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ABSTRACT
Garbled circuits, introduced by Yao in the mid 80s, allow computing
a function f on an input x without leaking anything about f or x
besides f(x). Garbled circuits found numerous applications, but
every known construction suffers from one limitation: it offers no
security if used on multiple inputs x. In this paper, we construct for
the first time reusable garbled circuits. The key building block is a
new succinct single-key functional encryption scheme.

Functional encryption is an ambitious primitive: given an encryp-
tion Enc(x) of a value x, and a secret key skf for a function f ,
anyone can compute f(x) without learning any other information
about x. We construct, for the first time, a succinct functional
encryption scheme for any polynomial-time function f where
succinctness means that the ciphertext size does not grow with
the size of the circuit for f , but only with its depth. The security of
our construction is based on the intractability of the Learning with
Errors (LWE) problem and holds as long as an adversary has access
to a single key skf (or even an a priori bounded number of keys for
different functions).

Building on our succinct single-key functional encryption scheme,
we show several new applications in addition to reusable garbled
circuits, such as a paradigm for general function obfuscation which
we call token-based obfuscation, homomorphic encryption for a
class of Turing machines where the evaluation runs in input-specific
time rather than worst-case time, and a scheme for delegating
computation which is publicly verifiable and maintains the privacy
of the computation.

Categories and Subject Descriptors: E.3 [Data Encryption]
Keywords: Functional encryption; reusable garbled circuits;
obfuscation.

1. INTRODUCTION
Breaches of confidential data are commonplace: personal informa-

tion of millions of people, such as financial, medical, customer, and
employee data, is disclosed every year [45, 53]. These disclosures
often happen because untrustworthy systems handle confidential
data. As applications move to cloud computing platforms, ensuring
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data confidentiality on third-party servers that may be untrustworthy
becomes a top concern [16].

A powerful technique for preventing data disclosures without
having to ensure the server is trustworthy is to encrypt the data
provided to the server and then compute on the encrypted data. Thus,
if the server does not have access to the plaintext or to the decryption
key, it will be unable to disclose confidential data. The big leap of the
last decade towards computing over encrypted data has been fully
homomorphic encryption (FHE) [11–14, 17, 20–22, 38, 51, 52].

A fundamental question with this approach is: who can decrypt
the results of computations on encrypted data? If data is encrypted
using FHE, anyone can perform a computation on it (with knowledge
of the public key), while the result of the computation can be
decrypted only using the secret key. However, the secret key allows
decrypting all data encrypted under the corresponding public key.
This model suffices for certain applications, but it rules out a large
class of applications in which the party computing on the encrypted
data needs to determine the computation result on its own. For
example, spam filters should be able to determine if an encrypted
email is spam and discard it, without learning anything else about
the email’s content. With FHE, the spam filter can run the spam
detection algorithm homomorphically on an encrypted email and
obtain an encrypted result; however, it cannot tell if the algorithm
deems the email spam or not. Having the data owner provide the
decryption key to the spam filter is not a solution: the spam filter
can now decrypt all the emails as well!

A promising approach to this problem is functional encryption
[9, 33–35, 41, 42, 48]. In functional encryption, anyone can encrypt
data with a master public key mpk and the holder of the master secret
key can provide keys for functions, for example skf for function f .
Anyone with access to a key skf and a ciphertext c for x can obtain
the result of the computation in plaintext form: f(x). The security of
FE requires that the adversary does not learn anything about x, other
than the computation result f(x). It is easy to see, for example, how
to solve the above spam filter problem with a functional encryption
scheme. A user Alice publishes her public key online and gives the
spam filter a key for the filtering function. Users sending email to
Alice will encrypt the email with her public key. The spam filter
can now determine by itself, for each email, whether to store it in
Alice’s mailbox or to discard it as spam, without learning anything
about Alice’s email (except for whether it was deemed spam or not).

The recent impossibility result of Agrawal, Gorbunov, Vaikun-
tanathan and Wee [2] says that functional encryption schemes where
an adversary can receive an arbitrary number of keys for general
functions are impossible for a natural simulation-based security
definition;1 stated differently, any functional encryption scheme

1This impossibility result holds for non-adaptive simulation-based
security, which is weaker than some existing simulation-based
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that can securely provide q keys for general functions must have
ciphertexts growing linearly in q. Since any scheme that can securely
provide a single key yields a scheme that can securely provide q
keys by repetition, the question becomes if one can construct a
functional encryption scheme that can securely provide a single key
for a general function under this simulation-based security definition.
Such a single-key functional encryption scheme is a powerful tool,
enabling the applications we will discuss.

In this paper, we construct the first single-key functional encryp-
tion scheme for a general function that is succinct: the size of the
ciphertext grows with the depth d of the circuit computing the
function and is independent of the size of the circuit. Up until our
work, the known constructions of functional encryption were quite
limited. First, the works of Boneh and Waters [10], Katz, Sahai and
Waters [34], Agrawal, Freeman and Vaikuntanathan [1], and Shen,
Shi and Waters [50] show functional encryption schemes (based on
different assumptions) for a very simple function: the inner product
function fy (or a variant of it), that on input x outputs 1 if and
only if ⟨x, y⟩ = 0.2 These works do not shed light on how to
extend beyond inner products. Second, Sahai and Seyalioglu [47]
and Gorbunov, Vaikuntanathan and Wee [29] provide a construction
for single-key functional encryption for one general function with a
non-succinct ciphertext size (at least the size of a universal circuit
computing the functions allowed by the scheme3). [47] was the
first to introduce the idea of single-key functional encryption and
[29] also extends it to allow the adversary to see secret keys for q
functions of his choice, by increasing the size of the ciphertexts
linearly with q where q is known in advance.4 We emphasize that the
non-succinctness of these schemes is particularly undesirable and it
precludes many useful applications of functional encryption (e.g.,
delegation, reusable garbled circuits, FHE for Turing machines),
which we achieve. For example, in the setting of delegation, a data
owner wants to delegate her computation to a cloud, but the mere
effort of encrypting the data is greater than computing the circuit
directly, so the owner is better off doing the computation herself.

We remark that functional encryption (FE) arises from, and
generalizes, a beautiful sequence of papers on attribute-based
encryption (including [7, 32, 33, 35, 36, 48, 54, 55]), and more
generally predicate encryption (including [10, 34, 40]). We denote
by attribute-based encryption (ABE) an encryption scheme where
each ciphertext c of an underlying plaintext message m is tagged
with a public attribute x. Each secret key skf is associated with a
predicate f . Given a key skf and a ciphertext c = Enc(x,m), the
message m can be recovered if and only if f(x) is true. Whether the
message gets recovered or not, the attribute x is always public; in
other words, the input to the computation of f , x, leaks with attribute-
based encryption, whereas with functional encryption, nothing leaks
about x other than f(x). Therefore, attribute-based encryption offers
qualitatively weaker security than functional encryption. Attribute-
based encryption schemes were also called public-index predicate
encryption schemes in the literature [9]. Boneh and Waters [10]
introduced the idea of not leaking the attribute as in functional
encryption (also called private-index functional encryption).

Very recently, the landscape of attribute-based encryption has

definitions such as adaptive security. Nevertheless, this result does
not carry over to indistinguishability-based definitions, for which
possibility or impossibility is currently an open question. In this
paper, we are interested in achieving the simulation-based definition.
2These inner-product schemes allow an arbitrary number of keys.
3A universal circuit F is a circuit that takes as input a description
of a circuit f and an input string x, runs f on x and outputs f(x).
4Namely, parameter q (the maximum number of keys allowed) is
fixed during setup, and the ciphertexts size grows linearly with q.

significantly improved with the works of Gorbunov, Vaikuntanathan
and Wee [30], and Sahai and Waters [49], who construct attribute-
based encryption schemes for general functions, and are a building
block for our results.

1.1 Our Results
Our main result is the construction of a succinct single-key

functional encryption scheme for general functions. We demonstrate
the power of this result by showing that it can be used to address
the long-standing open problem in cryptography of reusing garbled
circuits, as well as making progress on other open problems.

We can state our main result as a reduction from any attribute-
based encryption and any fully homomorphic encryption scheme.
In particular, we show how to construct a (single-key and succinct)
functional encryption scheme for any class of functions F by using
a homomorphic encryption scheme which can do homomorphic
evaluations for any function in F and an attribute-based encryption
scheme for a “slightly larger” class of functions F ′; F ′ is the class
of functions such that for any function f ∈ F , the class F ′ contains
the function computing the i-th bit of the FHE evaluation of f .

THEOREM 1.1 (INFORMAL). There is a single-key functional
encryption scheme with succinct ciphertexts (independent of circuit
size) for the class of functions F assuming the existence of

• a fully homomorphic encryption scheme for the class of functions
F , and

• a (single-key) attribute-based encryption scheme for a class of
predicates F ′ (as above).

The literature has considered two types of security for ABE and
FE: selective and full security. We show that if the underlying ABE
scheme is selectively or fully secure, our resulting FE scheme is
selectively or fully secure, respectively.

Two very recent results achieve attribute-based encryption for
general functions. Gorbunov, Vaikuntanathan and Wee [30] achieve
ABE for general circuits of bounded depth based on the subexponen-
tial Learning With Errors (LWE) intractability assumption. Sahai
and Waters [49] achieve ABE for general circuits under the less
standard k-Multilinear Decisional Diffie-Hellman (see [49] for more
details); however, when instantiated with the only construction of
multilinear maps currently known [18], they also achieve ABE for
general circuits of bounded depth. Our scheme can be instantiated
with any of these schemes because our result is a reduction.

When coupling our theorem with the ABE result of [30] and the
FHE scheme of [12, 13], we obtain:

COROLLARY 1.2 (INFORMAL). Under the subexponential LWE
assumption, for any depth d, there is a single-key functional
encryption scheme for general functions computable by circuits
of depth d. The scheme has succinct ciphertexts: their size is
polynomial in the depth d (and does not depend on the circuit size).

This corollary holds for both selective and full security definitions,
since [30] constructs both selectively secure and fully secure
ABE schemes. However, the parameters of the LWE assumption
are different in the two cases. For selective security, the LWE
assumption reduces to the (polynomial) hardness of approximating
shortest vectors in a lattice up to sub-exponential approximation
factors. This assumption is known as the gapSVP assumption with
sub-exponential approximation factors. For full security, the LWE
assumption reduces to the same assumption as above, but where
the hardness is assumed to hold even against sub-exponential time
adversaries. Namely, the assumption is that it is hard to approximate
shortest vectors in a lattice up to sub-exponential approximation

2



factors in sub-exponential time. Both of these assumptions are quite
standard and well-studied assumptions that are believed to be true.
(We refer the reader to our full paper [25] for details.)

Another corollary of our theorem is that, given a universal ABE
scheme (the scheme is for all classes of circuits, independent of
depth) and any fully homomorphic encryption scheme, there is a
universal functional encryption scheme whose ciphertext size does
not depend on the circuit’s size or even the circuit’s depth.

As mentioned, extending our scheme to be secure against an
adversary who receives q keys is straightforward. The basic idea is
simply to repeat the scheme q times in parallel. This strategy results
in the ciphertext size growing linearly with q, which is unavoidable
for the simulation-based security definition we consider, because
of the discussed impossibility result [2]. Stated in these terms, our
scheme is also a q-collusion-resistant functional encryption scheme
like [29], but our scheme’s ciphertexts are succinct, whereas [29]’s
are proportional to the circuit size.

From now on, we restrict our attention to the single-key case,
which is the essence of the new scheme. In the body of the paper
we often omit the single-key or succinct adjectives and whenever
we refer to a functional encryption scheme, we mean a succinct
single-key functional encryption scheme.

We next show how to use our main theorem to make signif-
icant progress on some of the most intriguing open questions
in cryptography today: the reusability of garbled circuits, a new
paradigm for general function obfuscation, as well as applications
to fully homomorphic encryption with evaluation running in input-
specific time rather than in worst-case time, and to publicly verifiable
delegation. Succinctness plays a central role in these applications
and they would not be possible without it.

1.1.1 Main Application: Reusable Garbled Circuits
A circuit garbling scheme, which has been one of the most useful

primitives in modern cryptography, is a construction originally
suggested by Yao in the 80s in the context of secure two-party
computation [57]. This construction relies on the existence of a
one-way function to encode an arbitrary circuit C (“garbling” the
circuit) and then encode any input x to the circuit (where the size
of the encoding is short, namely, it does not grow with the size of
the circuit C); a party given the garbling of C and the encoding
of x can run the garbled circuit on the encoded x and obtain C(x).
The most basic properties of garbled circuits are circuit and input
privacy: an adversary learns nothing about the circuit C or the input
x other than the result C(x).

Over the years, garbled circuits and variants thereof have found
many applications: two party secure protocols [58], multi-party
secure protocols [24], one-time programs [27], KDM-security [5],
verifiable computation [19], homomorphic computations [23] and
others. However, a basic limitation of the original construction
remains: it offers only one-time usage. Specifically, providing an
encoding of more than one input compromises the secrecy of the
circuit. Thus, evaluating the circuit C on any new input requires an
entirely new garbling of the circuit.

The problem of reusing garbled circuits has been open for 30
years. Using our newly constructed succinct functional encryption
scheme we are now able to build reusable garbled circuits that
achieve circuit and input privacy: a garbled circuit for any compu-
tation of depth d (where the parameters of the scheme depend on
d), which can be run on any polynomial number of inputs without
compromising the privacy of the circuit or the input. More generally,
we prove the following:

THEOREM 1.3 (INFORMAL). There exists a polynomial p, such
that for any depth function d, there is a reusable circuit garbling

scheme for the class of all arithmetic circuits of depth d, assuming
there is a single-key functional encryption scheme for all arithmetic
circuits of depth p(d).5

COROLLARY 1.4 (INFORMAL). Under the subexponential LWE
assumption, for any depth function d, there exists a reusable circuit
garbling scheme with circuit and input privacy for all arithmetic
circuits of depth d.

We note that the parameters of this LWE assumption imply its
reducibility to the assumption that gapSVP is hard to break in sub-
exponential time with sub-exponential approximation factors. (We
refer the reader to our full paper [25] for details.)

Reusability of garbled circuits (for depth-bounded computations)
implies a multitude of applications as evidenced by the research on
garbled circuits over the last 30 years. We note that for many of
these applications, depth-bounded computation suffices. We also
note that some applications do not require circuit privacy. In that
situation, our succinct single-key functional encryption scheme
already provides reusable garbled circuits with input-privacy and,
moreover, the encoding of the input is a public-key algorithm.

We remark that [30] gives a restricted form of reusable circuit
garbling: it provides authenticity of the circuit output, but does not
provide input privacy or circuit privacy, as we do here. Informally,
authenticity means that an adversary cannot obtain a different yet
legitimate result from a garbled circuit. We note that most of
the original garbling circuit applications (e.g., two party secure
protocols [58], multi-party secure protocols [24]) rely on the privacy
of the input or of the circuit.

One of the more intriguing applications of reusable garbled
circuits pertains to a new model for program obfuscation, token-
based obfuscation, which we discuss next.

1.1.2 Token-Based Obfuscation: a New Way to
Circumvent Obfuscation Impossibility Results

Program obfuscation is the process of taking a program as input,
and producing a functionally equivalent but different program, so
that the new program reveals no information to a computationally
bounded adversary about the original program, beyond what “black
box access” to the program reveals. Whereas ad-hoc program
obfuscators are built routinely, and are used in practice as the main
software-based technique to fight reverse engineering of programs,
in 2000 Barak et al. [4], followed by Goldwasser and Kalai [26],
proved that program obfuscation for general functions is impossible
using software alone, with respect to several strong but natural
definitions of obfuscation.

The results of [4, 26] mean that there exist functions which
cannot be obfuscated. Still, the need to obfuscate or “garble”
programs remains. A long array of works attempts to circumvent
the impossibility results in various ways, including adding secure
hardware components [8, 27, 31], relaxing the definition of security
[28], or considering only specific functions [15, 56].

The problem of obfuscation seems intimately related to the
“garbled circuit” problem where given a garbling of a circuit C
and an encoding for an input x, one can learn the result of C(x)
but nothing else. One cannot help but wonder whether the new
reusable garbling scheme would immediately imply a solution for the
obfuscation problem (which we know is impossible). Consider an
example illustrating this intuition: a vendor obfuscates her program
(circuit) by garbling it and then gives the garbled circuit to a

5For this application we need to assume that the underlying
functional encryption scheme is fully secure (as opposed to only
selectively secure).
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customer. In order to run the program on (multiple) inputs xi,
the customer simply encodes the inputs according to the garbling
scheme and thus is able to compute C(xi). Unfortunately, although
close, this scenario does not work with reusable garbled circuits.
The key observation is that encoding x requires knowledge of a
secret key! Thus, an adversary cannot produce encoded inputs on its
own, and needs to obtain “tokens” in the form of encrypted inputs
from the data owner.

Instead, we propose a new token-based model for obfuscation.
The idea is for a vendor to obfuscate an arbitrary program as
well as provide tokens representing rights to run this program on
specific inputs. For example, consider that some researchers want to
obtain statistics out of an obfuscated database containing sensitive
information (the obfuscated program is the program running queries
with the secret database hardcoded in it). Whenever the researchers
want to input a query x to this program, they need to obtain a
token for x from the program owner. To produce each token, the
program owner does little work. The researchers perform the bulk
of the computation by themselves using the token and obtain the
computation result without further interaction with the owner.

CLAIM 1.5. Assuming a reusable garbling scheme for a class
of circuits, there is a token-based obfuscation scheme for the same
class of circuits.

COROLLARY 1.6 (INFORMAL). Under the subexponential LWE
assumption, for any depth function d, there exists a token-based
obfuscation scheme for all arithmetic circuits of depth d.

It is worthwhile to compare the token-based obfuscation model
with previous work addressing obfuscation using trusted-hardware
components such as [8, 31]. In these schemes, after a user finishes
executing the obfuscated program on an input, the user needs to
interact with the trusted hardware to obtain the decryption of the
result; in comparison, in our scheme, the user needs to obtain
only a token before the computation begins, and can then run the
computation and obtain the decrypted result by herself.

1.1.3 Computing on Encrypted Data in
Input-Specific Time

All current FHE constructions work according to the following
template. For a fixed input size, a program is transformed into an
arithmetic circuit; homomorphic evaluation happens gate by gate on
this circuit. The size of the circuit reflects the worst-case running
time of the program: for example, every loop is unfolded into the
maximum number of steps corresponding to the worst-case input,
and each function is called the maximum number of times possible.
Such a circuit can be potentially very large, despite the fact that
there could be many inputs on which the execution is short.

A fascinating open question has been whether it is possible to
perform FHE following a Turing-machine-like template: the com-
putation time is input-specific and can terminate earlier depending
on the input at hand. Of course, to compute in input-specific time,
the running time must unavoidably leak to the evaluator, but such
leakage is acceptable in certain applications and the efficiency gains
can be significant; therefore, such a scheme provides weaker security
than fully homomorphic encryption (namely, nothing other than the
running time leaks about the input), at the increase of efficiency.

Using our functional encryption scheme, we show how to achieve
this goal. The idea is to use the scheme to test when an encrypted
circuit computation has terminated, so the computation can stop
earlier on certain inputs. We overview our technique in Sec. 1.2.

Because the ciphertexts in our functional encryption scheme grow
with the depth of the circuits, such a scheme is useful only for Turing

machines that can be expressed as circuits of depth at most d(n)
for inputs of size n. We refer to such Turing machines as d-depth-
bounded (see our full paper [25] for details).

THEOREM 1.7. There is a scheme for evaluating Turing ma-
chines on encrypted inputs in input-specific time for any class of
d-depth-bounded Turing machines, assuming the existence of a
succinct single-key functional encryption scheme for circuits of
depth d,6 and a fully homomorphic encryption scheme for circuits
of depth d.

COROLLARY 1.8 (INFORMAL). Under the subexponential LWE
assumption, for any depth d, there is a scheme for evaluating Turing
machines on encrypted data in input-specific time for any class of
d-depth-bounded Turing machines.

The parameters of this LWE assumption are the same as discussed
in Corollary 1.2.

1.1.4 Publicly-Verifiable Delegation with Secrecy
Recently, Parno, Raykova and Vaikuntanathan [43] showed

how to construct a 2-message delegation scheme that is publicly
verifiable, in the preprocessing model, from any attribute-based
encryption scheme. This reduction can be combined with [30]’s
ABE scheme to achieve such a delegation scheme.

However, this scheme does not provide secrecy of the inputs: the
prover can learn the inputs. By replacing the ABE scheme in the
construction of [43] with our new functional encryption scheme, we
add secrecy to the scheme; namely, we obtain a delegation scheme
which is both publicly verifiable as in [43] (anyone can verify that
a transcript is accepting using only public information) and secret
(the prover does not learn anything about the input of the function
being delegated).7 More specifically, we construct a 2-message
delegation scheme in the preprocessing model that is based on the
subexponential LWE assumption, and is for general depth-bounded
circuits, where the verifier works in time that depends on the depth
of the circuit being delegated, but is independent of the size of the
circuit, and the prover works in time dependent on the size of the
circuit. For more details, see our full paper [25].

1.2 Technique Outline
Our functional encryption scheme. We first describe the ideas
behind our main technical result: a reduction from attribute-based
encryption (ABE) and fully homomorphic encryption (FHE) to
functional encryption (FE).

Compute on encrypted data with FHE. A natural starting point
is FHE because it enables computation on encrypted data, which is
needed with functional encryption. Using FHE, the FE encryption of
an input x consists of an FHE encryption of x, denoted x̂, while the
secret key for a function f is simply f itself. The semantic security
of FHE provides the desired security (and more) because nothing
leaks about x; however, using FHE evaluation, the evaluator obtains
an encrypted computation result, f̂(x), instead of the decrypted
value f(x). Giving the evaluator the FHE decryption key is not an
option because the evaluator can use it to decrypt x as well.

Attempt to decrypt using a Yao garbled circuit. We would like
the evaluator to decrypt the FHE ciphertext f̂(x), but not be able to
decrypt anything else. An idea is for the owner to give the evaluator a
6As in previous applications, we need to assume that the underlying
functional encryption scheme is fully secure (as opposed to only
selectively secure).
7We note that secrecy can be easily obtained by using an FHE
scheme, however, this destroys public-verifiability.
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Yao garbled circuit for the FHE decryption function FHE.Dec with
the FHE secret key hsk hardcoded in it, namely a garbled circuit for
FHE.Dechsk. When the owner garbles FHE.Dechsk, the owner also
obtains a set of garbled circuit labels {Li

0, L
i
1}i. The evaluator must

only receive the input labels corresponding to f̂(x): namely, the
labels {Li

bi
}i where bi is the i-th bit of f̂(x). But this is not possible

because the owner does not know a priori f̂(x) which is determined
only after the FHE evaluation; furthermore, after providing more
than one set of labels (which happens when encrypting another
input x′), the security of the garbled circuit (and hence of the FHE
secret key) is compromised. One idea is to have the owner and the
evaluator interact, but the syntax of functional encryption does not
allow interaction. Therefore, the evaluator needs to determine the
set of labels corresponding to f̂(x) by herself, and should not obtain
any other labels.

Constraining decryption using ABE. It turns out that what we need
here is very close to what ABE provides. Consider the following
variant of ABE that can be constructed easily from a standard ABE
scheme. One encrypts a value y together with two messagesm0,m1

and obtains a ciphertext c ← ABE.Enc(y,m0,m1). Then, one
generates a key for a predicate g: skg ← ABE.KeyGen(g). The
decryption algorithm on input c and skg outputs m0 if g(y) = 0 or
outputs m1 if g(y) = 1.

Now consider using this ABE variant multiple times, once for
every i ∈ {1, . . . , size of f̂(x)}. For the i-th invocation of
ABE.Enc, let m0,m1 be the garbled labels Li

0, L
i
1, and let y be x̂:

ABE.Enc(x̂, Li
0, L

i
1). Next, for the i-th invocation of ABE.KeyGen,

let g be FHE.Evalif (the predicate returning the i-th bit of the
evaluation of f on an input ciphertext): ABE.KeyGen(FHE.Evalif ).
Then, the evaluator can use ABE.Dec to obtain the needed label:
Li

bi
where bi is the i-th bit of f̂(x). Armed with these labels and

the garbled circuit, the evaluator decrypts f(x).
The security of the ABE scheme ensures the evaluator cannot

decrypt any other labels, so the evaluator cannot learn more than
f(x). Finally, note that the one-time aspect of garbled circuits does
not restrict the number of encryptions with our FE scheme because
the encryption algorithm generates a new garbled circuit every time;
since the garbled circuit is for the FHE decryption algorithm (which
is a fixed algorithm), the size of the ciphertexts remains independent
of the size of f .
From FE to reusable garbled circuits. The goal of garbled
circuits is to hide the input and the circuitC. Our succinct single-key
FE already provides a reusable garbling scheme with input privacy
(the single key corresponds to the circuit to garble). To obtain circuit
privacy, the insight is to leverage the secrecy of the inputs to hide
the circuit. The first idea that comes to mind is to generate a key for
the universal circuit instead of C, and include C in the ciphertext
when encrypting an input. However, this approach will yield large
ciphertexts, as large as the circuit size.

Instead, the insight is to garble C by using a semantically
secure encryption scheme E.Enc together with our FE scheme: the
garbling of C will be an FE secret key for a circuit U that contains
E.Encsk(C); on input (sk, x), U uses sk to decrypt C and then runs
C on the input x. The token for an input x will be an FE encryption
of (sk, x). Now, even if the FE scheme does not hide E.Encsk(C),
the security of the encryption scheme E hides C.
Computing on encrypted data in input-specific time. We now
summarize our approach to evaluating a Turing machine (TM) M
homomorphically over encrypted data without running in worst-case
time on all inputs. We refer the reader to our full paper [25] for a
formal presentation.

Our idea is to use our functional encryption scheme to enable the
evaluator to determine at various intermediary steps in the evaluation
whether the computation finished or not. For each intermediary step,
the client provides a secret key for a function that returns a bit
indicating whether the computation finished or not. However, if the
client provides a key for every computation step, then the amount
of keys corresponds to the worst-case running time. Thus, instead,
we choose intermediary points spaced at exponentially increasing
intervals. In this way, the client generates only a logarithmic number
of keys, namely for functions indicating if the computation finishes
in 1, 2, 4, . . . , 2i, . . . , 2⌈log tmax⌉ steps, where tmax is the worst-case
running time of M on all inputs of a certain size.

Because of the single-key aspect of our FE scheme, the client
cannot provide keys for an arbitrary number of TMs to the evaluator.
However, this does not mean that the evaluator can run only an a
priori fixed number of TMs on the encrypted data. The reason is that
the client can provide keys for the universal TMsU0, . . . , U⌈log tmax⌉,
where TM Ui is the TM that on input a TM M and a value x, runs
M on x for 2i steps and outputs whether M finished.

Therefore, in an offline preprocessing phase, the client provides
1+ ⌈log tmax⌉ keys where the i-th key is for a circuit corresponding
to Ui, each key being generated with a different master secret key.
The work of the client in this phase is at least tmax which is costly,
but this work happens only once and is amortized over all subsequent
inputs in the online phase.

In an online phase, the client receives an input x and wants
the evaluator to compute M(x) for her. The client provides FE
encryptions of (M,x) to the evaluator together with an FHE
ciphertext (M̂, x̂) for (M,x) to be used for a separate FHE
evaluation. The evaluator tries each key skUi from the preprocessing
phase and learns the smallest i for which the computation of M
on x stops in 2i steps. The evaluator then computes a universal
circuit of size Õ(2i) and evaluates it homomorphically over (M̂, x̂),
obtaining the FHE encryption of M(x). Thus, we can see that the
evaluator runs in time polynomial in the runtime of M on x.

2. PRELIMINARIES
Let κ denote the security parameter throughout this paper. For

a distribution D, we say x ← D when x is sampled from the
distribution D. If S is a finite set, by x← S we mean x is sampled
from the uniform distribution over the set S. Let [n] denote the set
{1, . . . , n} for n ∈ N∗. When saying that a Turing machine A is
p.p.t. we mean that A is a non-uniform probabilistic polynomial-
time machine. In this paper, we only consider boolean arithmetic
circuits, that is, circuits formed of + and × gates mod 2 with one
bit of output.

2.1 Building Blocks
We present the building blocks that our construction relies on. We

provide only informal definitions and theorems here, and refer the
reader to our full paper [25] for their formal counterparts.
The LWE assumption. The security of our results will be based
on the Learning with Errors (LWE) assumption, first introduced
by Regev [46]. Regev showed that solving the LWE problem on
average is (quantumly) as hard as solving the approximate version of
several standard lattice problems, such as gapSVP in the worst case.
Peikert [44] later removed the quantum assumption from a variant of
this reduction. Given this connection, we state all our results under
worst-case lattice assumptions, and in particular, under (a variant of)
the gapSVP assumption. We refer the reader to [44, 46] for details
about the worst-case/average-case connection.

The best known algorithms to solve these lattice problems with
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an approximation factor 2ℓ
ϵ

in ℓ-dimensional lattices run in time
2Õ(ℓ1−ϵ) [3, 39] for any constant 0 < ϵ < 1. Specifically, given
the current state-of-the-art on lattice algorithms, it is quite plausible
that achieving approximation factors 2ℓ

ϵ

for these lattice problems
is hard for polynomial time algorithms.
FHE. Fully homomorphic encryption enables an evaluator to
compute on encrypted data without learning anything about the
underlying data. Formally, a C-homomorphic encryption scheme
FHE for a class of circuits C is a tuple of polynomial-time algo-
rithms (FHE.KeyGen, FHE.Enc, FHE.Dec, FHE.Eval). The key
generation algorithm FHE.KeyGen(1κ) takes as input the security
parameter 1κ and outputs a public/secret key pair (hpk, hsk). The
encryption algorithm FHE.Enc (hpk, x ∈ {0, 1}) takes as input
the public key hpk and a bit x and outputs a ciphertext ψ, whereas
the decryption algorithm FHE.Dec(hsk, ψ) takes as input the secret
key hsk and a ciphertext ψ and outputs a decrypted bit. The homo-
morphic evaluation algorithm FHE.Eval(hpk, C, ψ1, ψ2, . . . , ψn)
takes as input the public key hpk, n ciphertexts ψ1, . . . , ψn (which
are encryptions of bits x1, . . . , xn) and a circuit C ∈ C that
takes n bits as input. It outputs a ciphertext ψC which decrypts
to C(x1, . . . , xn). The security definition is semantic security (or
IND-CPA).

A fully homomorphic encryption scheme is homomorphic for
the class of all polynomial-sized circuits. A special type of
homomorphic encryption, called leveled fully homomorphic en-
cryption, suffices for our purposes: in a d-leveled FHE scheme,
FHE.KeyGen takes an additional input 1d and the resulting scheme
is homomorphic for all depth-d arithmetic circuits over GF(2).

THEOREM 2.1 ([12, 13]). Assume that there is a constant 0 <
ϵ < 1 such that for every sufficiently large ℓ, the approximate
shortest vector problem gapSVP in ℓ dimensions is hard to
approximate to within a 2O(ℓϵ) factor in the worst case. Then, for
every n and every polynomial d = d(n), there is an IND-CPA secure
d-leveled fully homomorphic encryption scheme where encrypting
n bits produces ciphertexts of length poly(n, κ, d1/ϵ), the size of
the circuit for homomorphic evaluation of a function f is size(Cf ) ·
poly(n, κ, d1/ϵ) and its depth is depth(Cf ) · poly(logn, log d).

Garbled circuits. Garbled circuits were initially presented by
Yao [57], then proven secure by Lindell and Pinkas [37], and recently
formalized by Bellare et al. [6].

A garbling scheme for a family of circuits C = {Cn}n∈N, where
Cn is a set of boolean circuits taking n-bit inputs, is a tuple of
p.p.t. algorithms Gb = (Gb.Garble,Gb.Enc,Gb.Eval) such that
Gb.Garble(1κ, C) takes as input the security parameter κ and a
circuit C ∈ Cn for some n, and outputs the garbled circuit Γ and a
secret key sk; Gb.Enc(sk, x) takes as input x ∈ {0, 1}∗ and outputs
an encoding c whose size must not depend on the size of the circuit
C; and Gb.Eval(Γ, c) takes as input a garbled circuit Γ and an
encoding c, and outputs a value y that must be equal to C(x).

The garbling scheme presented by Yao has a specific property
that is useful in various secure function evaluation (SFE) protocols
and in our construction as well. The secret key is of the form sk =
{L0

i , L
1
i }ni=1 and the encoding of an n-bit input x is of the form

c = (Lx1
1 , . . . , Lxn

n ) where xi is the i-th bit of x.
Two security guarantees are of interest: input privacy (the input to

the garbled circuit does not leak to the adversary) and circuit privacy
(the circuit does not leak to the adversary). In all known garbling
schemes, these properties hold only for one-time evaluation of the
circuit: the adversary can receive at most one encoding of an input to
use with a garbled circuit; obtaining more than one encoding breaks
these security guarantees. More formally, the security definition

states that there exists a p.p.t. simulator SimGarble that given the
result C(x) of a (secret) circuit C on a single (secret) input x,
and given the sizes of C and x (but not the actual values of C
and x), outputs a simulated garbled circuit Γ̃ and an encoding c̃,
(Γ̃, c̃) ← SimGarble(1

κ, C(x), 1|C|, 1|x|), that are computationally
indistinguishable from the real garbled circuit Γ and encoding c.

THEOREM 2.2 ([37, 57]). Assuming one-way functions exist,
there exists a Yao (one-time) garbling scheme that is input- and
circuit-private for all circuits over GF(2).

2.2 Attribute-Based Encryption (ABE)
Attribute-based encryption is an important component of our

construction. We present a slight (but equivalent) variant of ABE
that better serves our goal.

Definition 1. An attribute-based encryption scheme (ABE) for a
class of predicates P = {Pn}n∈N represented as circuits with
n input bits, and a message space M is a tuple of algorithms
(ABE.Setup, ABE.KeyGen, ABE.Enc, ABE.Dec) as follows:
• ABE.Setup(1κ): Takes as input a security parameter 1κ and

outputs a public master key fmpk and a master secret key fmsk.
• ABE.KeyGen(fmsk, P ): Given a master secret key fmsk and a

predicate P ∈ P , outputs a key fskP corresponding to P .
• ABE.Enc(fmpk, x,M0,M1): Takes as input the public key

fmpk, an attribute x ∈ {0, 1}n, for some n, and two messages
M0,M1 ∈M and outputs a ciphertext c.
• ABE.Dec(fskP , c): Takes as input a secret key for a predicate

and a ciphertext and outputs M∗ ∈M.
Correctness. For any polynomial n(·), for every sufficiently large
security parameter κ, if n = n(κ), for all predicates P ∈ Pn,
attributes x ∈ {0, 1}n, messages M0,M1 ∈M:

Pr


(fmpk, fmsk)← ABE.Setup(1κ);
fskP ← ABE.KeyGen(fmsk, P );
c← ABE.Enc(fmpk, x,M0,M1);
M∗ ← ABE.Dec(fskP , c) :M

∗ =MP (x)

 = 1−negl(κ).

Informally, the security of ABE guarantees that nothing leaks
about M0 if P (x) = 1 and nothing leaks about M1 if P (x) = 0.
However, the scheme does not hide the attribute x, and x may leak
no matter what P (x) is. The security of ABE is thus conceptually
weaker than the security for FE: the input that the computation
happens on leaks with ABE, while this input does not leak with FE.

We call an ABE or FE scheme for circuits of depth d a d-leveled
ABE or d-leveled FE scheme, respectively.

THEOREM 2.3 ([30]). Assume there is a constant 0 < ϵ < 1
such that for every sufficiently large ℓ, the approximate shortest
vector problem gapSVP in ℓ dimensions is hard to approximate to
within a 2O(ℓϵ) factor in poly(ℓ) (resp. 2ℓ

ϵ

) time. Then, for every
n and every polynomial d = d(n), there is a selectively (resp.
fully) secure d-leveled attribute-based encryption scheme where
encrypting n bits produces ciphertexts of length poly(n, κ, d1/ϵ)

(resp. poly(n, κ, d1/ϵ
2

)).

2.3 Functional Encryption (FE)
We recall the functional encryption definition from the litera-

ture [9, 29, 34] with some notational changes.

Definition 2. A functional encryption scheme FE for a class of
functions F = {Fn}n∈N represented as boolean circuits with an n-
bit input, is a tuple of four p.p.t. algorithms (FE.Setup, FE.KeyGen,
FE.Enc, FE.Dec) such that:
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• FE.Setup(1κ) takes as input the security parameter 1κ and
outputs a master public key fmpk and a master secret key fmsk.
• FE.KeyGen(fmsk, f) takes as input the master secret key fmsk

and a function f ∈ F and outputs a key fskf .
• FE.Enc(fmpk, x) takes as input the master public key fmpk and

an input x ∈ {0, 1}∗ and outputs a ciphertext c.
• FE.Dec(fskf , c) takes as input a key fskf and a ciphertext c and

outputs a value y.
Correctness. For any polynomial n(·), for every sufficiently large
security parameter κ, for n = n(κ), for all f ∈ Fn, and all x ∈
{0, 1}n,

Pr[(fmpk, fmsk)← FE.Setup(1κ); fskf ← FE.KeyGen(fmsk, f);

c← FE.Enc(fmpk, x) : FE.Dec(fskf , c) = f(x)]

= 1− negl(κ).

Intuitively, the security of functional encryption requires that an
adversary should not learn anything about the input x other than the
computation result C(x), for some circuit C for which a key was
issued. In this paper, we present only the definition of full security
and defer the definition of selective security to our full paper [25].
The security definition states that whatever information an adversary
is able to learn from the ciphertext and the function keys can be
simulated given only the function keys and the output of the function
on the inputs.

Definition 3. (FE Security) Let FE be a functional encryption
scheme for the family of functions F = {Fn}n∈N. For every
p.p.t. adversary A = (A1, A2) and p.p.t. simulator S, consider
the following two experiments:

ExprealFE,A(1
κ): ExpidealFE,A,S(1

κ):

1: (fmpk, fmsk)← FE.Setup(1κ)
2: (f, stateA)← A1(fmpk)
3: fskf ← FE.KeyGen(fmsk, f)
4: (x, state′A)← A2(stateA, fskf )

5: c← FE.Enc(fmpk, x)
6: Output (state′A, c)

5: c̃← S(fmpk, fskf , f, f(x), 1
|x|)

6: Output (state′A, c̃)

The scheme is said to be (single-key) FULL-SIM−secure if there
exists a p.p.t. simulator S such that for all pairs of p.p.t. adversaries
(A1, A2), the outcomes of the two experiments are computationally
indistinguishable:{

ExprealFE,A(1
κ)

}
κ∈N

c
≈

{
ExpidealFE,A,S(1

κ)

}
κ∈N

.

3. OUR FUNCTIONAL ENCRYPTION
In this section, we present our main result: the construction of

a functional encryption scheme FE. We refer the reader to the
introduction (Sec. 1.2) for an overview of our approach, and we
proceed directly with the construction here.

We use three building blocks in our construction: a (leveled) fully
homomorphic encryption scheme FHE, a (leveled) attribute-based
encryption scheme ABE, and a Yao garbling scheme Gb.

For simplicity, we construct FE for functions outputting one
bit; functions with larger outputs can be handled by repeating
our scheme below for every output bit. Let λ = λ(κ) be the
length of the ciphertexts in the FHE scheme (both from encryption
and evaluation). The construction of FE = (FE.Setup, FE.KeyGen,
FE.Enc, FE.Dec) proceeds as follows.

Setup FE.Setup(1κ): Run the setup algorithm for the ABE scheme
λ times:

(fmpki, fmski)← ABE.Setup(1κ) for i ∈ [λ].

Output as master public key and secret key:

MPK = (fmpk1, . . . , fmpkλ) and MSK = (fmsk1, . . . , fmskλ).

Key Generation FE.KeyGen(MSK, f): Let n be the number of
bits in the input to the circuit f . If hpk is an FHE public key and
ψ1, . . . , ψn are FHE ciphertexts, let FHE.Evalif (hpk, ψ1, . . . , ψn)
be the i-th bit of the homomorphic evaluation of f on ψ1, . . . , ψn

(FHE.Eval(hpk, f, ψ1, . . . , ψn)), where i ∈ [λ]. Thus, FHE.Evalif :

{0, 1}|hpk| × {0, 1}nλ → {0, 1}.
1. Run the key generation algorithm of ABE for the functions

FHE.Evalif (under the different master secret keys) to construct
secret keys:

fski ← ABE.KeyGen(fmski,FHE.Eval
i
f ) for i ∈ [λ].

2. Output the tuple fskf := (fsk1, . . . , fskλ) as the secret key for
the function f .

Encryption FE.Enc(MPK, x): Let n be the number of bits of x,
namely x = x1 . . . xn. Encryption proceeds in three steps.
1. Generate a fresh key pair (hpk, hsk) ← FHE.KeyGen(1κ) for

the (leveled) fully homomorphic encryption scheme. Encrypt
each bit of x homomorphically: ψi ← FHE.Enc(hpk, xi). Let
ψ := (ψ1, . . . , ψn) be the encryption of the input x.

2. Run the Yao garbled circuit generation algorithm to produce a
garbled circuit for the FHE decryption algorithm FHE.Dec(hsk, ·) :
{0, 1}λ → {0, 1} together with 2λ labels Lb

i for i ∈ [λ] and
b ∈ {0, 1}. Namely,(

Γ, {L0
i , L

1
i }λi=1

)
← Gb.Garble(1κ,FHE.Dec(hsk, ·)),

where Γ is the garbled circuit and the Lb
i are the input labels.

3. Produce encryptions c1, . . . , cλ using the ABE scheme:

ci ← ABE.Enc
(
fmpki, (hpk, ψ), L

0
i , L

1
i

)
for i ∈ [λ],

where (hpk, ψ) comes from the first step, and the labels (L0
i , L

1
i )

come from the second step.
4. Output the ciphertext c = (c1, . . . , cλ,Γ).

Decryption FE.Dec(fskf , c):
1. Run the ABE decryption algorithm on the ciphertexts c1, . . . , cλ

to recover the labels for the garbled circuit. In particular, let

Ldi
i ← ABE.Dec(fski, ci) for i ∈ [λ],

where di is equal to FHE.Evalif (hpk, ψ).

2. Now, armed with the garbled circuit Γ and the labels Ldi
i , run

the garbled circuit evaluation algorithm to compute

Gb.Eval(Γ, Ld1
1 , . . . , L

dλ
λ ) = FHE.Dec(hsk, d1d2 . . . dλ) = f(x).

We now provide a proof for our main Theorem 1.1, delegating
certain details to the full paper [25].

PROOF OF THEOREM 1.1. Let us first argue that the scheme
is correct. We examine the values we obtain in FE.Dec(fskf , c).
In Step (1), by the correctness of the ABE scheme used, di is
FHE.Evalif (hpk, ψ): FHE.Eval

i
f comes from fskf and (hpk, ψ)

come from ci. Therefore, the inputs to the garbled circuit Γ in
Step (2) are the set of λ labels corresponding to the value of
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FHE.Evalf (hpk, ψ). By the correctness of the FHE scheme, this
value corresponds to an FHE encryption of f(x). Finally, by the
correctness of the garbled circuit scheme, and by how Γ was
constructed in FE.Enc, the FHE ciphertext gets decrypted by Γ
correctly, yielding f(x) as the output from FE.Dec.

We now prove the succinctness property—namely, that the size
of FE ciphertexts is independent of the size of the circuit. FE’s
ciphertext is the output of FE.Enc, which outputs λ ciphertexts
from ABE.Enc and a garbled circuit from Gb.Garble. These add up
as follows. First, λ = ctsizeFHE, the size of the ciphertext in FHE.
Second, we denote the size of the ciphertext produced by ABE.Enc
as ctsizeABE(·), which is a function of ABE.Enc’s input size. The
input provided by FE.Enc to ABE.Enc consists of pksizeFHE bits
for hpk, n · ctsizeFHE bits for ψ, and poly(κ) bits for the labels.
Finally, the garbled circuit size is polynomial in the size of the
input circuit passed to Gb.Garble, which in turn is polynomial in
sksizeFHE and ctsizeFHE. Thus, we obtain the overall ciphertext size
of FE: ctsizeFE = ctsizeFHE · ctsizeABE(pksizeFHE+n · ctsizeFHE+
poly(κ)) + poly(κ, sksizeFHE, ctsizeFHE). We can thus see that if
FHE and ABE produce ciphertexts and public keys independent of
the circuit size, then so will our functional encryption scheme.

Finally, we prove security of our scheme based on Def. 3. We
construct a p.p.t. simulator S that achieves Def. 3. S receives as input
(MPK, fskf , f, f(x), 1

n) and must output c̃ such that the real and
ideal experiments in Def. 3 are computationally indistinguishable.
Intuitively, S runs a modified version of FE.Enc to mask the fact
that it does not know x.
Simulator S on input (MPK, fskf , f, f(x), 1

n):

1. Choose a key pair (hpk, hsk) ← FHE.KeyGen(1κ) for the
homomorphic encryption scheme (where S can derive the
security parameter κ from the sizes of the inputs it gets). Encrypt
0n (n zero bits) with FHE by encrypting each bit individually
and denote the ciphertext 0̂ := (0̂1 ← FHE.Enc(hpk, 0),. . .,
0̂n ← FHE.Enc(hpk, 0)).

2. Let SimGarble be the simulator for the Yao garbling scheme
(described in Sec. 2.1) for the class of circuits corresponding to
FHE.Dec(hsk, ·). Run SimGarble to produce a simulated garbled
circuit Γ̃ for the FHE decryption algorithm FHE.Dec(hsk, ·) :
{0, 1}λ → {0, 1} together with the simulated encoding
consisting of one set of λ labels L̃i for i = 1 . . . λ. Namely,(

Γ̃, {L̃i}λi=1

)
← SimGarble(1

κ, f(x), 1|FHE.Dec(hsk,·)|, 1λ).

The simulator S can invoke SimGarble because it knows f(x),
and can compute the size of the FHE.Dec(hsk, ·) circuit, and λ
from the sizes of the input parameters.

3. Produce encryptions c̃1, . . . , c̃λ under the ABE scheme in the
following way. Let

c̃i ← ABE.Enc
(
fmpki, (hpk, 0̂), L̃i, L̃i

)
,

where S uses each simulated label L̃i twice.

4. Output c̃ = (c̃1, . . . , c̃λ, Γ̃).

To prove indistinguishability of the real and ideal experiments
(Def. 3), we define a sequence of hybrid experiments, and then
invoke the security definitions of the underlying schemes (FHE,
garbled circuit, and ABE respectively) to show that the outcome of
the hybrid experiments are computationally indistinguishable.
Hybrid 0 is the output of the ideal experiment from Def. 3 for our
FE construction with simulator S.

Hybrid 1 is the same as Hybrid 0, except that the simulated
ciphertext for Hybrid 1 (which we denote c̃(1)), changes. Let c̃(1) be
the ciphertext obtained by running the algorithm of S, except that
in Step (3), encrypt x instead of 0, namely:

c̃
(1)
i ← ABE.Enc

(
fmpki, (hpk, ψ), L̃i, L̃i

)
,

where ψ ← (FHE.Enc(hpk, x1), . . . ,FHE.Enc(hpk, xn)). Let

c̃(1) = (c̃
(1)
1 , . . . , c̃

(1)
λ , Γ̃).

Hybrid 2 is the same as Hybrid 1, except that in Step (2), the
ciphertext contains a real garbled circuit(

Γ, {L0
i , L

1
i }λi=1

)
← Gb.Garble(FHE.Dec(hsk, ·)).

Let di = FHE.Evalif (hpk, ψ). In Step (3), include Ldi twice in the
ABE encryption; namely:

c̃
(2)
i ← ABE.Enc

(
fmpki, (hpk, ψ), L

di
i , L

di
i

)
, and

c̃(2) = (c̃
(2)
1 , . . . , c̃

(2)
λ ,Γ).

Hybrid 3 is the output of the real experiment from Def. 3 for our
FE construction.

In our full paper [25], we prove that each pair of consecutive
hybrids are computationally indistinguishable: Hybrid 0 and Hybrid
1 by the security of the homomorphic scheme FHE, Hybrid 1 and
Hybrid 2 by the security of the garbled circuit scheme Gb, and
Hybrid 2 and Hybrid 3 by the security of the ABE scheme ABE,
thus completing our proof.

Instantiating the components with the leveled fully homomorphic
encryption scheme of [13] (see Theorem 2.1), the leveled attribute-
based encryption scheme of [30] (see Theorem 2.3) and Yao garbled
circuit from one-way functions (see Theorem 2.2), we get the
following corollary of Theorem 1.1:

COROLLARY 3.1 (THE LWE INSTANTIATION). Assume that
there is a constant 0 < ϵ < 1 such that for every sufficiently
large ℓ, the approximate shortest vector problem gapSVP in ℓ
dimensions is hard to approximate to within a 2O(ℓϵ) factor in the
worst case in time poly(ℓ) (resp. 2ℓ

ϵ

) time. Then, for every n and
every polynomial d = d(n), there is a selectively secure (resp. fully
secure) functional encryption scheme for depth d circuits, where
encrypting n bits produces ciphertexts of length poly(n, κ, d1/ϵ)

(resp. poly(n1/ϵ, κ, d1/ϵ
2

)).

4. REUSABLE GARBLED CIRCUITS
In this section, we show how to use our functional encryp-

tion scheme to construct reusable garbled circuits. The syntax
of a reusable garbling scheme RGb = (RGb.Garble, RGb.Enc,
RGb.Eval) is the same as the syntax for a one-time garbling scheme
(Sec. 2.1). The security of the scheme (defined in our full paper [25]),
intuitively says that a garbled circuit can be used with many
encodings while still hiding the circuit and the inputs. More formally,
a garbling scheme is input- and circuit-private with reusability if
there exists a stateful p.p.t. simulator S = (S1, S2) such that S1,
when given as input a circuit size |C|, outputs a simulated garbled
circuit, and S2 when given as input C(x) outputs a simulated
encoding of x. The simulated garbled circuit and the encodings must
be computationally indistinguishable from the real garbled circuit
and encodings. Note that S never gets x or C and the adversary
can invoke S2 many times (reusability). Sec. 1.2 already gave an
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overview of the idea behind our construction, so we proceed to the
construction. Let E = (E.KeyGen, E.Enc, E.Dec) be a semantically
secure symmetric-key encryption scheme.
Garbling RGb.Garble(1κ, C):
1. Generate FE keys (fmpk, fmsk)← FE.Setup(1κ) and a secret

key sk← E.KeyGen(1κ).

2. Let E := E.Enc(sk, C).

3. Define UE to be the following universal circuit:

UE takes as input a secret key sk and a value x:
(a) Compute C := E.Dec(sk, E).
(b) Run C on x.

4. Let Γ← FE.KeyGen(fmsk, UE) be the reusable garbled circuit.

5. Output gsk := (fmpk, sk) as the secret key and Γ as the garbling
of C.

Encoding RGb.Enc(gsk, x): Compute cx← FE.Enc(fmpk, (sk, x))
and output cx.
Evaluation RGb.Eval(Γ, cx): Compute and output FE.Dec(Γ, cx).

The existence of a semantically secure encryption scheme does
not introduce new assumptions because the FE scheme itself is
a semantically secure encryption scheme if no key (computed by
FE.KeyGen) is ever provided to an adversary.
Tightness of the scheme. The astute reader may have observed
that the resulting scheme requires that the encodings be generated
in the secret key setting because the encoding of x includes sk. It
turns out that generating encodings privately is in fact necessary; if
the encodings were publicly generated, the power of the adversary
would be the same as in traditional obfuscation, which was shown
impossible [4, 26] (see discussion in Sec. 1.1.2).

One might wonder though, whether a reusable garbling scheme
exists where the encoding generation is secret key, but RGb.Garble
is public key. We prove in our full paper that this is also not possible
based on the impossibility result of [2]; hence, with regard to public
versus private key, our reusable garbling result is tight.

PROOF SKETCH OF THEOREM 1.3. Let us first argue RGb.Eval
is correct. By the definition of RGb.Eval, RGb.Eval(Γ, cx) equals
FE.Dec(Γ, cx), which equals UE(sk, x) by the correctness of FE.
Finally, by the definition of UE , UE(sk, x) = C(x).

Notice that the encoding algorithm RGb.Enc produces ciphertexts
that do not depend on the circuit size, because of the succinctness
property of FE.

We can see that to obtain a RGb scheme for circuits of depth d,
we need a FE scheme for polynomially deeper circuits: the overhead
comes from the fact that U is universal and it also needs to perform
decryption of E to obtain C.

Intuitively, the scheme is secure because E hides the circuit
C. Now since FE hides the inputs to FE.Enc, it hides x and sk,
and reveals only the result of the computation which is C(x).
To prove security formally, we need to construct a simulator
S = (S1, S2) such that the simulated garbled circuit and encodings
are computationally indistinguishable from the real ones. (Our full
paper [25] precisely defines security for RGb, including the games
for the simulator.) To produce a simulated garbled circuit Γ̃, S1 on
input (1κ, 1|C|) runs:

1. Generate fresh fmpk, fmsk, and sk as in RGb.Garble.

2. Compute Ẽ := E.Enc(sk, 0|C|). (The reason for encrypting 0|C|

is that S1 does not know C).

3. Compute and output Γ̃← FE.KeyGen(fmsk, UẼ).

S2 receives queries for values x1, . . . , xt ∈ {0, 1}∗ for some t and
needs to output a simulated encoding for each of these. To produce
a simulated encoding for xi, S2 receives inputs (C(xi), 1|xi|, and
the latest simulator’s state) and invokes the simulator SimFE of the
FE scheme and outputs

c̃x := SimFE(fmpk, fskU
Ẽ
, UẼ , C(x), 1|sk|+|xi|).

A potentially alarming aspect of this simulation is that S generates
a key for the circuit 0|C|. Whatever circuit 0|C| may represent, it may
happen that there is no input x to 0|C| that results in the value C(x).
The concern may then be that SimFE may not simulate correctly.
However, this is not a problem because, by semantic security, E
and Ẽ are computationally indistinguishable so SimFE must work
correctly, otherwise it breaks semantic security of the encryption
scheme E.

To prove indistinguishability of the simulated/ideal and real
experiment outputs, we introduce a hybrid experiment. This ex-
periment is the same as the ideal experiment, but Ẽ is replaced with
E = E.Enc(sk, C). This means that the adversary receives a real
garbled circuit, but the encodings are still simulated. Thus, the views
of the adversary in the ideal and the hybrid experiment differ only
in Ẽ and E. By the semantic security of the encryption scheme
used, these views are computationally indistinguishable. Finally, the
hybrid and the real experiment are computationally indistinguishable
based on the properties of SimFE guaranteed by the security of FE.
For the full proof, we refer the reader to our full paper [25].
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