep the nanoparticles dispersed. After 5 hours of sonication, nanoparticles

formed clusters after being transferred to water, as seen in Figure 1b. Continued sonication

for an additional 2–3 hours resulted in the formation of individual nanoparticles, as shown in

Figure 1c. A detailed transmission electron microscopy (TEM) image revealed a complete,

uniform coating on the nanoparticle surface as shown in Figure 1d.

Developed with the aid of combinatorial library synthesis and screening, lipid-like materials

termed lipidoids have been shown to deliver siRNA delivery both in vitro and in vivo22. 25

lipidoids shown in Figure S1 were synthesized and evaluated for their utility in coating iron

oxide nanoparticles. The efficiencies of these formulations in delivering DNA and siRNA,

respectively, to cultured HeLa cells are shown in Figure S2. Interestingly, the most effective

lipidoid-coated nanoparticles for DNA delivery were also generally those that worked best

for siRNA delivery. Lipidoids incorporating alkyl tails of 12 to 14 carbons in length (C12

and C14) demonstrated the best efficiencies, which is consistent with previous reports22.

Since compound C14-200 was among the top performers in our initial in vitro screen for

both siRNA and DNA delivery, it was selected for further study in this report. As previously

described22, additional formulation stability was conferred by initially dissolving the

C14-200 lipidoid in chloroform together with 1,2-distearoyl-sn-glycero-3-phosphocholine

(DSPC), cholesterol, and mPEG2000-DMG, and the ratio of these components was

optimized for these experiments.

In order to test whether excess free lipids were completely purified from the nanoparticle

solution, HPLC (high-performance liquid chromatography) analysis of lipid content in

solution was carried out before and after the nanoparticles were extracted by means of an

external magnetic field. As shown in Figure S3, most of the lipids were associated with the

nanoparticles and were able to be removed by magnetically separating the nanoparticles

from the solution. Measurements of siRNA concentration using the RNA binding dye

RiboGreen further confirmed that the nucleic acids were associated with the positively

charged nanoparticles. After magnetic extraction of the nanoparticles, little free siRNA

could be detected in solution, as seen in Figure S4.

Based on the measurements of lipid and iron content of the nanoparticles after dialysis using

HPLC and ICP-MS (inductively coupled plasma mass spectrometry), in a typical

formulation, one nanoparticle was coated with ~1000 lipidoid molecules. For the DNA

transfections, the lipid to DNA weight ratio was 1:1, with 1 DNA molecule binding to ~3

nanoparticles. For the siRNA transfections, the weight ratio of lipidoid to siRNA was 5:1,

and ~100 siRNA molecules were bound onto each nanoparticle.

Both the DNA and the siRNA delivery efficiencies were tested in vitro using HeLa cells.

DNA transfection efficiency was characterized by the percentage of GFP positive cells as
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measured by fluorescence-activated cell sorting (FACS) analysis, whereas siRNA

transfection efficiency was measured with a dual luciferase reporter assay used in our

previous studies22.The transfection efficiency data were plotted out together with the

particle size measured by dynamic light scattering, as shown in Figure 2. In Figure 2a, as the

sonication progresses, the mean hydrodynamic size of the coated nanoparticles continues to

decrease from a few hundred nanometers to ~40 nm. Regardless of size, the zeta potentials

for all nanoparticles were measured to be ~+20 mV in 25 mM sodium acetate buffer. Figure

2b–2c show the efficiencies of these nanoparticles for DNA and siRNA transfection,

respectively. The optimal nanoparticle size for DNA delivery was 50–100 nm, for which the

delivery efficiency was ~90%. For smaller-sized nanoparticles, the delivery efficiency

decreased dramatically; for instance, nanoparticles of 40 nm in diameter yielded a DNA

transfection efficiency of only ~ 34%. In marked contrast, siRNA transfection efficiency did

not show significant variation when particles of different sizes were used, and 40 nm

nanoparticles mediated highly efficient siRNA transfection corresponding to ~90%

knockdown.

TEM images of DNA-loaded nanoparticles suggested a possible explanation for these

observations based on the binding of DNA and siRNA molecules to the nanoparticle

surface. In Figure S5, a thick amorphous layer was observed on the surface of nanoparticle

clusters after mixing with DNA; however, no such structures were observed with small

individual nanoparticles. The entrapment of DNA and siRNA on the nanoparticle surface as

measured by a nucleic acid intercalating dye assay provided further insight22. As shown in

Figure S6, DNA entrapment is low (<50 %) for nanoparticles smaller than 50 nm, whereas

siRNA entrapment is high (~90%) and roughly uniform for all nanoparticles regardless of

size.

DNA molecules have a persistence length of ~50 nm calculated by the conventional polymer

random walk model23, and free DNA molecules usually adopt a much larger size in solution.

Only by interacting with certain proteins can DNA be bent into a size much smaller than its

persistent length24. For a single 16 nm iron oxide nanoparticle, the curvature may be too

high for a DNA chain to wrap tightly around it using only relatively weak electrostatic

interactions, which may explain why the transfection efficiency was low when the

nanoparticles were smaller than 50 nm. However, since the bending energy is inversely

proportional to the square of the bending circle radius25, bending of DNA around larger

nanoparticle clusters requires much lower energies. Correspondingly, nanoparticle clusters

larger than 50 nm showed much higher delivery efficiencies for DNA. On the other hand,

since siRNA is a small 6 nm rod-like molecule, binding to small individual nanoparticles

and large nanoparticle clusters might be equally efficient, which may account for the

observation that siRNA delivery efficiency was roughly equivalent using nanoparticles of

different sizes.

Application of a magnetic field directing nanoparticles towards the cell surface resulted in

the enhancement of transfection efficiency (Figure 3). The left panel in Figure 3 shows the

higher fluorescence intensity observed following transfection of GFP-encoding DNA in the

presence of the magnetic field. Flow cytometry measurements further confirmed this

observation, as shown in the right panel in Figure 3. We hypothesize that this result is due to
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an increase in the physical concentration of DNA at the cell surface26. The dose-response

profiles in Figure 4a demonstrated that the transfection efficiency remained high even at

very low doses of DNA and siRNA. For DNA, a transfection efficiency of ~70% was

achieved with 25 ng of DNA per well of a 96 well plate (0.05 nM). For siRNA, ~80%

knockdown was achieved using 3 ng of siRNA per well (1.5 nM). In multiple experiments,

using a magnet consistently increased the transfection efficiency at the lowest doses by a

factor of approximately four, and the performance significantly exceeded that of the

commercial transfection reagent Lipofectamine 2000. Additional experiments revealed that

the transfection was accelerated as a consequence of the magnetic field, as shown in Figure

4b. For DNA delivery, in the presence of the magnet, a transfection efficiency of 50% was

achieved within 4 hours of incubation at the 25 ng per well dose (0.05 nM), and quickly

approached saturation after 7 hours of incubation; for siRNA,~80% knockdown was

achieved within just 1 hour at the 25 ng per well dose (12.0 nM). In contrast, transfection in

the absence of the magnet appeared to be much slower, and interestingly, displayed a

different kinetic profile.

At a dose of 25 ng of DNA per well (0.05 nM), the viability exceeded 95%, as displayed in

Figure S7. This observation is consistent with the low toxicities reported for lipidoid

molecules and iron oxide nanoparticles18, 22.Similarly, Renilla luciferase levels as measured

by the Dual-Glo assay also indicated low cytotoxicity during siRNA transfection at the

conditions tested.

In conclusion, we have developed and characterized a simple and versatile nanoparticulate

DNA and siRNA delivery vehicle using lipidoids and iron oxide magnetic nanoparticles.

Nanoparticles were obtained without the need for complicated synthesis and purification

procedures. The method outlined here represents a broadly applicable approach for coating

the surface of iron oxide nanoparticles with various lipids and lipid-like molecules. The size

control attainable by this approach may make it useful for in vivo applications, as it has been

reported that nanoparticles 50–200 nm in size are optimal for tumor targeting due to the

enhanced permeability and retention (EPR) effect27. Furthermore, using the lipidoid-coated

nanoparticles, more DNA and siRNA can be loaded onto magnetic nanoparticles as

compared with direct conjugation methods28.

Future studies will address the efficacy of these nanoparticles in mediating gene delivery to

other cell types. mRNA levels can be measured to determine knockdown of other genes of

interest as well as to assess changes in cellular phenotype. In addition, the incorporation of

iron oxide nanoparticles imparts new functionalities to the delivery vehicle, specifically

magnetic targeting, magnetic hyperthermia therapy and MRI imaging. The new delivery

system may also be generalized to facilitate intracellular delivery of other negatively

charged or hydrophobic drugs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) schematic plot of the procedure of coating iron oxide nanoparticles; transmission electron microscopy (TEM) images of (b)

particle clusters; (c) individual particles; (d) coating on the nanoparticle surface.
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Figure 2.
(a) Particle size measured by dynamic light scattering versus sonication time; (b) DNA delivery efficiency for nanoparticles of

different sizes, (25 ng of DNA per well of a 96 well plate); (c) siRNA delivery efficiency for nanoparticles of different sizes (25

ng of siRNA per well of a 96 well plate).
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Figure 3.
Comparison of delivery efficiency with and without a magnet: (a) fluorescence microscopy images of cells after the transfection

of plasmid DNA encoding green fluorescent protein (GFP) with and without the magnetic field; (b) fluorescence-activated cell

sorting (FACS) analysis. Based on analysis of non-treated cells, cells to the right of the gate (blue line) were considered GFP-

positive, while cells to the left of the gate were fluorescing at levels indistinguishable from background.
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Figure 4.
Comparison of the delivery efficiency with and without a magnetic field: (a) in vitro DNA delivery dose response, compared

with Lipofectamine2000 at 25 ng DNA per well (0.05 nM); (b) DNA delivery efficiency upon varying the incubation time; (c)

siRNA delivery dose response, relative toLipofectamine2000 at 25 ng siRNA per well (12.0 nM); (d) siRNA delivery efficiency

upon varying the incubation time.
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