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Abstract—The problem of efficiently drawing samples from
a Gaussian graphical model or Gaussian Markov random
field is studied. We introduce the subgraph perturbation
sampling algorithm, which makes use of any pre-existing
tractable inference algorithm for a subgraph by perturbing
this algorithm so as to yield asymptotically exact samples
for the intended distribution. The subgraph can have any
structure for which efficient inference algorithms exist: for
example, tree-structured, low tree-width, or having a small
feedback vertex set. The experimental results demonstrate
that this subgraph perturbation algorithm efficiently yields
accurate samples for many graph topologies.

I. INTRODUCTION

An important family of Markov random fields (MRFs) is

the family of Gaussian Markov random fields or Gaussian

graphical models (GGMs). GGMs are often used to directly

parametrize probabilistic networks and used as approxi-

mate models to circumvent the computational complexity

inherent in many discrete models. This paper is devoted to

developing efficient algorithms for drawing samples from a

GGM.

Samples from a GGM can be drawn exactly by con-

ducting a Cholesky decomposition of the covariance or

inverse covariance matrix and then performing a linear

transformation on i.i.d. Gaussian samples. However, the

cubic complexity of this direct method precludes its use on

large-scale models. GGMs with particular topologies (for

example, tree-structured models) have well-known efficient

sampling algorithms, but possess limited modeling power

[1].

A popular sampling algorithm for general loopy graphs is

Gibbs sampling, an Markov Chain Monte Carlo (MCMC)

algorithm in which variables are sequentially drawn con-

ditioned on the most recent sample of all other variables

(or of the variables in the Markov blankets in the MRF

setting) [2]. However, the Gibbs sampler can have slow

mixing rate [3]. In [4], both exact methods and iterative

sampling methods using blocking or divide-and-conquer

strategies are studied. In [5], a local perturbation method

is proposed from GGMs where a Cholesky decomposition
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is available. In [6], a blocked Gibbs sampler is proposed,

where the induced subgraph within each block is cycle-free.

In this paper, we introduce the subgraph perturbation
algorithm, which leverages any pre-existing efficient infer-

ence algorithm on a subgraph (that contains all the nodes

but only a subset of the edges) and randomly perturbs the

parameters so as to generate exact samples asymptotically.

This algorithm can be considered as a general framework

of converting a subgraph-based linear solver in numerical

analysis to a sampling algorithm for GGMs. Using a

tree-structured subgraph, our algorithm is a randomized

extension of the embedded-tree algorithm [7], which has

been shown to have excellent convergence properties when

the spanning trees are selected adaptively [7], [8]. As our

algorithm produces an exact sample from the target dis-

tribution asymptotically, the number of iterations required

depends on the convergence rate. We provide theoretical

characterization of the convergence rate, both exactly and

via tractable bounds. We run experiments using GGMs of

various structures and different sizes to demonstrate that the

algorithm converges quickly on a wide variety of graphs.

We also show the performance of the algorithm on a large-

scale GGM built for estimating sea surface temperature.

II. BACKGROUND

A. Gaussian Graphical Models

An undirected graph G = (V, E) is used in an MRF

to model the conditional independencies among a set of

random variables [9], where V denotes the set of vertices

(nodes) and E the set of edges. Each node s ∈ V corre-

sponds to a random variable xs. The random vector xV is

Markov with respect to the graph if for any subset A, B,

S ⊂ V where S separates A and B in the graph, we have

that xA and xB are conditionally independent given the

value of xS .

When the random vector xV is jointly Gaussian, the

model is a GGM. The probability density function is

given by p(x) ∝ exp{− 1
2x

TJx + hTx}, where J is the

information matrix or precision matrix and h is the potential
vector. The mean μ and covariance matrix Σ are related to

J and h by μ = J−1h and Σ = J−1. The structure of

the underlying graph can be identified using the sparsity

pattern of J , i.e., Jij �= 0 if and only if there is an edge



Algorithm 1 Sampling by Subgraph Correction

Input: J , h, and T
Output: samples with the asymptotic distribution p(x) ∝
exp{− 1

2x
TJx+ hTx}

1) Form JT and K using (1)–(2).

2) Draw an initial sample x(0) from a Gaussian dis-

tribution with potential vector h and information

matrix being the diagonal of J .

3) In each iteration:

a) Compute e(t+1) using (3).

b) Draw a new sample x(t+1) from a Gaussian

distribution with information matrix JT and

potential vector h+Kx(t) + e(t+1).

between i and j. It can be shown that xi and xj are

conditionally independent given all the other variables if

and only if Jij = 0. Hence, the conditional independencies

can be read immediately from the sparsity pattern of the

information matrix as well as the sparsity pattern the graph.

The sampling problem refers to generating samples from

the distribution p(x) given J and h.

B. Some Existing Sampling Algorithms

Cholesky Decomposition: The Cholesky decomposi-

tion is used to obtain a lower triangular matrix L such

that J = LLT . Let z be an n-dimensional random vector

whose entries are drawn i.i.d. from the standard Gaussian

distribution. An exact sample x can be obtained by com-

puting x = (LT )−1
(
z+ L−1h

)
. The total computational

complexity of generating p exact samples is O(n3 + pn2).
When a Cholesky decompostion of the model is given,

the local perturbation algorithm in [5] can also be used

to generate samples.

Forward Sampling for Tree-Structured Models: For a

tree-structured GGM, an exact sample can be generated

in linear time (with respect to the number of nodes) by

first computing the variances and means for all nodes and

covariances for the edges using belief propagation and then

sampling the variables one by one in a root-to-leaf order

[9].

Gibbs Sampling: Gibbs sampling is a commonly used

MCMC method. At each iteration, following a prede-

termined order, the entries of a new sample are drawn

sequentially conditioned on the most recent values of their

neighbors. The Gibbs sampler is always convergent when

J � 0; however, the convergence rate1 can be very slow for

many GGMs, including many tree-structured models [10].

More details on Gibbs sampling can be found in [11]. The

nodes can be grouped into several blocks. In particular,

when the each block induces a tree-structured subgraph,

Gibbs sampling becomes the algorithm in [6]

1The convergence rate for the covariance matrix τΣ =
− ln

(
lim inf t→∞

(||Σ(t+1) − Σ||/||Σ(t) − Σ||)), where Σ(t) is
the sample covariance at iteration t and the matrix norm is the Frobenius
norm; the convergence rate for the mean, τμ, is similarly defined. Here,
the convergence rate refers to the smaller of the two.

III. SAMPLING GGMS BY SUBGRAPH PERTURBATION

The subgraph perturbation algorithm builds on the ideas

used in graphical splitting preconditioning algorithms for

solving large linear systems [12]. In our context, deter-

mining the means of the graphical model corresponds to

solving the equation Jμ = h. A matrix splitting for

solving this equation would be writing J = JT − K,

where JT corresponds to a tractable spanning subgraph

and K corresponds to a graph consisting of the removed

edges (Figure 1 shows an example where the subgraph T
is chosen to be a spanning tree). Then the relationship

JT μ = Kμ + h is used as the basis for an iterative

algorithm. The high level idea of our sampling algorithm

is to add random perturbations at each iteration so that

we convert linear solvers that converge to a fixed-point

solution to sampling algorithms that give exact samples

asymptotically.

The subgraph perturbation algorithm runs as follows: We

use the same graph decomposition as the linear solver but

add a proper diagonal matrix to K (and the same diagonal

matrix to JT ) to make it positive semi-definite. Let ET
denote the set of edges in the subgraph T . The matrix K
can be constructed as the sum of rank-one matrices:

K =
∑

(i,j)∈E\ET

[
K(i,j)

]
n×n

, (1)

where each K(i,j) =

[
|Jij | −Jij
−Jij |Jij |

]
is a two-by-two

matrix corresponding to edge (i, j), and
[
K(i,j)

]
n×n

is an

n-by-n matrix zero-padded from K(i,j), i.e., the principal

submatrix corresponding to rows (and columns) i and j of[
K(i,j)

]
n×n

equals K(i,j) while other entries are zeros. The

matrix JT is obtained by

JT = J +K. (2)

It is easy to see that, as required, K is positive semi-definite

and JT is positive definite (since J is positive definite for

a valid model).

At iteration t+1, rather than solving JT μ(t+1) = Kμ(t)+
h, instead we draw a sample from a Gaussian with informa-

tion matrix JT and potential vector Kx(t)+h+e(t+1). The

vector e(t+1) is Gaussian with zero mean and covariance

matrix K. It represents a perturbation to the potential

vector that compensates for the discrepancy between the

spanning subgraph and the full graph. Moreover, e(t+1) can

be computed efficiently and locally from our construction of

K: For each (i, j) ∈ E\ET , let the two-dimensional vector

e(i,j) be sampled from a zero-mean Gaussian distribution

with covariance matrix K(i,j). We can obtain e(t+1) by

computing

e(t+1) =
∑

(i,j)∈E\ET

[
e(i,j)

]
n
, (3)

where
[
e(i,j)

]
n

is an n-dimensional vector zero-padded

from e(i,j), i.e., the i-th and j-th entries of
[
e(i,j)

]
n

take

the two entries of e(i,j)and all other entries of
[
e(i,j)

]
n

are

zero.

The subgraph perturbation algorithm is summarized in

Algorithm 1. The computational complexity of one iteration
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Figure 1: the grid shown in (a) can be decomposed into a spanning tree (b) and a graph consisting of the removed edges

(c)

is CT +O(|EK |), where CT is the complexity of drawing

a sample from the tractable subgraph T (which is the same

as solving an inference problem on T ) and |EK | = |E−ET |
is the number of edges missing from JT .

IV. THEORETICAL RESULTS

In this section, we prove some theoretical results on

the convergence of the algorithm. We give both the exact

convergence rate and its tractable bounds.

Proposition 1. For a GGM with information matrix J � 0
and potential vector h, the sample distribution generated
by Algorithm 1 is guaranteed to converge to the exact
distribution and the convergence rate is − ln ρ(J−1

T K),
where ρ(A) denotes the spectral radius of matrix A.

Proof: The sample distribution at each iteration is a

Gaussian because the initial sample x(0) is drawn from a

Gaussian distribution and the distribution at each iteration

is Gaussian conditioned on the previous value. Hence, we

can parametrize the sample distribution at iteration t by the

mean μ(t) and the covariance matrix Σ(t).
From Step 3(c) in Algorithm (1), we have

μ(t+1) = Ex(t+1) = E

[
J−1
T (h+ e(t+1) +Kx(t))

]
= J−1

T (h+Kμ(t)),

where the equalities Ee(t+1) = 0 and Ex(t) = μ(t) are

used. From Lemma 1 (see below), when K � 0 and J � 0,

we have ρ(J−1
T K) < 1. Hence, the mean μ(t+1) converges

to the unique fixed-point μ̂ satisfying

μ̂ = J−1
T (h+Kμ̂) .

Thus we have μ̂ = (JT − K)−1h = J−1h, so μ(t)

converges to the exact mean J−1h with convergence rate

− ln ρ(J−1
T K).

Now we consider the convergence of the covariance

matrix. From Step 3(c) in Algorithm (1), we have

Σ(t+1) = Cov
{
x(t+1)

}

= J−1
T + Cov

{
J−1
T (h+ e(t+1) +Kx(t))

}

= J−1
T + J−1

T

(
K +KΣ(t)K

)
J−1
T

= (J−1
T K)Σ(t)(J−1

T K)T + J−1
T (JT +K)J−1

T .
(4)

This equation can be rewritten in vector form as

vec(Σ(t+1)) =
[
(J−1

T K)⊗ (J−1
T K)

]
vec(Σ(t)) (5)

+vec(J−1
T (JT +K)J−1

T ),

where vec(·) is a column vector obtained by stacking all

the columns in its argument and A ⊗ B is the Kronecker

product of matrices A and B, i.e.,

A⊗B =

⎡
⎢⎣

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤
⎥⎦ ,

where A is an m-by-n matrix [aij ]m×n.

From [13], ρ
(
(J−1

T K)⊗ (J−1
T K)

)
, the spectral radius of

the matrix (J−1
T K) ⊗ (J−1

T K), is ρ2(J−1
T K). By Lemma

1 we have ρ2(J−1
T K) < 1. Hence the iterative equation (5)

is guaranteed to converge to a unique fixed-point, denoted

by vec(Σ̂), and thus the equation (4) converges to a unique

fixed point Σ̂.

By Lemma 2 (see below), Σ̂ = (JT −K)−1 = J−1 is the

fixed-point solution. Therefore, the sample covariance Σ(t)

converges to the target covariance J−1 with convergence

rate − ln ρ2(J−1
T K). This completes the proof.

Lemma 1. Let J , JT and K be real symmetric matrices
satisfying J = JT − K. If J � 0 and K � 0, then
ρ(J−1

T K) < 1.

Proof: By Theorem 7.7.3 in [14] we have that

ρ(KJ−1
T ) < 1 when JT −K = J � 0. The eigenvalues of

KJ−1
T remain the same after the similarity transformation

J−1
T (KJ−1

T )JT = J−1
T K. Hence ρ(J−1

T K) = ρ(KJ−1
T ) <

1.

Lemma 2. Let A and B be square matrices. If A is
invertible and A + B is symmetric and invertible, then
Σ = (A + B)−1 is a solution of the equation AΣAT =
BΣBT +AT −B.

Proof: It is equivalent to showing

A(A+B)−1AT = B(A+B)−1BT +AT −B.



To do so, consider

LHS = ((A+B)−B) (A+B)−1AT

=AT −B(A+B)−1AT

=AT −B(A+B)−1
(
(AT +BT )−BT

)
=AT −B(A+B)−1(A+B)T +B(A+B)−1BT

(a)
=AT −B +B(A+B)−1BT = RHS,

where (a) is due to the assumption that A+B is symmetric.

Proposition 2. Consider symmetric matrices J , JT , and
K that satisfy J = JT − K. If J � 0 and K � 0, then

λmax(K)
λmax(K)+λmax(J)

≤ ρ(J−1
T K) ≤ λmax(K)

λmax(K)+λmin(J)
< 1.

Proof: Use Theorem 2.2 in [15] and let μ = 1.

Proposition 2 is adopted from [7] and gives bounds on

the convergence rate.

We can further bound λmax(K), the largest eigenvalue

of K, using a simple function of its entries. We define the

weight of node i in a GGM with information matrix K as

w(i) =
∑

j |Kij | and the weight of the model as w(K) =
maxi w(i). Corollary 1 follows immediately.

Corollary 1. In the same setting as in Proposition 2, we
have ρ(J−1

T K) ≤ w(K)
w(K)+λmin(J)

.

Proof: As K is symmetric positive semi-definite, we

have λmax(K) = ρ(K). By Corollary 8.1.18 in [14],

we have that ρ(K) ≤ ρ(K), where K takes the entry-

wise absolute values of K. By Corollary 8.1.22 in [14],

λmax(K) = ρ(K) ≤ ρ(K) ≤ w(K). The corollary thus

follows.

V. ON SELECTING TRACTABLE SUBGRAPHS

Our algorithm does not restrict the subgraph to be tree-

structured. Any subgraph with fast inference methods can

be used, such as subgraphs with low tree-width [16], or

subgraphs with small feedback vertex sets (FVS2) [17]. The

computational complexity of one iteration is the complexity

of generating one sample from the tractable subgraph, plus

a term proportional to the number of missing edges from the

subgraph. Although we have presented the algorithm using

a single, constant splitting for clarity, using different trees

or other tractable structures at different iterations can be

very beneficial, similarly as it is useful when calculating the

means in the inference case [8]. This sequence of subgraphs

can be selected a priori or on the fly. By Proposition 1,

to speed convergence, JT should be selected to minimize

ρ(J−1
T K). In this section, we give brief references to

the selection algorithms for different families of tractable

subgraphs.

Tree-Structured Subgraphs: The idea of using a

maximum-weighted spanning tree (MST) has been dis-

cussed in the support graph preconditioner literature [12]

as well as in the studies of the embedded tree algorithm for

inference [8], where multiple embedded trees are selected

adaptively.

2An FVS is a set of nodes whose removal results in a cycle-free graph.

Subgraphs with Low Tree-width: Graphical models

with low tree-width have efficient inference and sampling

algorithms and have been widely studied. We can compute

a low tree-width approximation JT to J using algorithms

such as those in [18], [19], [16].

Subgraphs with Small FVS: When a subgraph with a

small FVS is used, there is a trade-off in choosing the FVS

size (a larger FVS means more computation per iteration but

faster convergence). The key step of obtaining the subgraph

is the selection of the FVS. We can first use the algorithm in

[17] to select a pseudo-FVS of the entire graph (the pseudo-

FVS does not break all the cycles in the entire graph, but

will be an FVS of the subgraph to be constructed). Then

we compute the MST among the other nodes. The tractable

subgraph is constructed by combining the nodes in the FVS

(with all their incident edges) and the MST of the remaining

graph.

Spectrally Sparsified Subraphs: Many common GGMs

such as thin-membrane or thin-plate models have diagonally

dominant information matrices. Some recent studies show

that the graph Laplacian of a dense graph can be well-

approximated by the graph Laplacian of graphs with nearly-

linear number of edges [20]. These spectrally sparsified

graphs have efficient inference and sampling algorithms and

can be used as tractable subgraphs.

VI. EXPERIMENTAL RESULTS

In this section, we present some experimental results

using the subgraph perturbation algorithm using various

subgraphs. We compare the performances on both simulated

models and on models for sea surface temperature data.

For simulated models, the model parameters J and h are

randomly generated as follows: the entries of the potential

vector h are generated i.i.d. from a uniform distribution

U [−1, 1]; the non-zero entries of J are also generated i.i.d.
from U [−1, 1] with a multiple of the identity matrix added

to ensure J � 0. We compute the numbers of iterations

needed to achieve an approximating error of ε = 10−5,

i.e., the minimum t such that
∥∥Σ(t) − Σ

∥∥ ≤ ε. We run

the subgraph perturbation algorithm on l-by-l grids with l
ranging from 3 to 30. For each grid, two different subgraphs

are used: one is a tree-structured subgraph, the other is a

graph with an FVS of size
⌈
log l2

⌉
. For each size, we repeat

the algorithm for 100 sets of random model parameters and

the results shown are averaged over the 100 runs. Note that

since the sizes of the simulated models are moderate, we

are able to compute and compare with the exact solutions.

Figure 2 shows that both kinds of subgraphs give better

convergence than the Gibbs sampler while the subgraphs

with small FVSs perform the best consistently.

We also run the algorithm on a large-scale GGM built to

estimate the sea surface temperature (the dataset is pub-

licly available at http://podaac.jpl.nasa.gov/dataset/). The

raw data is preprocessed to have raw measurements at

720 × 1440 different locations. We construct a grid of

1,036,800 nodes (we also connect the eastmost and west-

most nodes at the same latitudes as they are geographical

neighbors). We then remove the nodes that have invalid

measurements corresponding to land areas. We build an

GGM with this underlying structure using the thin-plate
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Figure 2: the performance on grids of size 3-by-3 to 30-

by-30. The tractable subgraphs used include tree-structured

graphs and graphs with small FVSs.

model [21]. The resulting GGM is shown in Figure 3a

and the subgraph used for the sampling algorithm is shown

in Figure 3b (for clarity, we plot a much coarser version

and hide the edges connecting the eastmost and westmost

nodes). A sampled estimate after 200 iterations from the

posterior distribution is shown in Figure 3c.
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