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Multi-Coset Sparse Imaging Arrays
James D. Krieger, Yuval Kochman Member, IEEE, Gregory W. Wornell Fellow, IEEE

Abstract—We develop an efficient structured sparse antenna
array architecture for coherent imaging of sparse but otherwise
unknown scenes. In this architecture, the array elements are
configured in a periodic nonuniform pattern that can be viewed
as the superposition of multiple sparse uniform arrays. For this
architecture, we develop an efficient pattern design procedure us-
ing co-array analysis. Moreover, we describe robust and efficient
algorithms implementing the associated array processing needed
for this architecture, which comprise scene support recovery,
followed by image reconstruction. Finally, we develop a practical
method for detecting reconstruction failures when the scene
density exceeds the level for which the array was designed to
accommodate, so that false images are not produced. Finally,
as a demonstration of its viability, the architecture is used to
reconstruct a simulated natural scene.

Index Terms—Phased-array antennas, sparse arrays, com-
pressed sensing, MUSIC algorithm, millimeter-wave imaging.

I. INTRODUCTION

RECENT advances seen in millimeter-wave technology,
including the advent of terahertz CMOS circuits, have

the potential to enable, for the first time, a host of low-cost
imaging and “personal radar” applications. Indeed, at these
higher frequencies, typical resolution requirements can be
met with comparatively compact arrays, which are especially
attractive for applications requiring some degree of mobility.
Moreover, the arrays can be implemented with inexpensive
integrated circuit and antenna technologies.

However, with such technology comes significant new chal-
lenges, an important example of which is the large number of
array elements typically required to construct a phased array
in such applications. As an illustration, in a vehicle collision
avoidance system, obtaining sufficient resolution might require
an aperture of roughly 2m. But in this case a traditional
phased array operating at 100 GHz with half-wavelength
element spacing would require roughly 1000 antennas, which
is daunting to implement.

As a result, there is renewed interest in developing sparse
antenna array architectures. Sparse arrays, characterized by
average inter-element spacings of greater than one half of
the operating wavelength, have been of interest throughout
much of the history of phased arrays, garnering a great deal
of attention in the early 1960’s; see, e.g., [1] and references
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therein. The design of general-purpose sparse arrays has
typically entailed making basic performance tradeoffs. A well-
known example is the use of “density tapering”, which uses a
gradually increasing spacing profile as one moves from the
center toward the edges of the aperture. These arrays are
representative of a class of “thinned” arrays that stretch the
aperture associated with a given number of elements to achieve
a desired resolution by narrowing the width of the main lobe
without introducing additional grating lobes. However, this is
obtained at the cost of a significant increase in the side lobe
level. In certain applications for which resolution is the key
performance metric, these provide a useful design solution.
However, in the context of imaging arrays this introduces an
unacceptable noise floor.

Another class of sparse arrays, referred to as limited field-
of-view or limited scan arrays, accommodate sparseness by
constraining the field-of-view of the array to a commensurately
narrow range of angles, since this allows the resulting grating
lobes to be effectively ignored. Limiting the field-of-view is
accomplished through the use of directive antenna elements,
which suppress the grating lobes outside of the angular region
of interest. While the associated grating lobes still reduce the
array gain, interference is avoided. Because of the narrow
field-of-view, however, such arrays must be physically rotated
to image a complete scene, which requires considerably me-
chanical complexity as well as a comparatively static scene.
As a result, such designs are not well suited to providing cost-
effective imaging solutions.

In this paper, we take a different approach, whereby rather
than constraining the functionality or performance of the
array, we exploit structure in the scene being imaged. In
particular, we seek to exploit sparsity in the scene to allow
the number of antenna elements to be reduced, i.e., when the
scene being imaged is sparse in an appropriate sense—even
without knowing where it is sparse—then it is possible to
commensurately reduce the number of elements in an imaging
array. Moreover, such sparseness is quite common in typical
applications.1

This approach also has a rich history. Consider, for exam-
ple, the classical problem of direction-finding with multiple
sources, for which the MUSIC algorithm [2], among others,
was developed. In this case, it is possible to achieve high-
resolution with relatively few antenna elements because of
the simple structure of scene. Indeed, the number of elements
required is typically on the order of the number of sources.
Hence, the presence of structure in the environment allows the
number of elements to be reduced.

For arrays containing just a few elements, the array design

1Note that in a typical scene while there are objects at some range in any
particular direction, when we use enough bandwidth to sufficiently resolve
range as well, we find significant sparseness in the range-azimuth plane.
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and image reconstruction can often be fairly straightforward
and exploit classical techniques. However, for arrays of even
a few dozen elements, such direct approaches quickly become
computationally infeasible to design, and impractical to imple-
ment. As a result, there is a need to impose useful structure
on the array, to enable efficient design and processing.

In our development, we therefore focus on particular struc-
tured sparse antenna designs that are comparatively easy to
design and for which efficient array processing algorithms can
be developed to perform the image reconstruction. Specifically,
we focus on “multi-coset” arrays, whose elements are laid out
in a quasi-periodic (recurrent nonuniform) pattern, and which
can be viewed as a collection of overlapping, staggered sparse
uniform arrays.

This architecture, introduced in [3], follows from exploiting
the close mathematical relationship between the problem of
imaging from a discrete array, and that of reconstructing a
bandlimited time-domain waveform from samples. Indeed, our
architecture is the counterpart of multi-coset sampling [4].
And while [3] focuses on making the mathematical connection
between these domains, the present paper represents a more
complete development of the design and analysis of multi-
coset sparse imaging arrays in their own right.

The paper is organized as follows. Section II defines the
scene model and array structure of interest, and introduces
some convenient notation. In Section III, the basic multi-
coset image reconstruction algorithm and its implementation
are developed for an ideal array. Section IV incorporates
finite-aperture effects and the presence of noise into the
analysis, which leads to a novel co-array based procedure
for finding robust and efficient multi-coset patterns. Section V
develops a methodology for reliably detecting reconstruction
failures when the scene density exceeds the level for which
an array is designed, preventing false images from being
produced. Section VI developes the extension of the method-
ology to 2-D range-azimuth imaging, which accommodates
range-dependent sparsity, and demonstrates the performance
on a simulated scene. Finally, Section VII concludes with a
discussion of the results and their implications.

II. PRELIMINARIES

Throughout this paper, we will focus on horizontally aligned
linear arrays of elements located on some subset of collinear
lattice points with uniform spacing d = λ/2, where λ
is the operating wavelength of the array. We assume ideal
isotropic elements and limit our attention to the horizontal
half-plane such that the directional characteristics of the array
are completely specified by the angle θ, measured from the
broadside direction of the array as shown in Fig. 1.

A standard linear array refers to any array having uniform
element spacing of λ/2. Substituting ψ = sin θ/2, we may
express the array response and far-field pattern for a standard
array with N →∞ elements as a Fourier transform pair,

x[n] =

∫ 1

0

X(ψ)ej2πψn dψ, n ∈ Z (1)

X(ψ) =
∑
n

x[n]e−j2πψn, ψ ∈ [0, 1). (2)

Fig. 1. (4, 7) multi-coset array with coset pattern P = {0, 1, 2, 4}
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Fig. 2. (5, 10)-sparse scene with Q = {1, 2, 4, 5, 9}

From the view of array imaging, (1) describes x[n] as the
response at element n to a scene consisting of complex valued
objects X(ψ). Standard reconstruction of the scene in a given
direction ψ is carried out using (2).

We define block sparsity as follows. For any pair of integers
Q ≤ L, we say that a scene is (Q,L)-sparse if X(ψ) = 0 for
all ψ /∈ Ψ , where

ΨQ =

Q−1⋃
k=0

[
qk
L
,
qk + 1

L

)
, (3)

where the qk are the integer valued elements in the set Q =
{q0, q1, . . . , qQ−1}, 0 ≤ q0 < q1 < · · · < qQ−1 ≤ L − 1.
This set Q is referred to as the block support of the scene. An
example of a (5, 10)-sparse scene is shown in Fig. 2.

It is possible to exploit scene sparsity to reduce the number
of elements for a given aperture required for accurate imaging.
In particular, we employ the periodic non-uniform spatial
multi-coset sampling scheme, due its particular suitability to
block sparse imaging [4]. The multi-coset structured sparse
array is composed of a subset of the uniformly spaced standard
array described by x[n]. For any pair of integers P ≤ L, a
(P,L) multi-coset array is the union of P overlapping subar-
rays, known as cosets, with inter-element spacing of L times
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greater than the nominal inter-element spacing, such that we
refer to L as the coset period. The particular choice of cosets
P = {p0, p1, . . . , pP−1}, 0 ≤ p0 < p1 < · · · < pP−1 ≤ L−1,
is referred to as the coset pattern of the array. In Fig. 1, an
example layout of a (4, 7) multi-coset array with coset pattern
P = {0, 1, 2, 4} is shown over the lattice points representing
the location of elements in a standard linear array.

The coset response for coset p is defined over the complete
range of n as being equal to x[n] where a coset element is
present, and zero otherwise,

x(p)[n] = x[n]
∑
m

δ[n− (mL+ p)], p ∈ {0, 1, . . . , L− 1}.

(4)
The corresponding coset image is the Fourier transform of the
coset response

X(p)(ψ) =
∑
n

x(p)[n]ej2πψn, ψ ∈ [0, 1). (5)

III. MULTI-COSET IMAGING: IDEAL SETTING

We first review the process for image reconstruction of
a block-sparse scene from the response of a sparse multi-
coset array. In this section, we assume the idealized case
of an infinite array aperture and ignore noise. This material
will establish the basic notation and serve as a basis in the
subsequent analyses for the practical issues covered in later
sections.

A. Reconstruction for Known Support

The individual coset images in (5) will contain L uniformly
shifted copies of the original scene due to the aliasing effect
cause by the increased element spacing L ·d. As a result each
of the L coset image blocks will contain grating lobes from
the remaining L−1 blocks. The basic notion of the multi-coset
image reconstruction is to extract the entire correct image from
the images of multiple cosets in a single block. Combining
(1), (2), (4), and (5), the coset image in the first block can
be written as a linear combination of the grating lobes of the
original scene

X(p)(ψ) =
1

L

L−1∑
q=0

X(ψ + q/L)ej2πpq/L, ψ ∈ [0, 1/L) (6)

Defining Yp(ψ) = X(p)(ψ)H(ψ) and Xq(ψ) = X(ψ +
q/L)H(ψ), where

H(ψ) =

{
1 ψ ∈ [0, 1/L)
0 otherwise,

(7)

the expression in (6) may be generalized to relate all L sectors
to all L possible cosets as the linear relation Y(ψ) = AX(ψ),
where A is the L × L inverse discrete Fourier transform
matrix with elements Apq = 1

Le
j2πpq/L. Hence, given the

complete set of coset responses {Yp(ψ)}, it is straightforward
to reconstruct the correct image of the original scene.

Since we are interested in a (P,L) sparse multi-coset
array, we must consider instead the length-P vector YP(ψ),
composed of the entries of Y(ψ) indexed by the coset pattern
P . Similarly, we define the P × L matrix AP containing

the P rows of A indexed by P . This results in the relation
YP(ψ) = APX(ψ). In this form, we now have an undeter-
mined system, having an infinite number of possible solutions.

For a (Q,L)-sparse scene with support Q, the elements of
X(ψ) not indexed by this support will be zero valued, and
thus do not contribute to the coset responses. Hence, we may
define the P ×Q matrix APQ, composed of the columns of
AP indexed by Q, and the length-Q vector XQ(ψ) containing
the nonzero entries of X(ψ). The matrix APQ is referred to
as the measurement matrix. The updated relation becomes

YP(ψ) = APQXQ(ψ). (8)

If APQ is full rank, the correct image may be reconstructed
as

X̂Q(ψ) = A+
PQYP(ψ), (9)

where A+
PQ = (AH

PQAPQ)−1AH
PQ is the Moore-Penrose

pseudo-inverse of the matrix APQ.
The rank of APQ depends on both P and Q. A pattern

P which guarantees full rank for any support of length Q
is called a universal pattern. As shown in [4], such patterns
exist whenever P ≥ Q. For example, the so-called “bunched”
pattern, in which the first P cosets are selected, is generally
universal. However, in Section IV, we will see that the uni-
versality condition is merely a minimal necessary requirement
and does not ensure optimal performance once practical issues
such as receiver noise are taken into account.

B. Blind Support Recovery

In practice, a more robust reconstruction method assumes
only a maximum value of Q such that the scene satisfies the
block sparsity description in (3) for unknown support Q. This
entails the need for a step prior to the image reconstruction
in which an estimate of the support Q̂ is determined from
the available data. Once the support recovery is complete, the
reconstruction can be performed using (9).

The complete blind reconstruction problem can be framed
as a compressed sensing (CS) problem which seeks a solution
X̂(ψ) to YP(ψ) = APX(ψ) having the minimum number
of nonzero entries. Since the location of the non-zero entries
in X(ψ) are identically located for all ψ ∈ [0, 1/L), a
good estimator will consider the data over this entire range
simultaneously. This support recovery problem may be cast
in terms of the setting known in the CS literature as a
multiple measurement vectors (MMV) problem, for which
support recovery is guaranteed for any (Q,L)-sparse scene
when P ≥ 2Q [5]. Compared to the known support problem,
this implies that blindness necessitates a factor two increase in
the minimum number of array elements. However, for a wide
class of scenes, this strict requirement may be relaxed.

There exist a variety of specific algorithms suited to the
blind support recovery; see, e.g., [6], [7]. For the most part,
these operate on the correlation matrix in order to examine the
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entirety of the available coset data,

SYP =

∫ 1
L

0

YP(ψ)YH
P (ψ)dψ

= AP

(∫ 1
L

0

X(ψ)XH(ψ)dψ

)
AH
P

= APSXAH
P (10)

it is shown in [8] that support recovery is guaranteed whenever

P ≥ 2Q− rank(SX) + 1. (11)

Under the assumption that the rows of X(ψ) form a linearly
independent set, SX will have rank Q, resulting in the support
recovery guarantee condition P ≥ Q+1. In this case, the price
of blindness is the addition of a single coset. In general, it is
reasonable to expect small levels of correlation between the
image contents in the different blocks. As such, P = Q + 1
may be considered to be the extreme minimum choice, with
P = Q + 2 being, for the most part, a much safer choice
for providing reliable estimates of Q̂. The issues of reliable
support recovery and SNR dependence will be covered in
detail in Section IV.

The support recovery problem may be expressed as a
compressed sensing problem as follows. The coset correlation
matrix is decomposed into SYP = VVH , where V may be
found from the singular value decomposition SYP = UΛUH

such that V = UΛ1/2. The matrix V can be expressed as
V = APW. Since AP is a P × L matrix (P ≤ L), there
is no unique solution to this relation. The compressed sensing
problem seeks the solution W0 that minimizes the number of
rows having non-zero entries. This particular L0-minimization
problem may be replaced by a computationally preferable L1-
minimization problem. For this we define the length-L vector
w with entries equal to the `2-norm of the corresponding rows
of W. With this, the problem becomes

minimize ‖w‖1 s.t.V −APW = 0. (12)

Solutions to the L1-minimization problem may still require
more computation time than desired for a dynamic imaging
system. An alternative solution originally proposed in [4] is
based on the MUSIC direction finding algorithm [9]. The
basic algorithm is as follows. In the absence of noise, the
correlation matrix will have Q out of P non-zero eigenvalues.
The eigenvector matrix is partitioned as U = [US UN ],
where the L× (P −Q) matrix UN contains the eigenvectors
corresponding to the zero valued eigenvalues. This matrix
represents the noise subspace of U. Each of the L columns of
AP is projected onto the noise subspace. The columns corre-
sponding to the active sectors contained within the support Q
will lie in the orthogonal subspace spanned by US and hence
will have zero projection onto UN . The recovered support Q̂
will contain the indices of these columns. Thus, defining the
columns of AP and U as aq and um, the algorithm evaluates
the null spectrum

DMUSIC(q) =

P∑
m=Q+1

|aHq um|2 (13)

and selects Q̂ as the values of q corresponding to the Q
smallest values of DMUSIC(q).

C. System Implementation

It is straightforward to implement this system in the array
domain, allowing for operation on the coset responses x(p)[n]
directly. The inverse Fourier transform of (8) yields the array
domain form

yP [n] = APQxQ[n] (14)

and has the similar reconstruction x̂Q[n] = A+
PQyP [n]. The

reconstruction is shown in Fig. 3. The coset responses are first
passed through the filter h[n] associated with H(ψ) to form
the output vector yP [n]. From the array domain perspective,
the entries of yP [n] are the interpolated coset responses,
having the L− 1 values between each coset element provided
as a result of the interpolating filter h[n]. To the vector of
interpolated coset responses, we apply the Q×P matrix A+

PQ
to obtain the x̂Q[n]. Note that, in the image domain, the Xq(ψ)
are related to the original scene by

X(ψ) =

L−1∑
q=0

Xq(ψ − q/L). (15)

Hence, the output of the matrix multiplication operation is
the reconstructed response for shifted copies of the blocks
contained in the support Q and the complete array response
x̂[n] may be formed in the array domain by modulating and
summing the Q contributions from x̂Q[n] as shown in Fig. 3.

Fig. 3. Multi-coset reconstruction processing chain.

The estimated support Q̂ may be found by tapping the yP [n]
prior to the reconstruction operation. The correlation matrix
can also be computed directly from the coset responses in the
array domain from

{SYP}lk = 〈xpl [n], xpk [n]〉 =
∑
n

xpl [n]x∗pk [n]. (16)

This estimate is then returned to be used in the matrix
multiplication and the subsequent delays.
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IV. PRACTICAL IMPLEMENTATION ISSUES

In Section III, our development ignored the important issues
of finite aperture length and the presence of noise. Because of
the reality of both these issues in any practical array system,
the block sparsity described in (3) can never be achieved in a
strict sense. In this section, we will discuss these issues and
their consequences.

A. Finite Aperture Effects
In Section III, the effects of finite aperture lengths were

ignored. A finite aperture causes the main lobe beamwidth
to increase and also produces sidelobes. The lower resolution
resulting from increased beamwidth turns point targets into
unresolved responses spread over a region of size ∆ψ ≈ 2/L.
The sidelobes, while at much lower amplitude, cause the
response to spread even wider. These effects are well un-
derstood in standard array processing, however, they present
additional difficulties to the multi-coset array since targets in
the supported blocks Q will effectively have a “spillover”
into the neighboring blocks, violating the original sparsity
assumption in (3).

For a fixed aperture length, there is a direct tradeoff between
the coset period L and the number of coset periods M with
N = ML taking values less than or equal to the total number
of elements in a standard array covering the extent of the
available aperture. Since the block-scene density ρs,L = Q/L
will converge to the actual scene density ρs from above as
L → ∞, this motivates a choice of large L. However, the
performance will decrease as the number of coset periods
decreases. This is due mainly to two reasons. First, the number
of coset periods is similar to the number of “snapshots” for
estimating the support. Second, the leakage associated with
finite array lengths will be increasingly troublesome as the
scene blocks become more narrow and the spillover energy
fills increasingly larger portions of otherwise empty blocks.

As will be discussed shortly, the reconstruction and recovery
algorithms have a certain degree of robustness to the situation
in which (3) is violated by the presence of non-trivial levels
of noise outside of the supported region ΨQ. From the
perspective of the image processing algorithm, the leakage out
of ΨQ is similar to noise. Hence, this effect is relatively benign
as long as the spillover is not noticeably more significant than
the noise level. As the primary motivation for this work is to
determine design solutions for large N , we expect a certain
degree of flexibility in the choice of L and M such that this
will typically be the case.

In general, standard low-sidelobe tapers used in array pro-
cessing will mitigate the spillover effect and help to make
possible the use of aggressively sparse array designs at high
SNRs. For the cases when spillover can simply not be ignored,
a modified version of the array-domain reconstruction process
is described in [3]. It is shown, that the finite-aperture effects
may be reduced to any desired level by dedicating a certain
portion of the array to the task (thus reducing resolution).

B. Noise Effects
The presence of noise affects the development of Section III

in a few ways. The support condition in (3) no longer holds and

there is no exact sparse solution to YP(ψ) = APQXQ(ψ),
requiring modifications to the recovery algorithms. Below
some threshold SNR (TSNR), the recovery algorithms will
be unable to reliably estimate the correct support Q. This will
of course depend on the specifics of the scene density, and
as we will see, the coset pattern P . Also important is how
the reconstruction SNR (RSNR) using the sparse multi-coset
array compares with the SNR of an image obtained using a
standard array.

1) Reconstruction noise amplification: We begin by show-
ing how the RSNR is related to the condition number of the
particular measurement matrix κ(APQ). We first examine the
effect of the coset pattern P on the noise in the reconstructed
image. Assume for now that we are in the high SNR regime
for which the true support Q can be reliably estimated. To
facilitate tractable analysis, the array response is modeled as
a superposition of the original response x[n] corresponding
to stationary gaussian signal X(ψ) satisfying (3) for the
set Q and a gaussian noise response z[n] associated with
Z(ψ) evenly distributed over ψ ∈ [0, 1). The signal and
noise energies are given by S0 = E[

∫ 1

0
|X(ψ)|2dψ] and

N0 = E[
∫ 1

0
|Z(ψ)|2dψ], respectively. Defining Z(ψ) ∈ CL,

where {Z(ψ)}q = Z(ψ + q/L), the coset response in the
image domain is

YP(ψ) = AP(X(ψ) + Z(ψ))

= APQXQ(ψ) + APZ(ψ). (17)

Proceeding as in the noiseless case, the resultant noisy
reconstruction is given by

X̂Q(ψ) = A+
PQYP(ψ)

= XQ(ψ) + A+
PQAPZ(ψ). (18)

This reconstructed image contains the original image plus a
modified noise component. As such, the reconstructed signal
energy Sr = S0, and the reconstructed noise energy is

Nr = E

[∫ 1

0

||A+
PQAPZ(ψ)||2dψ

]
(19)

= Tr
(
(A+
PQAP)E [SZ ] (A+

PQAP)H
)
. (20)

The original noise energy N0 is spread evenly over the L
diagonal elements of E [SZ ], so the above expression becomes

Nr = Tr
(
A+
PQAPAH

PA+,H
PQ

)
N0/L. (21)

The rows of AP are taken from the L×L IDFT matrix, hence
APAH

P = IP /L, and

Nr = Tr
(
A+
PQA+,H

PQ

)
N0/L

2 (22)

Recalling that Sr = S0, the reconstruction SNR (RSNR)
is the original SNR reduced by a factor given by the noise
amplification

Nr
N0

=
||A+
PQ||2F
L2

. (23)
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where || · ||F is the Frobenius matrix norm,

||A+
PQ||

2
F =

P−1∑
j=0

Q−1∑
i=0

∣∣∣[A+
PQ
]
ij

∣∣∣2
=

Q−1∑
i=0

∣∣σi(A+
PQ)

∣∣2 , (24)

and the σi(A+
PQ) are the Q non-zero singular values of A+

PQ.
From the properties of the pseudo-inverse, these singular
values are the reciprocals of the singular values of APQ.
Further, since APQ is a P ×Q matrix with each entry having
magnitude 1/L, it follows that

||APQ||2F =
PQ

L2
=

Q−1∑
i=0

|σi(APQ)|2 . (25)

While the sum in (25) is fixed for a given L, P , and Q, the
sum in (24) may very greatly, depending on the distribution
of the singular values of the measurement matrix. Specifically,
if the least of σi(APQ) are particularly small, the noise
amplification can become extremely large. As a result, the
expected RSNR, for the most part, can be understood in terms
of the ratio of the maximum to the minimum singular values,
or condition number of the measurement matrix κ(APQ).
Hence, in the selection of the coset pattern, it is desirable
to select P such that κ(APQ) takes relatively small values
for all support sets Q.

2) Support recovery reliability: Regarding the support re-
covery portion of the reconstruction, it is necessary to consider
how the choice of coset pattern affects the recovery reliability.
Before discussing this, we first will examine how the recovery
algorithms may be modified to handle the presence of noise.
For the optimization problem, the constraint must be relaxed in
order to obtain a sparse solution. With the MUSIC algorithm
approach, difficulties arise due to the finite array lengths that
must be employed in practice. The matrices US and UN no
longer accurately partition the signal and noise subspaces and
the eigenvalues associated with UN take on non-zero values.
The situation is complicated further when the number of occu-
pied blocks Q is unknown. In these cases, an intermediate step
must be included to estimate the signal subspace dimension
Q̂. This may be accomplished through direct thresholding of
the eigenvalues. More sophisticated approaches are described
in [10]. When Q̂ > Q, two issues arise. The estimated
dimensionality of the noise subspace P−Q̂ is reduced making
the recovery estimate less accurate. Also, the matrix APQ̂
used in the reconstruction will be more poorly conditioned,
resulting in increased noise amplification.

We have found a weighted version of the MUSIC algorithm
based on the eigenvalue method [11]. The eigenvalue method
accounts for errors due to finite sample sets by weighing
the projections onto each subspace direction more heavily for
smaller eigenvalues

Dev(q) =

P∑
m=Q+1

1

λm
|aHq um|2. (26)

Again, this requires some estimate of Q. In our modification,
we avoid the need for this estimate at this point by weighing
the entire column space of U

D̃ev(q) =

P∑
m=1

(
1

λ
1/2
m

− 1

λ
1/2
1

)2

|aHq um|2. (27)

Numerical simulations were performed to compare the
different recovery algorithms. A representative example of
the results is shown in Fig. 4. In these simulations, a coset
period of L = 19 with P = 9 active cosets was selected.
The coset pattern is fixed at P = {0, 1, 2, 3, 5, 7, 12, 13, 16},
selected by the design algorithm described in the follow-
ing section. To gauge the recovery performance of the ba-
sic MUSIC, eigenvalue-MUSIC, modified-eigenvalue-MUSIC,
and L1-minimization algorithms, each was applied to 1000
randomly generated scenes in which Q = 7 active sectors
supported by Q were selected at random. Gaussian noise was
added to each scene, evenly distributed over the entire range
of ψ. This was repeated over a range of SNRs. A successful
recovery was declared when the Q most likely active sectors as
estimated by the respective algorithm matched exactly to the Q
sectors contained in Q. While the L1 algorithm gave the best
result, our modified MUSIC algorithm performed nearly as
well, taking longer to transition, but reaching full reliability at
a similar TSNR, while requiring considerably less computation
time. Most notable is the improvement beyond the established
MUSIC algorithms.

We now need to consider how the choice of P effects the
recovery probability. Because the received noise is indepen-
dent of the support Q, it does not follow directly that a well
conditioned measurement matrix APQ plays a significant role
in this. We propose an alternate approach, inspired by the
Minimum Redundancy Linear Arrays (MRLA) introduced in
[12]. These arrays are designed so that the number of sensor
pairs having identical spacings is minimized in an effort to
yield the best representation of the full correlation matrix with
the least number of elements. Our approach is similar, with
the notable distinction of an accounting for the periodic nature
of the multi-coset array. This results in the distance between
pairs of cosets to be specified by the minimum distance within
either the same, or the neighboring coset periods. Specifically,

γlk = min{|l − k|, L− |l − k|}. (28)

To understand the reasoning for this design approach, con-
sider the correlation matrix associated with all L cosets

SY = ASXAH . (29)

For the moment, consider the model in which the Q functions
{Xq(ψ)} comprise a linearly independent set, such that

{SX}mn =

∫ 1
L

0

Xm(ψ)X∗n(ψ)dψ = σ2
mδmn, (30)

where σ2
m =

∫ 1/L

0
|Xm(ψ)|2dψ is the signal energy from

block m. In this case, the full correlation matrix will have
a Hermitian-circulant structure

{SY}lk =
1

L2

L−1∑
q=0

σ2
qe
j2π(l−k)q/L. (31)
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Fig. 4. Empirical recovery probability versus SNR for L = 19, P = 9, and
(a) Q = 6 (b) Q = 7 (c) Q = 8

From (31), the dependence of the matrix entries on the relative
spacing between elements indicates the importance of the
pairwise spacings as represented by the 2(L−1) off-diagonals.
Specifically, the information contained in SY can be obtained
by representing each of the possible spacings a single time.
The symmetries in the Hermitian-circulant structure reduce
the number of unknowns by another factor of four, suggesting
the entire matrix could be represented by only d(L − 1)/2e
unknowns. In reality, there will be measurement noise and
some correlation between the different sectors, and as such
SY will vary to some extent along each diagonal. As such,
multiple occurrences of a particular pairwise spacing can be
interpreted as multiple samples of noisy data. Hence, this
suggests a design with evenly distributed spacings.

To determine the number of times each pairwise spacing is
found in a particular pattern P , we define the length-L binary
selection vector sP and compute

c(γ) =
∑
γlk=γ

slsk, 1 ≤ γ ≤ (L− 1)/2. (32)

This function is a modified version of the co-array referred to
in the original literature. Since the total number of spacings is
identical for all patterns of length P , the coset pattern having
the co-array with the smallest `2-norm will be selected.

C. Design procedure and coset pattern selection

We will now look at the multi-coset array design process for
a linear aperture of length N , measured in half-wavelengths,
for the situation in which an assumption is made regarding
the scene density ρs. The first step is to select the coset
period L. For simplicity, we will assume that N is near
enough to an integer multiple of L. The block-scene density
ρs,L = Q/L converges to ρs from above as L→∞. However,
the performance will decrease as the number of coset periods
decreases as described in Sec. IV-A. As such, in general it is
best to choose the smallest L for which the block density has
mostly converged.

The array density is then determined by selecting the
number of active cosets P . The extreme minimum for recovery
to remain possible is Pmin = Q+ 1 ≥ ρsL+ 1. As discussed
in Section III-B, it is advantageous to select P > Pmin.
This not only makes the system less susceptible to errors, but
additionally the support recoverability at low SNR improves
most dramatically with the addition of an extra coset from
P = Q+ 1 to P = Q+ 2.

Once L and P have been selected, the coset pattern must be
determined. From Section IV-B, we have the possible design
criteria of either minimizing the condition number over the
entire set of supports or minimizing the `2-norm of the co-
array associated with P . We first will outline the optimization
of P based on these two design goals and will then compare
the results.

The pattern P∗CN is optimized for κ(APQ) as follows.
1) Generate the set SP containing NP potential coset

patterns
• As a baseline, this can contain up to L-choose-P

patterns
• This may be reduced significantly by removing

patterns which are repeated due to symmetries (re-
flection, circular shifts).

2) Similarly, generate the set SQ containing NQ block
supports

3) For each P ∈ SP ,
• calculate κ(APQ) for each of the NQ supports
• store κmax

P = maxQ∈SQ(κ(APQ))

4) Select P∗CN = argminP∈SP (κmax
P ) as the coset pattern

with the minimum output from step (3)
The pattern P∗CO is optimized for the co-array design as

follows.
1) Generate the set SP containing NP potential coset

patterns
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2) For each P
• create the length-L vector sP consisting of entries

equal to 1 at the locations contained in P and 0
otherwise.

• calculate ctemp = conv([sPsP ], s̄P), where s̄P is a
flipped copy of sP .

• select the relevant portion of the convolution output
c = ctemp(L+ 1 : L+ (L− 1)/2)

• store ‖c‖2
3) Select P∗CO as the coset pattern with the minimum

output from step (2)
4) Check κmax

P for P∗CO against the set SQ of possible
supports Q

5) If necessary, select the next minimum P and repeat until
a satisfactory conditioning is found

To begin, we examine a set of (L,P ) pairs for which the
number of unique element pairs P (P − 1)/2 is an integer
multiple of the number of possible spacings (L − 1)/2. This
condition allows the special quality of having a perfectly flat
co-array distribution. Examples of coset patterns fitting this
description are shown in Table I, along with the array density
ρA, and the co-array c. To clarify the concepts introduced so
far, consider the (4, 7)-sparse array in the second entry. While
the coset pattern may repeat for any number of periods de-
pending on the array length, the array density is fixed, having
approximately 57% of the number of elements contained in
a standard array of the same length. Each entry of the co-
array c = [222] is a count of the number of times a particular
pairwise spacing occurs for γ = 1 (0 ↔ 1, 1 ↔ 2), γ = 2
(0↔ 2, 2↔ 4), and γ = 3 (1↔ 4, 4↔ 0), where the spacing
between cosets 4 and 0 “wraps around” and can be thought
of as being measured between successive coset periods.

TABLE I
EXAMPLES OF COSET PATTERNS P∗CO .

L P ρA P∗CO c

7 3 0.43 {0 1 3} [111]
7 4 0.57 {0 1 2 4} [222]
11 5 0.45 {0 1 2 4 7} [22222]
11 6 0.55 {0 1 2 4 5 7} [33333]
13 4 0.31 {0 1 3 9} [111111]
13 9 0.69 {0 1 2 3 4 5 7 9 10} [666666]
19 9 0.47 {0 1 2 3 5 7 12 13 16} [444444444]
19 10 0.53 {0 1 2 3 5 7 12 13 15 16} [555555555]

For these values of L and P , it is computationally feasible
to determine the condition number of the measurement matrix
κ(APQ) over the sets SP and SQ. From these results, the
maximum condition number κmax

P over all Q of length Q =
P − 1 is determined for each P . The results for κmax

P∗CN
, κmax
P∗CO

,
and κmax

PBU
are shown in Table II for each of the (L,P ) pairs in

Table I. Here PBU = {0, 1, . . . , P − 1} refers to the bunched
pattern mentioned in Section III-A. This pattern is included
for the sake of reference to demonstrate that while universality
with respect to rank may be guaranteed for certain patterns,
this does not guarantee anything other than that the condition
number of the measurement matrix will be finite for all Q.

The entries in Table II for which κmax
P∗CN

and κmax
P∗CO

match
show the cases for which the co-array optimization results in

TABLE II
MAXIMUM CONDITION NUMBERS, Q = P − 1.

L P κmax
P∗

CN
κmax
P∗

CO
κmax
PBU

7 3 1.31 1.66 2.64
7 4 2.18 2.18 3.60
11 5 4.24 4.24 17.54
11 6 5.17 5.17 20.22
13 4 2.75 3.26 15.85
13 9 6.49 6.49 33.25
19 9 13.54 13.54 1063.63
19 10 13.93 13.93 1154.08

the same pattern found through the more exhaustive condition
number search. For these cases, the poor conditioning of
the bunched patterns is quite clear. However, the large, yet
finite, maximum condition number for the bunched patterns
agrees with the earlier stipulation that these represent universal
patterns. These results demonstrate that the co-array coset
pattern tends to be well, if not optimally conditioned.

To compare the effect of the type of pattern on the low-SNR
recovery probability, numerical simulations of the same type
used to compare algorithm performance in Fig. 4 were per-
formed for a many different combinations of L, P , and Q for
the different coset pattern types. Selecting the cases in Table
II for which the condition number and co-array optimizations
did not yield identical coset patterns, the recovery probability
as a function of SNR for the (3, 7) and (4, 13) sparse arrays
are shown in Fig.5. In these, and any other choice of (P,L)
for which the simulation was conducted, the co-array pattern
yielded the lowest TSNR for reliable support recovery.

V. SUPPORT RECOVERY FAILURE DETECTION

In a dynamic scene environment, it is reasonable to expect
changes in the scene density as well as the SNR. As we have
shown, both of these quantities effect the support recovery
reliability of the multi-coset imaging array system. The value
of utilizing the maximum amount of aperture with a minimal
number of array elements motivates a desire to operate near
the threshold points at which either of these two issues
may arise. Hence, it is of great importance to have some
indication as to whether the reconstructed image should be
trusted, particularly when integrated into a larger system in
which decision making processes occur. While some auxiliary
analysis may be employed to ensure changes in the image
output fit some reality-based model, the benefit of having
a self-contained error indication feature included within the
processing algorithm is clear. In this section, we develop such
a technique based on the concept of back-projection error
(BPE).

Consider the (P,L) multi-coset array with coset pattern P
and a (Q,L)-sparse scene with support Q, where both Q and
Q are unknown. In the support recovery stage, the received
information contained in YP(ψ) is used to obtain an estimate
of the support Q̂. Using the estimated support, the image
is reconstructed as X̂Q̂(ψ) = A+

PQ̂
YP(ψ). Since the true

XQ(ψ) is unknown, we use a back-projection onto the space
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Fig. 5. Recovery probability vs SNR for (a) (L,P,Q) = (7, 3, 2) and (b)
(L,P,Q) = (13, 4, 3)

spanned by Q̂ for comparison to the original coset response

ŶPQ̂(ψ) = APQ̂X̂Q̂(ψ)

= APQ̂A+

PQ̂
YP(ψ). (33)

Where the product APQ̂A+

PQ̂
is the projection matrix onto

the range of APQ̂.
If Q̂ is estimated correctly, the back-projection ŶPQ̂(ψ)

should be approximately equal to YP(ψ), provided the noise
level is relatively low. We quantify this through the back-
projection error,

BPE =

∫ 1
L

0

||YP(ψ)− ŶPQ̂(ψ)||22 dψ. (34)

A. Sparsity Failure

Consider for now the case where the noise level is trivially
low compared with the received signal power. As discussed
in Sec. III, a multi-coset array with a (P,L)-universal pattern
should be able to recover the support Q of a (Q,L)-sparse
scene in most cases given P ≥ Q+ 1. When the support esti-
mate is recovered from the response YP(ψ) = APQXQ(ψ)
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Fig. 6. BPE versus Q, L = 19. Results averaged over 1000 trials.

is (or contains) the correct support such that Q ⊆ Q̂, the
back-projection is

ŶPQ̂(ψ) = APQ̂X̂Q̂(ψ)

= APQXQ(ψ)

= YP(ψ), (35)

and the BPE is zero. If the scene becomes insufficiently sparse
for the array, the recovery stage will fail to determine the
entirety of the support and Q̂ ⊂ Q. In this case, much of the
energy contained in the unidentified support blocks Q/Q̂ will
vanish during the back-projection operation. These results can
be seen in Fig. 6. Each curve represents a fixed number of
cosets P for which the average BPE is plotted as a function
of the number of supported blocks Q. The average BPE
was calculated over 1000 trials, each trial having a random
gaussian scene evenly distributed over a randomly selected
support Q. As expected, each curve remains at zero for Q < P
and rises in nearly linear fashion with Q beyond this point.

B. Failure Due to Insufficient SNR

The BPE behavior with respect to the SNR will behave
differently than in the case of false assumptions in the sparsity
model. Consider a fixed signal power, distributed over any
Q ≤ P − 1 scene blocks. For noise powers below some
threshold level (specific to the particular case of L, Q, and
P), the support recovery will not be adversely affected. In
this region, the support Q will be recovered successfully and
the BPE will be due solely to the noise within the subspace
orthogonal to the range of APQ, which will increase in
proportion to the total noise power.

As a consequence, failures occur with increasing likelihood
for P > Q at lower SNRs. When operating at a particular
SNR, it is possible to determine a “safe” choice of P such
that the TSNR for the design is comfortably below this level.
However, this may be overly cautious, resulting in the need



10

2 4 6 8 10 12
−28

−26

−24

−22

−20

−18

−16

−14

−12

−10

Q

n
o

rm
a

liz
e

d
 B

P
E

 (
d

B
)

 

 

SNR = 0
SNR = 5
SNR = 10
SNR = 15

Fig. 7. Normalized BPE versus Q, at different SNR, L = 19, P = 9. The
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for a much more dense array than necessary. Another strategy
is to select an aggressively sparse array design with a TSNR
very close to the operating SNR and determine the BPE level
that indicates a recovery failure to allow the user to be aware
when the relatively rare errors occur. In practice, the BPE
threshold at which we declare a failure depends on SNR.
This can be seen in Fig. 7, which shows the normalized BPE
versus Q for different SNR values for a (9, 19) multi-coset
array. Rather than averaging the BPE results over every trial
as in Fig. 6, the averages are instead taken separately for the
cases of successful and failed support recovery estimates. We
observe that independent of Q, the failed cases consistently
lie above some threshold, which varies with SNR. Defining
the threshold BPE as the midpoint between the maximum
success and minimum failure BPEs allows a nominal level
indicating a probable failure to be determined at each SNR.
Fig. 8 illustrates this result for the (9, 19) array.

VI. RANGE-ANGLE 2-D IMAGING APPLICATION

In this section the multi-coset imaging techniques are ap-
plied to create a two-dimensional range-angle image from
simulated data. For this, we first discuss the range-dependent
sparsity extension which often allows a dense scene to be
separated into multiple sparse scenes, each of which may be
treated by the imaging algorithm independent of the others.

A. Range-Dependent Sparsity

The scene sparsity requirements may appear to restrict the
potential applications in which a significant reduction in the
number of array elements may be achieved. However, even
with scenes containing objects in every direction, it is unlikely
that many of these objects are located at the same distance
from the array. Hence, by sorting the scene into a number of
distinct range cells, the multi-coset array can independently
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Fig. 8. Normalized BPE threshold versus SNR, L = 19, P = 9.

reconstruct the sparse image in each cell using the standard 1-
D imaging algorithm. This notion of range-dependent sparsity
can be exploited using standard pulse compression techniques.

When the transmitted waveform contains a range of frequen-
cies ∆f about the center frequency f0, the inverse Fourier
transform of the received frequency domain data sorts the
response according to the two-way travel times of the various
signals reflected from the environment. In a typical medium,
each of these signals travel at the same speed, hence sorting
by time effectively sorts by distance.

The pulse-compressed range resolution improves linearly
with the bandwidth ∆f . As the scene is divided in finer range
cells, the resultant range-dependent sparsity profile improves,
since the density at any range is monotonically non-increasing
as the range cell length ∆r decreases. The available fractional
bandwidth ∆f/f0 of a particular array design is relatively
fixed for any f0. Hence, exploitation of range-dependent
sparsity is inherently well suited for high frequency systems.

B. 2-D Imaging Example

As a demonstration of multi-coset range-angle imaging,
consider the example application of a millimeter-wave vehic-
ular mounted imaging system. Assume a center frequency of
f0 = 75 GHz and an available aperture length of 2m. At this
frequency, an element spacing of d = λ0/2 = 2mm implies
the need for 1000 array elements in order to fully populate
the linear aperture. Further, assume a frequency bandwidth of
1 GHz, which provides a 15 cm range resolution following
pulse compression.

The simple line-of-sight point target model shown in Fig. 9
was used to simulate the frequency response at the N = 1000
array element locations, with the transmitter modeled as an
isotropic source located at the center of the array aperture.
The full standard array image is generated by first sorting the
received data by range using the pulse-compression technique,
and then applying (2) at each of the range bins. The result is
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Fig. 10. Standard array image reconstruction, N = 1000 elements with
spacing d0 = λ/2.

shown in Fig. 10, with the horizontal axis now corresponding
to ψ-space. Since the block sparsity view divides the scene
into sectors of equal widths ∆ψL = 1/L, this representation
governs the number of supported sectors Q for a given L.

The significance of the choice of L on the array design
can be seen in Fig. 11. The maximum block density ρs,L =
Q/L over all ranges is shown as a function of the number of
sectors, and accordingly the coset period. The sparsity of the
scene begins to level out around L = 50 suggesting this as
a reasonable choice, with the number of coset periods being
M = N/L = 20.

At L = 50 the maximum number of occupied blocks is
Q = 18. A conservative pick for the number of cosets is
P = 2Q = 36, resulting in an array with a density factor
ρA = 0.72. Before we discuss the performance of such an
array, it is useful to remind ourselves why designs such as
the multi-coset array are needed, rather than simply spacing
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Fig. 11. Maximum block density dependence on the total number of sectors
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Fig. 12. Reconstructed image from the sparse uniform array of N = 720
elements with spacing d = d0/0.72 = 0.6944λ.

the elements a little further than for a standard array. To
fill the same aperture with 72% of the original elements
with uniform spacing, the distance between elements will
be d = d0/0.72 = 0.6944λ. Using this configuration to
reconstruct the image using the standard imaging approach
yields the result shown in Fig. 12. Because of the grating lobe
effect, the array is unable to distinguish the direction of arrival
for targets outside of |ψ| < 0.36 and copies of image targets
appear in multiple locations, at times even obscuring other
objects, as seen at a range of 8m.

Returning to the multi-coset array, we note that the design
procedure laid out in Section IV-C becomes overly cumber-
some for large L. However, for many cases, a simplified
design approach can perform quite well as long as proper
care is taken. The desired (36, 50) multi-coset array may be
designed using a pseudo-random approach by either randomly
generating P and checking to see, for example, that the
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Fig. 13. Reconstructed image for the (36, 50) multi-coset
array with coset pattern P = {0, 2, 3, 4, 6, 7, 10, 11, 12, 13, 14,
15, 16, 18, 19, 20, 21, 22, 24, 25, 28, 29, 30,31, 32, 33, 34, 35, 37, 39, 40,42,
44, 46, 47, 48}.

elements are not either too tightly bunched or tending to be
spread out in a nearly uniform manner, or, by selecting several
element locations strategically and then allowing the rest to be
selected randomly. The result of a type of this pseudo-random
design is shown in Fig. 13. With this conservative choice of
P , we see that the multi-coset array image reconstruction is
nearly indistinguishable from the full array reconstruction.

For this particular case, it is very likely that a randomly
selected P will perform well. However, this does not imply
that all patterns will yield good results. Once again, we
consider the bunched pattern PBU = {0, 1, . . . , 35} and
implement the same multi-coset imaging process, resulting in
the odd reconstruction reconstruction result shown in Fig. 14.
What we see in this result is the effect of poor conditioning.
At ranges for which no actual targets are present, there will
always be some presence of very low side lobes resulting
from the finite array length and frequency band. While these
should be nearly insignificant in most cases, a poorly chosen
configuration such as the bunched pattern can amplify trace
amounts of background noise by up to several orders of
magnitude, as seen in this result.

C. Range-dependent Failure Detection

Before we examine the effects of moving to increasingly
more sparse arrays, we will apply the failure detection portion
of the algorithm to this 2-D imaging process. As was done
with the reconstruction algorithm, after separating the coset
responses into range bins as described earlier, the failure de-
tection algorithm introduced in Sec. V can be applied to each
bin. Fig. 15 shows the reconstructed images for progressively
more sparse arrays beginning with P = Qmax and decreasing
to P = Qmax/3. The bar to the immediate right indicates the
BPE at each range.
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Fig. 14. Reconstructed image for the (36, 50) multi-coset array with
“bunched” coset pattern PBU = {0, 1, . . . , 35}

Due to the moderately aggressive choice of P = 18 for
this scene, the image shown in Fig. 15(a) indicates a mild
degree of error at the ranges with the highest densities. This
is to be expected as the number of supported blocks is greater
than the number of cosets for these cases. This light level of
error indication typically corresponds to the case for which the
estimated support Q̂ has accurately determined the maximum
possible number of supports, with the extra appearing as back
projection error. In Fig. 15(b), the array has P = 12 cosets, and
more severe errors begin to occur. A primary utility of having
this range-dependent error indication is that when failures
occur, the location can be identified and ignored, or judged
with caution, without discarding results at other ranges that
still have sufficiently low densities. In Fig. 15(c), the array
retains P = 9 cosets, having reduced the total number of
elements to 180 of the original N = 1000. While the objects
are showing noticeable levels of distortion, each target is still
being located by the support recovery algorithm, with the most
egregious corruptions being identified by the error indicator.
In Fig. 15(d), P = 6 cosets remain. At this point, the design
procedure must be reconsidered. Counting the number of
element pairs as P (P − 1)/2 = 15, this design clearly cannot
cover the distribution of pairwise spacing for the L = 50
coset period. Hence, it makes sense to limit these elements
to one side of the period, eliminating the need to consider
the wraparound distance. For this case, P is taken from the 6
element MRLA. While still performing admirably for nearly
an order of magnitude reduction in the number of elements, at
this level the reconstruction has begun to miss entire objects.

VII. CONCLUDING REMARKS

We have presented the architecture of the multi-coset sparse
imaging array and described the processing algorithm utilized
for image reconstruction. While previous sparse array concepts
suffered from decreased reconstruction performance, this ap-
proach returns images with the same characteristics obtainable
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Fig. 15. Multi-coset images with failure detection, L = 50 and (a) P = 18, (b) P = 12, (c) P = 9, (d) P = 6 .

with standard arrays. We have demonstrated a modified version
of the MUSIC algorithm that yields better low SNR perfor-
mance than standard versions. A design procedure yielding
optimal support recovery performance at low SNR has been
detailed. A method for indicating the likelihood of failures has
been demonstrated. We also showed how to exploit range-
dependent sparsity and create two dimensional range-angle
images.
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