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Abstract

We study the problem of generating a shared secret key between two terminals in a joint source-
channel setup — the sender communicates to the receiver overa discrete memoryless wiretap channel
and additionally the terminals have access to correlated discrete memoryless source sequences. We
establish lower and upper bounds on the secret-key capacity. These bounds coincide, establishing
the capacity, when the underlying channel consists of independent, parallel and reversely degraded
wiretap channels. In the lower bound, the equivocation terms of the source and channel components
are functionally additive. The secret-key rate is maximized by optimally balancing the the source
and channel contributions. This tradeoff is illustrated indetail for the Gaussian case where it is also
shown that Gaussian codebooks achieve the capacity. When the eavesdropper also observes a source
sequence, the secret-key capacity is established when the sources and channels of the eavesdropper
are a degraded version of the legitimate receiver. Finally the case when the terminals also have
access to a public discussion channel is studied. We proposegenerating separate keys from the
source and channel components and establish the optimalityof this approach when the when the
channel outputs of the receiver and the eavesdropper are conditionally independent given the input.

I. INTRODUCTION

Many applications in cryptography require that the legitimate terminals have shared secret-
keys, not available to unauthorized parties. Information theoretic security encompasses the
study of source and channel coding techniques to generate secret-keys between legitimate
terminals. In the channel coding literature, an early work in this area is the wiretap channel
model [19]. It consists of three terminals — one sender, one receiver and one eavesdropper.
The sender communicates to the receiver and the eavesdropper over a discrete-memoryless
broadcast channel. A notion of equivocation-rate — the normalized conditional entropy of the
transmitted message given the observation at the eavesdropper, is introduced, and the tradeoff
between information rate and equivocation rate is studied.Perfect secrecy capacity, defined
as the maximum information rate under the constraint that the equivocation rate approaches
the information rate asymptotically in the block length is of particular interest. Information
transmitted at this rate can be naturally used as a shared secret-key between the sender and
the receiver.

In the source coding setup [1], [15], the two terminals observe correlated source sequences
and use a public discussion channel for communication. Any information sent over this
channel is available to an eavesdropper. The terminals generate a common secret-key that is
concealed from the eavesdropper in the same sense as the wiretap channel — the equivocation
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rate asymptotically equals the secret-key rate. Several multiuser extensions of this problem
have been subsequently studied. See e.g., [5], [6].

Motivated by the above works, we study a problem where the legitimate terminals observe
correlated source sequences and communicate over a wiretapchannel and are required to
generate a common secret-key. One application of this setupis sensor networks, where
terminals measure correlated physical processes. It is natural to investigate how these mea-
surements can be used for secrecy. In addition, the sensor nodes communicate over a wireless
channel where an eavesdropper could hear transmission albeit through a different channel.
Another application is secret key generation using biometric measurements [7]. During the
registration phase, an enrollment biometric is stored intoa database. To generate a secret key
subsequently, the user is required to provide another measurement of the same biometric. This
new measurement differs from the enrollment biometric due to factors such as measurement
noise and hence can be modeled as a correlated signal. Again when the database is remotely
located, the communication happens over a channel which could be wiretapped.

The secret-key agreement scheme, [1], [15], generates a secret key only using the source
sequences. On the other hand, the wiretap coding scheme [19]generates a secret-key by
exploiting the structure of the underlying broadcast channel. Clearly in the present setup, we
should consider schemes that take into account both the source and channel contributions.
One simple approach is timesharing — for a certain fraction of time the wiretap channel is
used as a (rate limited) transmission channel whereas for the remaining time, a wiretap code
is used to transmit information at the secrecy capacity. However such an approach in general
is sub-optimal. As we will see, a better approach involves simultaneously exploiting both the
source and channel uncertainties at the eavesdropper. As our main result we present lower
and upper bounds on the secret-key capacity. The lower boundis developed by providing a
coding theorem that consists of a combination of a Wyner-Zivcodebook, a wiretap codebook
and a secret-key generation codebook. Our upper and lower bounds coincide, establishing the
secret-key-capacity, when the wiretap channel consists ofparallel independent and degraded
channels.

We also study the case when the eavesdropper observes a source sequence correlated with
the legitimate terminals. The secret-key capacity is established when the sources sequence
of the eavesdropper is a degraded version of the sequence of the legitimate receiver and
the channel of the eavesdropper is a degraded version of the channel of the legitimate
receiver. Another variation — when a public discussion channel is available for interactive
communication, is also discussed and the secret-key capacity is established when the channel
output symbols of the legitimate receiver and eavesdropperare conditionally independent
given the input.

The problem studied in this paper also provides an operational significance for the rate-
equivocation region of the wiretap channel. Recall that therate-equivocation region captures
the tradeoff between the conflicting requirements of maximizing the information rate to
the legitimate receiver and the equivocation level at the eavesdropper [3]. To maximize
the contribution of the correlated sources, we must operateat the Shannon capacity of the
underlying channel. In contrast, to maximize the contribution of the wiretap channel, we
operate at a point of maximum equivocation. In general, the optimal operating point lies in
between these extremes. We illustrate this tradeoff in detail for the case of Gaussian sources
and channels.

In related work [10], [16], [20] study a setup involving sources and channels, but require
that a source sequence be reproduced at the destination subjected to an equivocation level at
the eavesdropper. In contrast our paper does not impose any requirement on reproduction
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of a source sequence, but instead requires that the terminals generate a common secret
key. A recent work, [18], considers transmitting an independent confidential message using
correlated sources and noisy channels. This problem is different from the secret-key generation
problem, since the secret-key, by definition, is an arbitrary function of the source sequence,
while the message is required to be independent of the sourcesequences. Independently and
concurrently of our work the authors of [17] consider the scenario of joint secret-message-
transmission and secret-key-generation, which when specialized to the case of no secret-
message reduces to the scenario treated in this paper. Whilethe expression for the achievable
rate in [17] appears consistent with the expression in this paper, the optimality claims in [17]
are limited to the case when either the sources or the channeldo not provide any secrecy.

The rest of the paper is organized as follows. The problem of interest is formally introduced
in section II and the main results of this work are summarizedin section III. Proofs of the
lower and upper bound appear in sections IV and V respectively. The secrecy capacity for the
case of independent parallel reversely degraded channels is provided in section VI. The case
when the wiretapper has access to a degraded source and observes transmission through a
degraded channel is treated in section VII while section VIII considers the case when a public
discussion channel allows interactive communication between the sender and the receiver. The
conclusions appear in section IX.

II. PROBLEM STATEMENT

Fig. 1 shows the setup of interest. The sender and receiver communicate over a wiretap
channel and have access to correlated sources. They can interact over a public-discussion
channel. We consider two extreme scenarios: (a) the discussion channel does not exist (b) the
discussion channel has unlimited capacity.

E n c .

d e c

 w. t .

P u b l i c  d i s c u s s i o n  c h a n n e l

uN

vN

py ,z |x(·, ·|·)
xn

yn

zn

Fig. 1. Secret-key agreement over the wiretap channel with correlated sources. The sender and receiver communicate over
a wiretap channel and have access to correlated sources. They communicate interactively over a public discussion channel
of rateR, if it is available.

The channel from sender to receiver and wiretapper is a discrete-memoryless-channel
(DMC), py ,z |x(·, ·|·). The sender and intended receiver observe discrete-memoryless-multiple-
source (DMMS)pu,v(·, ·) of length N and communicate overn uses of the DMC. We
separately consider the cases when no public discussion is allowed and unlimited discussion
is allowed.
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A. No discussion channel is available

An (n,N) secrecy code is defined as follows. The sender samples a random variablemx
1

from the conditional distributionpmx |uN (·|un). The encoding functionfn : Mx × UN → X n

maps the observed source sequence to the channel output. In addition, two key generation
functionsk = Kn(Mx,UN) and l = Ln(VN ,Yn) at the sender and the receiver are used
for secret-key generation. A secret-key rateR is achievable with bandwidth expansion factor
β if there exists a sequence of(n, βn) codes, such that for a sequenceεn that approaches
zero asn → ∞, we have (i)Pr(k 6= l) ≤ εn (ii) 1

n
H(k) ≥ R − εn (iii) 1

n
I(k; zn) ≤ εn. The

secret-key-capacity is the supremum of all achievable rates.
For some of our results, we will also consider the case when the wiretapper observes a

side information sequencewN sampled i.i.d.pw(·). In this case, the secrecy condition in (iii)
above is replaced with

1

n
I(k; zn,wN) ≤ εn (1)

In addition, for some of our results we will consider the special case when the wiretap
channel consists of parallel and independent channels eachof which is degraded.

1) Parallel Channels:
Definition 1: A productbroadcast channel is one in which theM constituent subchannels

have finite input and output alphabets, are memoryless and independent of each other, and
are characterized by their transition probabilities

Pr ({yn
m, z

n
m}m=1,...,M | {xn

m}m=1,...,M) =
M
∏

m=1

n
∏

t=1

Pr(ym(t), zm(t) | xm(t)), (2)

where xn
m = (xm(1), xm(2), . . . , xm(n)) denotes the sequence of symbols transmitted on

subchannelm, whereyn
m = (ym(1), ym(2), . . . , ym(n)) denotes the sequence of symbols ob-

tained by the legitimate receiver on subchannelm, and wherezn
m = (zm(1), zm(2), . . . , zm(n))

denotes the sequence of symbols received by the eavesdropper on subchannelm.
�

A special class of product broadcast channels, known as the reversely degraded broadcast
channel [8] are defined as follows.

Definition 2: A product broadcast channel isreversely-degradedwhen each of theM
constituent subchannels is degraded in a prescribed order.In particular, for each subchannel
m, one ofxm → ym → zm or xm → zm → ym holds.

�

Note that in Def. 2 the order of degradation need not be the same for all subchannels, so the
overall channel need not be degraded. We also emphasize thatin any subchannel the receiver
and eavesdropper arephysicallydegraded. Our capacity results, however, only depend on the
marginal distribution of receivers in each subchannel2. Accordingly, our results in fact hold for
the larger class of channels in which there is only stochastic degradation in the subchannels.

We obtain further results when the channel is Gaussian.

1The alphabets associated with random variables will be denoted by calligraphy letters. Random variables are denoted by
sans-serif font, while their realizations are denoted by standard font. A lengthn sequence is denoted byxn.

2However, when we consider the presence of a public-discussion channel and interactive communication, the capacity
does depend on joint distributionpy,z|x (·)
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2) Parallel Gaussian Channels and Gaussian Sources:
Definition 3: A reversely-degraded product broadcast channel isGaussianwhen it takes

the form
ym = xm + nr,m,

zm = xm + ne,m,
m = 1, . . . ,M (3)

where the noise variables are all mutually independent, andnr,m ∼ CN (0, σ2
r,m) andne,m ∼

CN (0, σ2
e,m). For this channel, there is also an average power constraint

E

[

M
∑

m=1

x2
m

]

≤ P.

�

Furthermore we assume thatu andv are jointly Gaussian (scalar valued) random variables,
and without loss of generality we assume thatu ∼ N (0, 1) andv = u+s, wheres ∼ N (0, S)
is independent ofu.

B. Presence of a public discussion channel

We will also consider a variation on the original setup when apublic discussion channel
is available for communication. This setup was first introduced in the pioneering works [1],
[15] where the secret-key capacity was bounded for source and channel models. The sender
and receiver can interactively exchange messages on the public discussion channel.

The sender transmits symbolsx1, . . . xn at times0 < i1 < i2 < . . . < in over the wiretap
channel. At these times the receiver and the eavesdropper observe symbolsy1, y2, . . . , yn and
z1, z2, . . . , zn respectively. In the remaining times the sender and receiver exchange messages
φt andψt where1 ≤ t ≤ k. For convenience we letin+1 = k+1. The eavesdropper observes
both φt andψt. More formally,

• At time 0 the sender and receiver sample random variablesmx andmy respectively from
conditional distributionspmx|uN (·|uN) and pmy |vN (·|vN). Note thatmx → uN → vN →
my holds.

• At times 0 < t < i1 the sender generatesφt = Φt(mx, u
N , ψt−1) and the receiver

generatesψt = Ψt(my , v
N , φt−1). These messages are exchanged over the public channel.

• At times ij, 1 ≤ j ≤ n, the sender generatesxj = Xj(mx, u
N , ψij−1) and sends it over

the channel. The receiver and eavesdropper observeyj adzj respectively. For these times
we setφij = ψij = 0.

• For times ij < t < ij+1, where1 ≤ j ≤ n, the sender and receiver computeφt =
Φt(mx, u

N , ψt−1) and ψt = Ψt(my , v
N , y j, φt−1) respectively and exchange them over

the public channel.
• At time k + 1, the sender and receiver computek = Kn(mx, u

N , ψk) and the receiver
computesl = Ln(my , v

N , yn, φk).
We require that for some sequenceεn that vanishes asn→ ∞, Pr(k 6= l) ≤ εn and

1

n
I(k; zn, ψk, φk) ≤ εn. (4)

III. STATEMENT OF MAIN RESULTS

It is convenient to define the following quantities which will be used in the sequel. Suppose
that t is a random variable such thatt → u → v , anda andb are random variables such that
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b → a → x → (y , z) holds andI(y ; b) ≤ I(z ; b). Furthermore define

Rch = I(a; y), (5a)

R−
eq = I(a; y |b) − I(a; z |b) (5b)

Rs = I(t; v), (5c)

Rwz = I(t; u) − I(t; v). (5d)

R+
eq = I(x ; y | z). (5e)

R+
ch = I(x ; y), (5f)

We establish the following lower and upper bounds on the secret key rate in Section IV
and V respectively.

Lemma 1:A lower bound on the secret-key rate is given by

R−
key = βRs +R−

eq, (6)

where the random variablest, a andb defined above additionally satisfy the condition

βRwz ≤ Rch (7)

and the quantitiesRwz, Rs, R−
eq andRch are defined in (5d), (5c), (5b) and (5a) respectively.

�

Lemma 2:An upper bound on the secret-key rate is given by,

R+
key = sup

{(x ,t)}

{

βRs +R+
eq

}

, (8)

where the supremum is over all distributions over the randomvariables(x , t) that satisfy
t → u → v , the cardinality oft is at-most the cardinality ofu plus one, and

βRwz ≤ R+
ch. (9)

The quantitiesRs, Rwz, R+
eq andR+

ch are defined in (5c), (5d), (5e) and (5f) respectively.
Furthermore, it suffices to consider only those distributions where(x , t) are independent.

�

A. Reversely degraded parallel independent channels

The bounds in Lemmas 1 and 2 coincide for the case of reverselydegraded channels as
shown in section VI-A and stated in the following theorem.

Theorem 1:The secret-key-capacity for the reversely degraded parallel independent chan-
nels in Def. 2 is given by

Ckey = max
{(x1,...,xM ,t)}

{

βI(v ; t) +

M
∑

i=1

I(xi; yi|zi)

}

, (10)

where the random variables(x1, . . . , xM , t) are mutually independent,t → u → v , and

M
∑

i=1

I(xi; yi) ≥ β{I(u; t) − I(v ; t)} (11)

Furthermore, the cardinality oft obeys the same bounds as in Lemma 2.
�
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x1

x2

y1

z2

z1

y2

nr,1

nr,2 − ne,2

ne,1 − nr,1

ne,2

Fig. 2. An example of independent parallel and reversely degraded Gaussian channels. On the first channel, the eavesdropper
channel is noisier than the legitimate receiver’s channel while on the second channel the order of degradation is reversed.

B. Gaussian Channels and Sources

For the case of Gaussian sources and Gaussian channels, the secret-key capacity can be
achieved by Gaussian codebooks as established in section VI-B and stated below.

Corollary 1: The secret-key capacity for the case of Gaussian parallel channels and Gaus-
sian sources in subsection II-A.2 is obtained by optimizing(10) and (11) over independent
Gaussian distributions i.e., by selectingxi ∼ N (0, Pi) andu = t +d , for somed ∼ N (0, D),
independent oft and

∑n

i=1 Pi ≤ P , Pi ≥ 0, and0 < D ≤ 1.

CG
key = max

{Pi}M
i=1,D















β

2
log

(

1 + S

D + S

)

+
∑

i:1≤i≤M

σr,i≤σe,i

1

2
log

(

1 + Pi/σ
2
r,i

1 + Pi/σ2
e,i

)















, (12)

whereD,P1, . . . , PM also satisfy the following relation:

M
∑

i=1

1

2
log

(

1 +
Pi

σ2
r,i

)

≥ β

{

1

2
log

(

1

D

)

−
1

2
log

(

1 + S

D + S

)}

(13)

�

C. Remarks

1) Note that the secret-key capacity expression (10) exploits both the source and channel
uncertainties at the wiretapper. By setting either uncertainty to zero, one can recover
known results. WhenI(u; v) = 0, i.e., there is no secrecy from the source, the secret-
key-rate equals the wiretap capacity [19]. IfI(x ; y |z) = 0, i.e., there is no secrecy from
the channel, then our result essentially reduces to the result by Csiszar and Narayan [5],
that consider the case when the channel is a noiseless bit-pipe with finite rate.

2) In general, the setup of wiretap channel involves a tradeoff between information rate
and equivocation. The secret-key generation setup provides an operational significance
to this tradeoff. Note that the capacity expression (10) in Theorem 1 involves two terms.
The first termβI(t; v) is the contribution from the correlated sources. In general, this
quantity increases by increasing the information rateI(x ; y) as seen from (11). The
second term,I(x ; y |z) is the equivocation term and increasing this term, often comes at
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Fig. 3. Tradeoff inherent in the secret-key-capacity formulation. The solid curve is the secret-key-rate, which is thesum
of the two other curves. The dotted curve represents the source equivocation, while the dashed curve represents the channel
equivocation (18). The secret-key-capacity is obtained ata point between the maximum equivocation and maximum rate.

the expense of the information rate. Maximizing the secret-key rate, involves operating
on a certain intermediate point on the rate-equivocation tradeoff curve as illustrated by
an example below.
Consider a pair of Gaussian parallel channels,

y1 = a1x + nr,1, z1 = b1x + ne,1

y2 = a2x + nr,2, z2 = y2

(14)

wherea1 = 1, a2 = 2, andb1 = 0.5. Furthermore,u ∼ N (0, 1) and v = u + s, where
s ∼ N (0, 1) is independent ofu. The noise variables are all sampled from theCN (0, 1)
distribution and appropriately correlated so that the users are degraded on each channel.
A total power constraintP = 1 is selected and the bandwidth expansion factorβ equals
unity.
From Theorem 1,

Ckey = max
P1,P2,D

Req(P1, P2) +
1

2
log

2

1 +D
, (15)

such that,

Rwz(D) =
1

2
log

1

D
−

1

2
log

2

1 +D
(16)

≤
1

2

(

log
(

1 + a2
1P1

)

+ log(1 + a2
2P2)

)

, (17)

Req(P1, P2) =
1

2

(

log(1 + a2
1P1) − log(1 + b21P1)

)

. (18)

Fig. 3 illustrates the (fundamental) tradeoff between rateand equivocation for this
channel, which is obtained as we vary power allocation between the two sub-channels.
We also present the functionRsrc = I(t; v) which monotonically increases with the rate,
since larger the rate, smaller is the distortion in the source quantization. The optimal
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point of operation is between the point of maximum equivocation and maximum rate
as indicated by the maximum of the solid line in Fig. 3. This corresponds to a power
allocation(P1, P2) ≈ (0.29, 0.71) and the maximum value isRkey ≈ 0.6719.

D. Side information at the wiretapper

So far, we have focussed on the case when there is no side information at the wiretapper.
This assumption is valid for certain application such as biometrics, when the correlated sources
constitute successive measurements of a person’s biometric. In other applications, such as
sensor networks, it is more realistic to assume that the wiretapper also has access to a side
information sequence.

We consider the setup described in Fig. 1, but with a modification that the wiretapper
observes a source sequencewN , obtained byN− independent samples of a random variable
w . In this case the secrecy condition takes the form in (1). We only consider the case when
the sources and channels satisfy a degradedness condition.

Theorem 2:Suppose that the random variables(u, v ,w) satisfy the degradedness condition
u → v → w and the broadcast channel is also degraded i.e.,x → y → z . Then, the secret-
key-capacity is given by

Ckey = max
(x ,t)

{β(I(t; v) − I(t; w)) + I(x ; y |z)} , (19)

where the maximization is over all random variables(t, x) that are mutually independent,
t → u → v → w and

I(x ; y) ≥ β(I(u; t) − I(v ; t)) (20)

holds. Furthermore, it suffices to optimize over random variablest whose cardinality does
not exceed that ofu plus two.

�

E. Secret-key capacity with a public discussion channel

When public interactive communication is allowed as described in section II-B, we have
the following upper bound on the secret-key capacity.

Theorem 3:An upper bound on the secret-key capacity for source-channel setup with a
public discussion channel is

Ckey ≤ max
px

I(x ; y |z) + βI(u; v). (21)

The upper bound is tight when channel satisfies eitherx → y → z or y → x → z .
�

The presence of a public discussion channels allows us to decouple the source and channel
codebooks. We generate two separate keys — one from the source component using a Slepian-
Wolf codebook and one from the channel component using the key-agreement protocol
described in [1], [15].

The upper bound expression (21) in Theorem 3 is established using techniques similar to
the proof of the upper bound on the secret-key rate for the channel model [1, Theorem 3].
A derivation is provided in section VIII.

Fig. 4 illustrates the contribution of source and channel coding components for the case of
Gaussian parallel channels (14) consisting of (physically) degraded component channels. The
term I(u; v) is independent of the channel coding rate, and is shown by thehorizontal line.
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Fig. 4. Secret-key-rate in the presence of a public discussion channel in the Gaussian example (14). The solid curve is the
secret-key-rate, which is the sum of the two other curves. The horizontal line is the key rate from the source components.
Regardless of the channel rate, the rate is 0.5 bits/symbol.The dashed-dotted curve is the key-rate using the channelI(x ; y |z).

The channel equivocation rateI(x ; y |z) is maximized at the secrecy capacity. The overall key
rate is the sum of the two components. Note that unlike Fig. 3,there is no inherent tradeoff
between source and channel coding contributions in the presence of public discussion channel
and the design of source and channel codebooks is decoupled.

IV. A CHIEVABILITY : CODING THEOREM

We demonstrate the coding theorem in the special case whena = x andb = 0 in Lemma 1.
Accordingly we have that (5a) and (5b) reduce to

Rch = I(x ; y) (22a)

R−
eq = I(x ; y) − I(x ; z) (22b)

The more general case, can be incorporated by introducing anauxiliary channela → x and
superposition coding [4] as outlined in Appendix I. Furthermore, in our discussion below we
will assume that the distributionspt|u and px are selected such that, for a sufficiently small
but fixedδ > 0, we have

βRwz = Rch − 3δ. (23)

We note that the optimization over the joint distributions in Lemma 1 is over the region
βRwz ≤ Rch. If the joint distributions satisfy thatβRwz = α(Rch − 3δ) for someα < 1, one
can use the code construction below for a bock-lengthαn and then transmit an independent
message at rateR−

eq using a perfect-secrecy wiretap-code. This provides a rateof

α

(

β

α
Rwz +R−

eq

)

+ (1 − α)R−
eq = R−

eq + βRwz,

as required.
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W - Z   C o d e w o r d

E n c o d e r D e c o d e r

D e c o d e r

B i n   I n d e x
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W - Z  C o d e w o r d

xn yn

uN vN

kk

2N(I(t;u)−I(t;v)) bins
2N(t;v) cws/bin

Fig. 5. Source-Channel Code Design for secret-key distillation problem. The source sequenceu
N is mapped to a codeword

in a Wyner-Ziv codebook. This codeword determines the secret-key via the secret-key codebook. The bin index of the
codeword constitutes a message in the wiretap codebook.

A. Codebook Construction

Our codebook construction is as shown in the Fig. 5.
An intuition behind the codebook construction is first described. The wiretap channel

carries an ambiguity of2n{I(a;y |b)−I(a;z |b)} at the eavesdropper for each transmitted message.
Furthermore, each message only reveals the bin index. Henceit carries an additional am-
biguity of 2NI(v ;t) codeword sequences. Combining these two effects the total ambiguity is
2n{I(a;y |b)−I(a;z |b)+βI(v ;t)}. Thus a secret-key can be produced at the rateI(a; y |b)−I(a; z |b)+
βI(v ; t). This heuristic intuition is made precise below.

The coding scheme consists of three codebooks: Wyner-Ziv codebook, secret-key code-
book and a wiretap codebook that are constructed via a randomcoding construction. In our
discussion below we will be using the notion of strong typicality. Given a random variablet,
the set of all sequences of lengthN and type that coincides with the distributionpt is denoted
by TN

t . The set of all sequences whose empirical type is in anε-shell ofpt is denoted byTN
t,ε.

The set of jointly typical sequences are defined in an analogous manner. Given a sequence
uN of type TN

u , the set of all sequencesvN that have a joint type ofpu,v () is denoted by
TN

u,v(u
N). We will be using the following properties of typical sequences

|TN
t,ε| = exp(N(H(t) + oε(1))) (24a)

Pr(tN = tN ) = exp(−N(H(t) + oε(1))), ∀ tN ∈ TN
t,ε (24b)

Pr(tN ∈ TN
t,ε) ≥ 1 − oε(1), (24c)

whereoε(1) is a term that approaches zero asN → ∞ andε→ 0.
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E a v e s d r o p p e r
D e c o d e r

Z

E a v e s d r o p p e r  L i s t

S o u r c e  
C o d e w o r d s

S o u r c e - C h a n n e l  S e c r e c y

List Size:2n(I(y;a|b)−I(z ;a|b)

2NI(t;v) codewords per bin

Fig. 6. Equivocation at the eavesdropper through the source-channel codebook. The channel codebook induces an ambiguity
of 2n(I(a;y|b)−I(a;z|b)) among the codeword sequencesa

n when the decoder observesz
n. Each sequencean only reveals the

bin index of the Wyner-Ziv codeword. In induces an ambiguityof 2NI(t;v) at the eavesdropper, resulting in a total ambiguity
of 2n(βI(t;v)+I(a;y|b))−I(a;z|b).

For fixed, but sufficiently small constantsδ > 0 andη = δ/β > 0, let,

MWZ = exp(N(Rs − η)) (25a)

NWZ = exp(N(Rwz + 2η)) (25b)

MSK = exp(n(I(x ; z) − δ)) (25c)

NSK = exp(n(βRs +R−
eq − δ)) (25d)

Substituting (5a)-(5d) and (23) into (25a)-(25d) we have that

Ntot , MSK ·NSK = MWZ ·NWZ = exp(N(I(t; u) + η)) (26)

We construct the Wyner-Ziv and secret-key codebooks as follows. Randomly and indepen-
dently selectNtot sequences from the set oft−typical sequencesTN

t . Denote this setT .
Randomly and independently partition this set into the following codebooks3:

• Wyner-Zivcodebook withNWZ bins consisting ofMWZ sequences. Thejth sequence in
bin i is denoted bytN

ij,WZ.
• Secret-keycodebook withNSK bins consisting ofMSK sequences. Thejth sequence in

bin i is denoted bytN
ij,SK.

We define two functionsΦWZ : T → {1, . . . , NWZ} and ΦSK : T → {1, . . . , NSK} as
follows.

Definition 4: Given a codeword sequencetN , define two mappings
1) ΦWZ(tN ) = i, if ∃j ∈ [1,MWZ], such thattN = tN

ij,WZ.
2) ΦSK(tN) = i, if ∃j ∈ [1,MSK] such thattN = tN

ij,SK.
�

The channel codebook consists ofNWZ = exp(n(Rch − δ)) sequencesxn uniformly and
independently selected from the set ofx−typical sequencesT n

x . The channel encoding func-
tion maps messagei into the sequencexn

i , i.e., Φch : {1, . . . , NWZ} → X n is defined as
Φch(i) = xn

i .

3As will be apparent in the analysis, the only pairwise independence is required between the codebooks i.e.,∀t
N , t̂N ∈ T ,

Pr
`

ΦWZ(tN ) = ΦWZ(t̂N )|ΦSK(tN ) = ΦSK(t̂N )
´

= Pr
`

ΦWZ(tN ) = ΦWZ(t̂N )
´

= 1
NWZ
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B. Encoding

Given a source sequenceuN , the encoder produces a secret-keyk and a transmit sequence
xN as shown in Fig. 5.

• Find a sequencetN ∈ T such that(uN , tN) ∈ TN
ut,ε. Let E1 be the even that no suchtN

exists.
• Computeφ = ΦWZ(tN) andk = ΦSK(tN ). Declarek as the secret-key.
• Computexn

i = Φch(φ), and transmit this sequence overn−uses of the DMC.

C. Decoding

The main steps of decoding at the legitimate receiver are shown in Fig. 5 and described
below.

• Given a received sequenceyn, the sender looks for a unique indexi such that(xn
i , y

n) ∈
T n

xy ,ε. An error eventE2 happens ifxn
i is not the transmitted codeword.

• Given the observed source sequencevN , the decoder then searches for a unique index
j ∈ [1,MWZ] such that(tNij,WZ, v

N) ∈ TN
tv ,ε. An error eventE3 is declared if a unique

index does not exist.
• The decoder computeŝk = ΦSK(tNij,WZ) and declareŝk as the secret key.

D. Error Probability Analysis

The error event of interest isE = {k 6= k̂}. We argue that selectingn → ∞ leads to
Pr(E) → 0.

In particular, note thatPr(E) = Pr(E1 ∪ E2 ∪ E3) ≤ Pr(E1) + Pr(E2) + Pr(E3). We argue
that each of the terms vanishes withn→ ∞.

Recall thatE1 is the event that the encoder does not find a sequence inT typical with uN .
SinceT hasexp(N(I(u; t) + η)) sequences randomly and uniformly selected from the set
TN

t , we have thatPr(E1) → 0.
Since the number of channel codewords equalsNWZ = exp(n(I(x ; y)− δ)), and the

codewords are selected uniformly at random from the setT n
x ,ε, the error eventPr(E2) → 0.

Finally, since the number of sequences in each bin satisfiesMWZ = exp(N(I(t; v) − η)),
joint typical decoding guarantees thatPr(E3) → 0.

E. Secrecy Analysis

In this section, that for the coding scheme discussed above,the equivocation at the eaves-
dropper is close (in an asymptotic sense) toRkey.

First we establish some uniformity properties which will beused in the subsequent analysis.
1) Uniformity Properties: In our code constructionΦWZ satisfies some useful properties

which will be used in the sequel.
Lemma 3:The random variableΦWZ in Def. 4 satisfies the following relations

1

n
H(ΦWZ) = βRWZ + oη(1) (27a)

1

n
H(tN |ΦWZ) = βI(t; v) + oη(1) (27b)

1

n
H(ΦWZ|z

n) = I(x ; y) − I(x ; z) + oη(1) (27c)
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whereoη(1) vanishes to zero as we takeη → 0 andN → ∞ for eachη.
Proof: Relations (27a) and (27b) are established below by using theproperties of typical

sequences (c.f. (24a)-(24c)). Relation (27c) follows fromthe secrecy analysis of the channel
codebook when the message isΦWZ. The details can be found in e.g., [19].

To establish (27a), define the functionΓWZ : T → {1, . . . ,MWZ} to identify the position
of the sequencetN ∈ T in a given bin i.e.,ΓWZ(tN

ij,WZ) = j and note that,

Pr(ΓWZ = j,ΦWZ = i) ≤
∑

uN∈Tu,t,η(tN
ij,WZ)

Pr(uN) (28)

=
∑

uN∈Tu,t,η(tN
ij,WZ)

exp(−N(H(u) + oη(1))) (29)

= exp(N(H(u|t) + oη(1))) exp(−N(H(u) + oη(1))) (30)

= exp(−N(I(t; u) + oη(1))) (31)

where (28) follows from the construction of the joint-typicality encoder, (29) from (24b)
and (30) from (24a). Marginalizing (28), we have that

Pr(ΦWZ = i) =

MWZ
∑

j=1

Pr(ΓWZ = j,ΦWZ = i)

≤MWZ exp(−N(I(t; u) + oη(1)))

= exp(−N(I(t; u) − I(t; v) + oη(1)))

= exp(−N(RWZ + oη(1))) (32)

Eq. (27a) follows from (32) and the continuity of the entropyfunction. Furthermore, we
have from (31) that

1

N
H(ΦWZ,ΓWZ) = I(t; u) + oη(1). (33)

The relation (27b) follows by substituting (27a), since

1

N
H(tN |ΦWZ) =

1

N
H(ΓWZ|ΦWZ) =

1

N
H(ΓWZ,ΦWZ) −

1

N
H(ΦWZ) = I(t; v) + oη(1).

(34)

Lemma 4:The construction of the secret-key codebook and Wyner-Ziv codebook is such
that the eavesdropper can decode the sequencetN if it is revealed the secret-keyΦSK = k in
addition to its observed sequencezn. In particular

1

n
H(tN |zn, k) = oη(1). (35)

Proof: We show that there exists a decoding functiong : Zn × {1, 2, . . . , NSK} → T
that such thatPr(tN 6= g(zn, k)) → 0 asn → ∞. In particular, the decoding functiong(·, ·)
searches for the sequences in the bin associated withk in the secret-key codebook, whose
bin-index in the Wyner-Ziv codebook maps to a sequencexn

i jointly typical with the received
sequencezn. More formally,

• Given zn, the decoder constructs a the set of indicesIx = {i : (xn
i , z

n) ∈ T n
xz ,ε}.
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• Givenk, the decoder constructs a set of sequences,S =
{

tN
kj,SK : ΦWZ(tN

kj,SK) ∈ Ix, 1 ≤ j ≤MSK,
}

.
• If S contains a unique sequencet̂N , it is declared to be the required sequence. An error

event is defined as

J = {t̂N 6= tN}

=
{

∃j, 1 ≤ j ≤MSK,ΦWZ(tN
k,j,SK) ∈ Ix, j 6= j0

}

, (36)

where j0 is the index of the sequencetN in bin k of the secret-key codebook, i.e.,
tN
kj0,SK = tN .

It suffices to show thatPr(J ) → 0 asn→ ∞.
We begin by defining the following events:
• The event that the sequencetN /∈ S, which is equivalent to

J0 =
{

ΦWZ(tN
k,j0,SK) /∈ Ix

}

.

From (24c) we have thatPr(J0) = oη(1).
• For eachj = 1, 2, . . .MSK, j 6= j0 the eventJj that the sequencetN

kjSK ∈ S,

Jj =
{

ΦWZ(tN
k,j,SK) ∈ Ix

}

.

• For eachj = 1, 2, . . .MSK, j 6= j0, define the collision event thattN
kj,SK andtN

kj0,SK belong
to the same bins in the in the Wyner-Ziv codebook

Jcol,j =
{

ΦWZ(tN
kj,SK) = ΦWZ(tN

kj0,SK)
}

.

Now we upper bound the error probability in terms of these events.

Pr(J ) ≤ Pr(J |J c
0 ) + Pr(J0)

≤
MSK
∑

j=1,j 6=j0

Pr(Jj|J
c
0 ) + oη(1), (37)

Now observe that

Pr(Jj|J
c
0 ) = Pr(Jj ∩ J c

col,j|J
c
0 ) + Pr(Jj ∩ Jcol,j|J

c
0 ) (38)

≤ Pr(Jj ∩ J c
col,j|J

c
0 ) + Pr(Jcol,j|J

c
0 )

≤ Pr(Jj|J
c
0 ∩ J c

col,j) + Pr(Jcol,j|J
c
0 ). (39)

We bound each of the two terms in (39). The first term is conditioned on the event that the
sequencestN

kj,SK and tN
kj0,SK are assigned to independent bins in the Wyner-Ziv codebook.

This event is equivalent to the event that a randomly selected sequencexN belongs to the
typical setIx. The error event is bounded as [2]

Pr(Jj|J
c
0 ∩ J c

col,j) ≤ exp(−n(I(x ; z) − 3ε)). (40)

To upper bound the second term,

Pr(Jj|J
c
0 ) = Pr(Jj) (41)

= exp(−n(βRWZ + 2δ)) (42)

= exp(−n(I(x ; y) − δ)) (43)

where (41) follows from the fact the eventJ0 is due to the atypical channel behavior and
is independent of the random partitioning event that induces Jj, (42) follows from the fact
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that each sequence is independently assigned to one ofexp{n(βRWZ +2δ)} bins in the code
construction and (43) follows via relation (23).

Substituting (43) and (40) into (39), we have

Pr(Jj|J
c
0 ) ≤ exp(−n(I(x ; z) − 3ε)) + exp(−n(I(x ; y) − δ))

≤ exp(−n(I(x ; z) − 4ε)), n ≥ n0, (44)

where we use the fact thatI(x ; y) > I(x ; z) in the last step so that the requiredn0 exists.
Finally substituting (44) into (37) and using relation (25c) for MSK, we have that

Pr(J ) ≤ exp(−n(δ − 4ε)) + oη(1), (45)

which vanishes withn, whenever the decoding function selectsε < δ/4.
2) Equivocation Analysis:It remains to show that the equivocation rate at the eavesdropper

approaches the secret-key rate asn→ ∞, which we do below.

H(k|zn) = H(k, tN |zn) −H(tN |zn, k)

= H(tN |zn) −H(tN |zn, k) (46)

= H(tN ,ΦWZ|z
n) −H(tN |zn, k) (47)

= H(tN |ΦWZ, z
n) +H(ΦWZ|z

n) −H(tN |zn, k)

= H(tN |ΦWZ) +H(ΦWZ|z
n) −H(tN |zn, k), (48)

= nβI(t; v) + n{I(x ; y)− I(x ; z)} + noη(1) (49)

= n(Rkey + oη(1)), (50)

where (46) and (47) follow from the fact thatΦWZ is a deterministic function oftN and (48)
follows from the fact thattN → ΦWZ → zn holds for our code construction. and (49) step
follows from (27b) and (27c) in Lemma 3 and Lemma 4.

V. PROOF OF THEUPPER BOUND(LEMMA 2)

Given a sequence of(n,N) codes that achieve a secret-key-rateRkey, there exists a sequence
εn, such thatεn → 0 asn→ ∞, and

1

n
H(k|yn, vN) ≤ εn (51a)

1

n
H(k|zn) ≥

1

n
H(k) − εn. (51b)

We can now upper bound the rateRkey as follows.

nRkey = H(k)

= H(k|yn, vN) + I(k; yn, vN)

≤ nεn + I(k; yn, vN) − I(k; zn) + I(k; zn) (52)

≤ 2nεn + I(k; yn, vN) − I(k; zn) (53)

= 2nεn + I(k; yn) − I(k; zn) + I(k; vN |yn)

≤ 2nεn + I(k; yn) − I(k; zn) + I(k, yn; vN) (54)

where (52) and (53) follow from (51a) and (51b) respectively.
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Now, let J be a random variable uniformly distributed over the set{1, 2, . . . , N} and
independent of everything else. Letti = (k, yn, vN

i+1, u
i−1
1 ) andt = (k, yn, vN

J+1, u
J−1
1 , J), and

vJ be a random variable that conditioned onJ = i has the distribution ofpvi
. Note that since

vN is memoryless,vJ is independent ofJ and has the same marginal distribution asv . Also
note thatt → uJ → vJ holds.

I(k, yn; vN) =

n
∑

i=1

I(k, yn; vi|v
n
i+1)

≤
N

∑

i=1

I(k, yn, vn
i+1; vi)

≤
N

∑

i=1

I(k, yn, vn
i+1, u

i−1
1 ; vi)

= NI(k, yn, vn
J+1, u

J−1
1 ; vJ |J)

= NI(k, yn, vn
J+1, u

J−1
1 , J ; vJ) − I(J ; vJ)

= NI(t; v) (55)

where (55) follows from the fact thatvJ is independent ofJ and has the same marginal
distribution asv .

Next, we upper boundI(k; yn) − I(k; zn) as below. Letpxi
denote the channel input

distribution at timei and let pyi,zi
denote the corresponding output distribution. Letpx =

1
n

∑n

i=1 pxi
and letpy andpz be defined similarly.

I(k; yn) − I(k; zn) ≤ I(k; yn|zn)

≤ I(xn; yn|zn) (56)

≤
n

∑

i=1

I(xi; yi|zi) (57)

≤ nI(x ; y |z), (58)

where (56) follows from the Markov conditionk → xn → (yn, zn) and (57) follows from
the fact that the channel is memoryless and (58) follows fromJensen’s inequality since the
term I(x ; y |z) is concave in the distributionpx (see e.g., [13, Appendix-I]).

Combining (58) and (55) we have that

Rkey ≤ I(x ; y |z) + βI(v ; t), (59)

thus establishing the first half of the condition in Lemma 2. It remains to show that the
condition

β{I(t; u) − I(t; v)} ≤ I(x ; y)

is also satisfied. SinceuN → xn → yn holds, we have that

nI(x ; y) ≥ I(xn; yn) (60)

≥ I(uN ; yn) (61)

≥ I(uN ; yn, k) − I(vN ; yn, k) − nεn, (62)
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where the last inequality holds, since

I(uN ; k|yn) − I(vN ; yn, k) = −I(vN ; yn) + I(uN ; k|yn) − I(vN ; k|yn)

≤ I(uN ; k|yn) − I(vN ; k|yn)

= H(k|yn, vN) −H(k|yn, uN)

≤ nεn,

where the last step holds via (51a) and the fact thatH(k|yn, uN) ≥ 0.
Continuing (62), we have

nI(x ; y) ≥ I(uN ; yn, k) − I(vN ; yn, k) − nεn (63)

=

N
∑

i=1

{I(ui; y
n, k, ui−1

1 vn
i+1) − I(vi; y

n, k, ui−1
1 vn

i+1)} + nεn (64)

= N{I(uJ ; yn, k, uJ−1
1 vn

J+1|J) − I(vJ ; yn, k, uJ−1
1 vn

J+1|J) + εn}

= N{I(uJ ; t) − I(vJ ; t) + I(vJ ; J) − I(uJ ; J) + εn}

= N{I(u; t) − I(v ; t) + εn} (65)

where (64) follows from the well known chain rule for difference between mutual information
expressions (see e.g., [9]), (65) again follows from the fact that the random variablesvJ and
uJ are independent ofJ and have the same marginal distribution asv andu respectively.

The cardinality bound ont is obtained via Caratheordory’s theorem and will not be
presented here.

Finally, since the upper bound expression does not depend onthe joint distribution of(t, x),
it suffices to optimize over those distributions where(t, x) are independent.

VI. REVERSELY DEGRADED CHANNELS

A. Proof of Theorem 1

First we show that the expression is an upper bound on the capacity. From Lemma 2, we
have that

Ckey ≤ max
(x ,t)

I(x ; y |z) + βI(t; v),

where we maximize over those distributions where(x , t) are mutually independent,t → u →
v , and

I(x ; y) ≥ β(I(t; u) − I(t; v)).

For the reversely degraded parallel independent channels,note that

I(x ; y) ≤
M

∑

i=1

I(xi; yi)

I(x ; y |z) ≤
M

∑

i=1

I(xi; yi|zi),

with equality when(x1, . . . , xM) are mutually independent. Thus it suffices to take(x1, . . . , xM)
to be mutually independent, which establishes that the proposed expression is an upper bound
on the capacity.



19

For achievability, we propose a choice of auxiliary random variables(a, b) in Lemma 1,
such that the resulting expression reduces to the capacity.In particular, assume without loss
in generality that for the firstP channels we have thatxi → yi → zi and for the remaining
channels we have thatxi → zi → yi. Let a = (x1, x2, . . . , xM) and b = (xP+1, . . . , xM) where
the random variables{xi} are mutually independent. It follows from (5a) and (5b) that

Rch =

M
∑

i=1

I(xi; yi) (66)

R−
eq =

P
∑

i=1

I(xi; yi|zi) =

M
∑

i=1

I(xi; yi|zi), (67)

where the last equality follows since forxi → zi → yi, we have thatI(xi; yi|zi) = 0.
Substituting in (6) and (7) we recover the capacity expression.

B. Gaussian Case (Corollary 1)

For the Gaussian case we show that Gaussian codebooks achieve the capacity as in Corol-
lary 1.

Recall that the capacity expression involves maximizing over random variablesx = (x1, . . . , xM),
and t → u → v ,

Ckey =
∑

i

I(xi; yi|zi) + βI(t; v) (68)

subjected to the constraint thatE[
∑M

i=1 x2
i ] ≤ P and

∑

i

I(xi; yi) ≥ β{I(t; u) − I(t; v)}. (69)

Let us first fix the distributionpx and upper bound the objective function (68). LetR ,
1
β

∑M

i=1 I(xi; yi) and v = u + s, wheres ∼ N (0, S) is independent ofu. We will use the
conditional entropy power inequality

exp(2h(u + s|t)) ≥ exp(2h(u|t)) + exp(2h(s)) (70)

for any pair of random variables(t, u) independent ofs. The equality happens if(u, t) are
jointly Gaussian.

Note that we can express (69) as

R + h(v) − h(u) ≥ h(v |t) − h(u|t) (71)

= h(u + s|t) − h(u|t) (72)

≥
1

2
log (exp(2h(u|t)) + 2πeS) − h(u|t) (73)

Letting

h(u|t)) =
1

2
log 2πeD, (74)

we have that

D ≥
S

exp(2(R + h(v) − h(u))) − 1
. (75)
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Rearranging we have that

M
∑

i=1

I(xi; yi) ≥
β

2

[

log

(

1 +
S

D

)

− log(1 + S)

]

. (76)

The termI(t; v) in the objective function (68) can be upper bounded as

I(t; v) = h(v) − h(v |t)

= h(v) − h(u + s|t)

≤ h(v) −
1

2
log(exp(2h(u|s)) + 2πeS) (77)

=
1

2
log

1 + S

D + S
(78)

where (77) follows by the application of the EPI (70) and (78)follows via (74). Thus the
objective function (68) can be expressed as

Ckey =
∑

i

I(xi; yi|zi) +
β

2
log

1 + S

D + S
, (79)

whereD satisfies (75).
It remains to show that the optimalx has a Gaussian distribution. Note that the set of

feasible distributions forx is closed and bounded and hence an optimum exists. Also ifpx

is any optimum distribution, we can increase bothR and I(xi; yi|zi) by replacingpx with a
Gaussian distribution (see e.g., [14]) with the same secondorder moment. Since the objective
function is increasing in both these terms, it follows that aGaussianpx also maximizes the
objective function (68).

VII. SIDE INFORMATION AT THE WIRETAPPER

We now provide an achievability and a converse for the capacity stated in Theorem 2

A. Achievability

Our coding scheme is a natural extension of the case whenw = 0.
Since we are only considering degraded channels note thatRch andR−

eq in (5a) and (5b)
are defined as

Rch = I(x ; y) (80)

R−
eq = I(x ; y) − I(x ; z) = I(x ; y |z). (81)

Furthermore, we replaceRs in (5c) with

Rs = I(t; v) − I(t; w) (82)

and the secret-key rate in (6) is

RLB = β{I(t; v) − I(t; w)} + I(x ; y |z). (83)

The construction of Wyner-Ziv codebook and wiretap codebook in Fig. 5 is as discussed
in section IV-A, IV-B,and IV-C. The Wyner-Ziv codebook consists of ≈ 2NI(t;u) codeword
sequences sampled uniformly from the setTN

t . These sequences are uniformly and randomly
partitioned into≈ 2N{I(t;u)−I(t;v)} bins so that there are≈ 2NI(t;v) sequences in each bin.
The bin index of a codeword sequence,ΦWZ, forms a message for the wiretap codebook as
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before. The construction of the secret key codebook is modified to reflect the side informa-
tion sequence at the eavesdropper. In particular we construct the secret-key codebook with
parameters

MSK = exp (n(I(x ; z) + βI(w ; t)) − δ) (84)

NSK = exp
(

n(βRs +R−
eq − δ)

)

(85)

andRs is defined in (82).

B. Secrecy Analysis

We show that the equivocation condition at the eavesdropper(1) holds for the code con-
struction. This is equivalent to showing that

1

n
H(k|wN , zn) = β(I(t; v) − I(t; w)) + I(x ; y |z) + oη(n), (86)

which we will now do.
We first provide an alternate expression for the left hand side in (86).

H(k|wN , zn) = H(k, tN |wN , zn) −H(tN |k,wN , zn) (87)

= H(tN |wN , zn) −H(tN |k,wN , zn)

= H(tN ,ΦWZ|w
N , zn) −H(tN |k,wN , zn) (88)

= H(ΦWZ|w
N , zn) +H(tN |ΦWZ,w

N) −H(tN |k,wN , zn) (89)

where (88) follows from the fact thatΦWZ is a deterministic function oftN , while (89) follows
from the fact thattN → (wN ,ΦWZ) → zn forms a Markov chain. The right hand side in (86)
is established by showing that

1

n
H(ΦWZ|w

N , zn) ≥ I(x ; y |z) + oη(1) (90a)

1

n
H(tN |ΦWZ,w

N) = β(I(t; v) − I(t; w)) + oη(1) (90b)

1

n
H(tN |k,wN , zn) = oη(1). (90c)

To interpret (90a), recall thatΦWZ is the message to the wiretap codebook. The equivocation
introduced by the wiretap codebook1

n
H(ΦWZ|zn) equalsI(x ; y |z). Eq. (90a) shows that if

in addition tozn, the eavesdropper has access towN , a degraded source, the equivocation
still does not decrease (except for a negligible amount). The intuition behind this claim is
that since the bin indexΦWZ is almost independent ofvN (see Lemma 5 below), it is also
independent ofwN due to the Markov condition.

Eq. (90b) shows that the knowledge ofwN reduces the list oftN sequences in any bin
from exp(N(I(t; v))) to exp(N(I(t; v) − I(t; w))), while (90c) shows that for the code
construction, the eavesdropper, if revealed the secret-key, can decodetN with high probability.

To establish (90a),
1

n
H(ΦWZ|w

N , zn) ≥
1

n
H(ΦWZ|z

n, vN) (91)

=
1

n
H(ΦWZ|z

n) −
1

n
I(ΦWZ; vN |zn)

≥ I(x ; y |z) + oη(1) −
1

n
I(ΦWZ; vN |zn), (92)

≥ I(x ; y |z) + oη(1) −
1

n
I(ΦWZ; vN), (93)
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where (91) follows from the fact thatwN → vN → (ΦWZ, z
n), (92) from Lemma 3 and (93)

from the fact thatvN → ΦWZ → zn so that

1

n
I(ΦWZ; vN |zn) ≤

1

n
I(ΦWZ; vN). (94)

Thus we need to show the following.
Lemma 5:

1

n
I(ΦWZ; vN) ≤ oη(1). (95)

Proof: From Lemma 3 note that

1

N
H(ΦWZ) = I(t; u) − I(t; v) + oη(1)

and hence we need to show that
1

N
H(ΦWZ|v

N) = I(t; u) − I(t; v) + oη(1)

as we do below.
1

N
H(ΦWZ|v

N) =
1

N
H(ΦWZ, t

N |vN) −
1

N
H(tN |vN ,ΦWZ)

=
1

N
H(tN |vN) + oη(1) (96)

Where (96) follows since each bin hasMWZ = exp (N(I(t; v) − η)) sequences, (from stan-
dard joint typicality arguments) we have that

1

N
H(tN |vN ,ΦWZ) = oη(1). (97)

Finally by substitutinga = v , b = u and c = t and R = I(t; u) + η, in Lemma 6 in
Appendix II we have that

1

N
H(tN |vN) = I(t; u) − I(t; v) + oη(1).

This completes the derivation of (95).

To establish (90b), we again use Lemma 6 in Appendix II, witha = w , b = u andc = t

andR = I(t; v)−η. Finally, to establish (90c), we construct a decoder as in section IV-E that
searches for a sequencetN

kj such thatΦWZ(tN
kj) ∈ Ix and which is also jointly typical with

wN . Since there areexp{n(βI(w ; t)+ I(x ; z)− η)} sequences in the set, we can show along
the same lines as in the proof of Lemma 4 thattN can be decoded with high probability
given (k, zn,wN). The details will be omitted.
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C. Converse

Suppose there is a sequences of(n,N) codes that achieves a secret key (k) rate ofR, and
β = N/n. Then from Fano’s inequality,

H(k|yn, vN) ≤ nεn,

and from the secrecy constraint.

1

n
I(k; zn,wN) ≤ εn.

Combining these inequalities, we have that,

nRkey ≤ I(k; yn, vN) − I(k; zn,wN) + 2nεn

≤ I(k; yn, vN | zn,wN) + 2nεn

≤ h(yn | zn) + h(vN | wN ) − h(yn | zn,wN , k) − h(vN | yn, zn,wN , k) + 2nεn

≤ h(yn | zn) + h(vN | wN ) − h(yn | zn,wN , k, xn) − h(vN | yn, zn,wN , k, ) + 2nεn

= h(yn | zn) + h(vN | wN) − h(yn | zn, xn) − h(vN | yn, zn,wN , k, ) + 2nεn (98)

≤
n

∑

i=1

I(xi; yi | zi) + h(vN | wN) − h(vN |yn,wN , k) + 2nεn (99)

≤ nI(x ; y | z) + h(vN | wN) − h(vN |yn,wN , k) + 2nεn (100)

where the (98) follows from the fact that(wN , k) → (zn, xn) → yn, and (99) follows from the
Markov conditionzn → (yn,wn, k) → vN that holds for the degraded channel, while (100)
follows from the fact thatI(x ; y |z) is a concave function ofpxi

(see e.g., [13, Appendix-I])
and we selectpx(·) = 1

n

∑n

i=1 pxi
(·). Now, let ti = (k, un

i+1v
i−1, yn), J be a random variable

uniformly distributed over the set[1, 2, . . . n] and t = (J, k, un
J+1v

J−1, yn) we have that

h(vN |yn,wN , k) =
N

∑

i=1

h(vi|v
i−1, yn,wN , k)

≥
N

∑

i=1

h(vi|v
i−1, yn,wN , uN

i+1, k)

=

N
∑

i=1

h(vi|v
i−1, yn,wi, u

N
i+1, k) (101)

= N · h(vJ |t,wJ)

where we have used the fact that(w i−1,wN
i+1) → (v i−1, yn,wi, u

N
i+1, k) → vi which can be

verified as follows

p
(

vi | wi,w
i−1,wN

i+1, v
i−1, uN

i+1, y
n, k

)

=
∑

ui=u

p
(

vi | wi, ui = u,w i−1,wN
i+1, v

i−1, uN
i+1, y

n, k
)

p
(

ui = u | wi,w
i−1,wN

i+1, v
i−1, uN

i+1, y
n, k

)

=
∑

ui=u

p (vi | wi, ui = u) p
(

ui = u | wi, v
i−1, uN

i+1, y
n, k

)

(102)

=p
(

vi | wi, v
i−1, uN

i+1, y
n, k

)

,
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where (102) follows from the fact that since the sequencevN is sampled i.i.d. , we have that

vi → (ui,wi) → (w i−1,wN
i+1, v

i−1, uN
i+1, y

n, k)

and sinceu → v → w , it follows that

ui → (v i−1, uN
i+1, y

n,wi, k) → (w i−1,wN
i+1).

Since,vJ andwJ are both independent ofJ , we from (100) that

Rkey ≤ I(x ; y |z) + βI(t; v |w) + 2εn.

Finally, using the steps between (63)-(65) as in the converse for the case whenw = 0, we
have that

I(x ; y) ≥ β(I(t; u) − I(t; v)), (103)

which completes the proof.

VIII. PUBLIC DISCUSSION CHANNEL

We establish the upper bound on the secret key capacity in thepresence of interactive
communication over a public discussion channel.

Proof:
First from Fano’s inequality we have the following,

nR = H(k) (104)

= H(k|l) + I(k; l) (105)

≤ nεn + I(k; l) (106)

where the last inequality follows from Fano’s inequality. Also from the secrecy constraint we
have that

1

n
I(k;φk, ψk, zn) ≤ εn,

which results in the following

nR ≤ nεn + I(k; l , ψk, φk, zn) (107)

≤ 2nεn + I(k; l |ψk, φk, zn) (108)

≤ 2nεn + I(mx, u
N ; my , v

N , yn|ψk, φk, zn), (109)

where the last step follows from the data-processing inequality sincek = K(mx, u
N , ψk) and

l = L(my , v
N , yn, φk).

Using the chain rule, we have that

I(mx, u
N ; my , v

N , yn|ψk, φk, zn) (110)

= I(mx, u
N ; my , v

N , yn, ψk, φk, zn) − I(mx, u
N ;ψk, φk, zn) (111)

= I(mx, u
N ; my , v

N , ψi1−1, φi1−1) +
n

∑

j=1

Fj +Gj

− I(mx, u
N ;ψi1−1, φi1−1) −

n
∑

j=1

F̂j + Ĝj , (112)
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where for eachj = 1, 2, . . . , n we defineFj = I(mx, u
N ; yj, zj|my , v

N , y j−1, z j−1, φij−1, ψij−1),
Gj = I(mx, u

N ;φij+1, . . . , φij+1−1, ψij+1, . . . , ψij+1−1|my , v
N , y j, z j, φij−1, ψij−1), and F̂j =

I(mx, u
N ; zj |z j−1, ψij−1, φij−1), Ĝj = I(mx, u

N ;φij+1, . . . , φij+1−1, ψij+1, . . . , ψij+1−1|z j, φij−1, ψij−1).
We now bound the expression in (112). First note that

I(mx, u
N ; my , v

N , ψi1−1, φi1−1) − I(mx, u
N ;ψi1−1, φi1−1)

= I(mx, u
N ; my , v

N |ψi1−1, φi1−1)

≤ I(mx, u
N , ψi1−1; my , v

N |ψi1−2, φi1−1)

= I(mx, u
N ; my , v

N |ψi1−2, φi1−1)

≤ I(mx, u
N ; my , v

N , φi1−1|ψ
i1−2, φi1−2)

= I(mx, u
N ; my , v

N |ψi1−2, φi1−2)

where the third and fifth step follow from the fact thatψi1−1 = Ψi1−1(mx, u
N , φi1−2) and

φi1−1 = Φi1−1(my , v
N , ψi1−2). Recursively continuing we have that

I(mx, u
N ; my , v

N |ψi1−1, φi1−1) ≤ I(mx, u
N ; my , v

N) = I(uN ; vN) = NI(u; v) (113)

where we use the facts thatmx → uN → vN → my and that(uN , vN) are discrete and
memoryless.

Also note that

Fj − F̂j (114)

= I(mx, u
N ; yj, zj |my , v

N , y j−1, z j−1, φij−1, ψij−1) − I(mx, u
N ; zj|z

j−1, ψij−1, φij−1)

= H(yj, zj |my , v
N , y j−1, z j−1, φij−1, ψij−1) −H(yj, zj|my , v

N , y j−1, z j−1, φij−1, ψij−1,mx, u
N)

−H(zj|z
j−1, ψij−1, φij−1) +H(zj|z

j−1, ψij−1, φij−1,mx, u
N)

= H(yj, zj |my , v
N , y j−1, z j−1, φij−1, ψij−1) −H(yj, zj|xj) −H(zj|z

j−1, ψij−1, φij−1) +H(zj |xj)
(115)

≤ H(yj|z
j, ψij−1, φij−1) −H(yj|zj, xj)

≤ I(xj; yj|zj), (116)

where (115) follows from the fact thatxj = Xj(mx, u
N , ψij−1) and that since the channel

is memoryless(mx,my , u
N , vN , φij−1, ψij−1, y j−1, z j−1) → xj → (yj, zj) holds. The last two

steps follow from the fact that conditioning reduces entropy.
Finally to upper boundGj − Ĝj,

Gj − Ĝj

= I(mx, u
N ;φij+1, . . . , φij+1−1, ψij+1, . . . , ψij+1−1|my , v

N , y j, z j, φij−1, ψij−1)

− I(mx, u
N ;φij+1, . . . , φij+1−1, ψij+1, . . . , ψij+1−1|z

j, φij−1, ψij−1)

= I(mx, u
N ; my , v

N , y j, φij+1, . . . , φij+1−1, ψij+1, . . . , ψij+1−1|z
j, φij−1, ψij−1)

− I(mx, u
N ; my , v

N , y j|z j, φij−1, ψij−1)−I(mx, u
N;φij+1, . . . , φij+1−1, ψij+1, . . . , ψij+1−1|z

j , φij−1,ψij−1)

= I(mx, u
N ; my , v

N , y j|φij+1−1, ψij+1−1, z j) − I(mx, u
N ; my , v

N , y j|φij−1, ψij−1, z j)
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Furthermore sinceφij+1−1 = Φij+1−1(mx, u
N , ψij+1−2) andψij+1−1 = Ψij+1−1(my , v

N , φij+1−2)
we have that

I(mx, u
N ; my , v

N , y j|φij+1−1, ψij+1−1, z j)

≤ I(mx, u
N , φij+1−1; my , v

N , y j|φij+1−2, ψij+1−1, z j)

= I(mx, u
N ; my , v

N , y j|φij+1−2, ψij+1−1, z j)

≤ I(mx, u
N ; my , v

N , y j, ψij+1−1|φ
ij+1−2, ψij+1−2, z j)

= I(mx, u
N ; my , v

N , y j, |φij+1−2, ψij+1−2, z j)

Continuing this process we have that

I(mx, u
N ; my , v

N , y j|φij+1−1, ψij+1−1, z j) ≤ I(mx, u
N ; my , v

N , y j|φij−1, ψij−1, z j)

and thus
Gj − Ĝj ≤ 0. (117)

Substituting (113), (116) and (117) into (112) we have that

nR ≤
n

∑

j=1

I(xj; yj|zj) +NI(u; v) + 2nεn (118)

≤ max
px

nI(x ; y |z) +NI(u; v) + 2nεn (119)

thus yielding the stated upper bound.

IX. CONCLUSIONS

In this paper we introduced a secret-key agreement technique that harnesses uncertainties
from both sources and channels. Applications of sensor networks and biometric systems
motivated this setup.

We first consider the case when the legitimate terminals observe a pair of correlated sources
and communicate over a wiretap channel for generating secret keys. The secret-key capacity is
bounded by establishing upper and lower bounds. The lower bound is established by providing
a coding theorem that combines ideas from source and channelcoding. Its optimality is
established when the wiretap channel consists of parallel,independent and degraded channels.
The lower bound in general involves us to operate at a point onthe wiretap channel that
balances the contribution of source and channel contributions and this illustrated for the
Gaussian channels.

In addition we also establish the capacity when the wiretapper has access to a source
sequence which is a degraded version of the source sequence of the legitimate receiver. Fur-
thermore the case when a public discussion channel is available for interactive communication
is also studied and an upper bound on the secret-key capacityis provided. For the practically
important case, when the wiretap channel consists of “independent noise” for the legitimate
receiver and the discussion channel allows us to separatelygenerate keys from source and
channel components without loss of optimality.

In terms of future work, there can be many fruitful avenues toexplore for secret-key distilla-
tion in a joint-source-channel setup. One can consider multi-user extensions of the secret-key
generation problem along the lines of [6] and also consider more sophisticated channel models
such as the compound wiretap channels, MIMO wiretap channels and wiretap channels with
feedback and/or side information. Connections of this setup to wireless channels, biometric
systems and other applications can also be interesting.
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APPENDIX I
EXTENSION OFLEMMA 1 TO GENERAL (a, b)

We extend the coding theorem in section IV for Lemma 1 to the case of general(a, b).
We focus on the case whena = x . The general case then follows by further considering the

auxiliary channela → x , sampling the codewords from the typical setT n
a and then passing

each symbol ofan through an auxiliary channelpx |a(·).
Our extension involves using a superposition code as discussed below. Let us defineRa =

I(x ; y |b) and Rb = I(b; y). Since b → x → y , we have thatRb + Ra = I(x ; y). We
first generate a codebookCb with Nb = exp (n(Rb − δb)) sequences sampled uniformly
from the setT n

b . For each sequencebn
i ∈ Cb, we generate a codebookCa(b

n
i ) by selecting

Na = exp(n(I(x ; y |b) − δa)) sequences uniformly at random from the setT n
x ,b(b

n
i ).

Selectδa > 0 andδb > 0 as arbitrary constants such thatδa + δb = δ, which satisfies (23).
Note that we haveNWZ = Na·Nb. We define an encoding functions:ΦWZ,b : {1, 2, . . . , Nb} →
Cb and Φi

WZ,a : {1, 2, . . . , Na} → Ca(b
n
i ) as a mapping from the messages to respective

codewords in the codebooks.
The construction of the Wyner-Ziv codebook and the secret-key codebook is via random

partitioning along the lines in section IV-A — the constantsMWZ andNWZ are as given
in (25a) and (25b) respectively while

MSK = exp (n(I(b; y) + I(x ; z |b) − δ)) , (120a)

NSK = exp (n(βI(t; v) + I(x ; y |b) − I(x ; z |b) − δ)) . (120b)

The encoding function is defined as follows: given a sequenceuN , as in section IV-B, a
jointly typical sequencetN ∈ T is selected and the bin index and secret-key are computed
via the mappingsΦWZ(tN ) and ΦSK(tN) respectively in Def. 4. The bin index is split into
two indicesΦa ∈ {1, 2, . . . , Na} andΦb ∈ {1, . . . , Nb}, which form messages for the channel
codebooks constructed above and the resulting sequencexn is transmitted.

The decoder upon observingyn searches for sequencesbn
i ∈ Cb andxn ∈ Ca(b

n
i ) that are

jointly typical i.e., (yn, xn, bn
i ) ∈ T n

y ,x ,b,η. By our choice ofNb andNa this succeeds with
high probability. It then reconstructs the bin indexΦWZ and searches for a sequencetN ∈ T
that lies in this bin and is jointly typical withvN . As in section IV-C, this step succeeds with
high probability. The secret-key is then computed ask̂ = ΦSK(tN).

We need to show the secrecy condition that

1

n
H(k|zn) = {I(x ; y |b) − I(x ; z |b)} + βI(t; v) + oη(1). (121)

By expressingH(k|zn) as in (48) in section IV-E.2

H(k|zn) = H(ΦWZ|z
n) +H(tN |ΦWZ) −H(tN |k, zn). (122)

For the superposition codebook, sinceΦWZ is the transmitted message we have from [4]

1

n
H(ΦWZ|z

n) = I(x ; y |b)− I(x ; z |b) + oη(1), (123)

and from (27b) in Lemma 3,

1

N
H(tN |ΦWZ) = I(t; v) + oη(1). (124)

To show that
1

N
H(tN |zn, k) = oη(1) (125)
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we use a decoder analogous to that in the proof of Lemma 4 in Section IV-E. Upon observing
zn, the decoder searches for a sequencebn

i ∈ Cb that is jointly typical. This event succeeds
with high probability sinceI(b; z) ≥ I(b; y) = Rb. Let the set of conditionally typical
sequencesxn be

Ix = {j|xn
j ∈ Cb(b

n
i ), (xn

j , z
n) ∈ T n

x,z,η}. (126)

The eavesdropper searches for all sequencestN
kj,SK such thatΦa(t

N
kj,SK) ∈ Ix andΦb(t

N
kj,SK) =

i. Since the number of sequencestN
kj,SK is MSK = exp (n(I(x ; z |b) + I(b; y) − δ)), along the

lines of Lemma 4, it follows that the codeword sequence is decoded with high probability.
Note that (121) follows from (122), (123), (124) and (125).

APPENDIX II
CONDITIONAL ENTROPY LEMMA

Lemma 6:Suppose that the random variablesa, b, and c are finite valued with a joint
distributionpa,b,c(·) that satisfiesa → b → c. Suppose that a setCc is selected by drawing
exp(NR) sequences{cNi } uniformly and at random from the set of typical sequencesTN

c

whereR < H(c). Suppose that the pair of length-N sequences(aN , bN) are drawn i.i.d. from
the distributionpa,b and a sequencecNi ∈ Cc is selected uniformly at random from the set of
all possible sequences such that(cNi , b

N ) ∈ TN
cb,η. Then forR > I(c; a), we have that

1

N
H(cN

i |aN) = R− I(c; a) + oη(1), (127)

where the termoη(1) vanishes to zero asN → ∞ andη → 0.
Proof: From (24c), for all pair of sequences(aN , bN), except a set whose probability is
oη(1), we have that(aN , bN) ∈ TN

ab,η. For each such typical pair, sincea → b → c and
(bN , cN

i ) ∈ TN
bc,η from the Markov Lemma it follows that(aN , cNi ) ∈ TN

ac,η.
To establish (127) it suffices to show that for all sequencesaN ∈ TN

a,η, except a set whose
probability is at mostoη(1)

Pr(cN = cNi |a
N = aN) = exp(−N(R − I(c; a) + oη(1))). (128)

The expression in (127) then immediately follows by due to the continuity of thelog function.
To establish (128),

Pr(cN = cNi |a
N = aN ) =

p(aN |cNi ) Pr(cN = cni )

p(aN )
. (129)

From property (24b) of typical sequencesp(aN) = exp(−N(H(a) + oη(1))), p(aN |cNi ) =
exp(−N(H(a|c) + oη(1))) and since the sequencecN is uniformly selected from2nR se-
quences, we have thatPr(cN = cNi ) = exp(−NR). Substituting these quantities in (129)
establishes (128).
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