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On the use of rational-function fitting methods for the

solution of 2D Laplace boundary-value problems

Amit Hochman, Yehuda Leviatan, and Jacob K. White

Abstract

A computational scheme for solving 2D Laplace boundary-value problems using rational
functions as the basis functions is described. The scheme belongs to the class of desin-
gularized methods, for which the location of singularities and testing points is a major
issue that is addressed by the proposed scheme, in the context of the 2D Laplace equa-
tion. Well-established rational-function fitting techniques are used to set the poles, while
residues are determined by enforcing the boundary conditions in the least-squares sense
at the nodes of rational Gauss-Chebyshev quadrature rules. Numerical results show that
errors approaching the machine epsilon can be obtained for sharp and almost sharp cor-
ners, nearly-touching boundaries, and almost-singular boundary data. We show various
examples of these cases in which the method yields compact solutions, requiring fewer
basis functions than the Nyström method, for the same accuracy. A scheme for solving
fairly large-scale problems is also presented.

1. Introduction

Laplace boundary-value problems (BVPs) are prevalent in the applied sciences, and
methods for their solution have been the subject of study for decades. Among these,
prominent approaches are finite-difference and finite-element methods, integral-equation
methods, and, in 2D, conformal-mapping techniques. While the Laplace equation is the
simplest elliptic partial differential equation (PDE), improving methods for its solution
is nevertheless of continued interest. At the focus of recent research are problems with
small radii of curvature, nearly-touching boundaries, and singular, or almost-singular
boundary data [1–6].

The technique described in this paper belongs to a class of methods known as desin-
gularized methods, which are used for the solution of linear BVPs. What characterizes
these methods is that the basis functions are elementary solutions of the homogenous
PDE, and hence the singularities of the basis functions lie outside the BVP domain.
The simplest example of a desingularized method is the method of images, which is only
applicable in a handful of special cases for which the exact locations and amplitudes of
the image sources are known analytically. For more general problems, an approximate
solution can be obtained by setting the locations of the sources heuristically and solv-
ing for the amplitudes so that the boundary conditions are satisfied at a set of testing
points. Various types of image sources and heuristics have been proposed over the years.
Vekua [7] and Kupradze [8] are usually credited as the pioneers of these methods, and
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other early works include those of Fox, Henrici, and Moler [9], Bergman [10], and Eisen-
stat [11]. Nowadays, the methods in this category go by various names, such as method
of fundamental solutions [12, 13], method of auxiliary sources [14, 15], generalized mul-
tipole technique [16], method of fictitious sources [17, 18, Ch. 1.5.6], and source-model
technique [19–21].

Desingularized methods share many of the properties of integral-equation methods,
and indeed can be viewed as such when the sources are distributed on a curve lying
outside of the BVP domain. The basis functions used for the density functions are then
Dirac delta functions. As the potentials due to these basis functions are smooth on the
boundaries, it is customary to enforce the boundary conditions at a set of testing points.
This obviates laborious panel integrals that slow down conventional Galerkin schemes
for boundary integral equations, making the cost of forming the system matrix similar
to that of a Nyström method. Also, the representation of the solution with elementary
sources is very convenient for post-processing tasks such as calculating capacitances,
charges, forces, etc., and the potential itself at arbitrary points.

Owing to the above properties, desingularized methods are among the simplest meth-
ods for solving linear BVPs. They can also be very accurate, provided the sources and
testing points are located “adequately”. To substantiate this claim, we show a couple of
results obtained with the method proposed in this paper. In Fig. 1a, 30 dipoles are used
to solve the Laplace equation outside two closely spaced curves. The solution is required

Solve time: 17.3s

∆Emax = 1.6 × 10−6

(a)

∆Emax = 6.6 × 10−5

Solve time: 5.7s

Dipoles

Testing points

(b)

Figure 1: Solutions obtained with a small number of basis functions, for (a) exterior and
(b) interior Laplace Dirichlet problems. The number of dipoles is 30 in (a) and 60 in (b).
Darker dots correspond to larger dipole amplitudes.

to be −1 on the lower curve and +1 on the upper curve, and this boundary condition is
satisfied with a maximum error of ∆Emax = 1.7 × 10−6. In Fig. 1b, an interior Dirich-
let problem with two perfectly sharp reentrant corners is solved using 60 dipoles. The
boundary condition is due to a monopole located inside the polygon and the maximum
error is ∆Emax = 2.5 × 10−5. The Nyström method, which is spectrally accurate when
the boundaries are smooth [22], is the standard against which the proposed method is
compared with in this paper. Such a comparison, shown in Fig. 2, reveals that when

2



the boundary curves nearly touch, a desingularized method can indeed be much more
accurate than the Nyström method.
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Figure 2: For the problem shown in Fig. 1a, maximum errors on the order of 10−12

are obtained with no more than 70 dipoles. Using the Nyström method with the same
number of basis functions yields errors of about 5%.

The adequate location of the sources and testing points is a major unresolved issue
with desingularized methods, and much work has been devoted to its analysis ([23–27]
are just a few references out of a large body of work). Source location affects both the
rate of error decay and the effect of round-off errors which may limit the highest accu-
racy achievable. Also, the effective application of the fast multipole method (FMM) [28]
appears to depend strongly on the source location [29]. The problem with applying the
FMM to a desingularized method is that the linear systems to be solved are generally
ill-conditioned. In [29], the authors proposed a block-diagonal preconditioner that accel-
erates convergence, provided the distance between the sources curve and the boundary
curve is less than a problem dependent critical distance.

Source location schemes that guarantee exponential convergence were developed in [24]
and [25, 30], for Laplace and Helmholtz Dirichlet BVPs in simply-connected analytic
domains, respectively. In these works, sources are distributed uniformly (in so-called
conformal angle) on curves conformal with the boundary, and the resulting error in the
solution is shown to decrease exponentially, in exact arithmetic. But placing sources on
a conformal curve may be restrictive, and any a-priori source restriction requires a-priori
knowledge of singularity locations.

A common approach has been to formulate the source-location problem as an opti-
mization problem. If the number of sources is set in advance, finding the best source
locations is a nonlinear least-squares problem, and various attempts have been made
to use nonlinear optimization techniques to determine the source locations. Unfortu-
nately, this optimization problem is not convex and has many local minima. Therefore,
descent-type methods such as Gauss-Newton and Levenberg-Marquardt are sensitive to
the initial source locations [12, 31, 32], while more robust methods that have been tried,
such as simulated annealing [33] and genetic algorithms [34], may take a very long time
to converge. Moreover, if the positions of the sources are adapted, the positions of the
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testing points must be adapted as well. If this is not done, and the sources approach
the boundary, the error at the testing points will not be representative of the error on
the boundary. Alternatively, if the cost function of the optimization is defined as an
integral on the squared error (as in [32], for example), the quadrature for this integral
must be adapted along with the source positions. This issue of adapting the testing
points has been largely ignored in the literature; in this paper it is addressed by use
of rational Gauss-Chebyshev quadrature rules. Perhaps the most practical approaches
use geometry-based heuristics [16, 25, 35, 36]. While these can be more than adequate
in many engineering applications, they fail to take full advantage of the flexibility in
locating the sources and their accuracy may be limited.

In this paper we describe a new method for determining appropriate locations for the
sources and testing points. The method is tailored to the 2D Laplace equation, for which
the solution can be represented as the real part of a complex potential which we ap-
proximate by the sum of a rational function and (for multiply-connected domains) a few
logarithmic terms. We use well-established techniques for finding rational-function ap-
proximations to the boundary data, and the poles of these rational functions correspond
then to the positions of dipole sources.

The major difficulty in applying this idea is that, in a Dirichlet problem, the bound-
ary data corresponds to the real part of the complex potential on the boundary. The
imaginary part is determined, up to an additive constant, by the Dirichlet-to-Neumann
map. Of course, applying this map is tantamount to solving the Dirichlet problem. Sim-
ilarly, in a Neumann problem, only the imaginary part of the complex potential on the
boundary is known. The solution we propose for this problem is to estimate the missing
information (say, the imaginary part in a Dirichlet problem) by solving the BVP with a
given set of poles and then using this information to improve the pole locations. Assum-
ing the pole locations are indeed improved, they can be used to find a better estimate of
the imaginary part, which in turn is used to improve their locations further. We proceed
in this way until the pole positions appear to have converged, the error drops below a
preset tolerance, or a maximum number of iterations is reached.

Clearly, the process just described is not guaranteed to converge to the solution
that would be obtained were the imaginary part known in advance. It is possible that
the estimated imaginary part will be inaccurate, and the poles found based on this
estimate will not yield any improvement on the next iteration. When this happens, the
improvement in accuracy stalls. It is then usually, though not always, possible to increase
the accuracy further by increasing the number of poles. In numerical experiments, we
have found that despite this difficulty, errors approaching the machine epsilon can be
obtained for various challenging configurations.

2. Dirichlet problem, simply-connected domain

We begin by considering the simplest case, in which we seek a real valued potential,
U(x, y), which obeys the Laplace equation. More precisely,

∇2U(x, y) = 0, for all (x, y) ∈ Ω, (1)

where Ω is a simply connected domain in R2 bounded by a curve Γ, and U must also
obey a Dirichlet boundary condition,

U |on Γ = f. (2)
4



The method we propose for solving this problem is to approximate the solution as a
weighted combination of dipole potentials, and to use rational function fitting algorithms
to determine the dipole locations.

2.1. Dipole representation

As is well-known, the potential U can be sought as the real part of a complex function
W (z), where z = x + iy and W (z) is holomorphic and single valued in Ω (it is single
valued because Ω is simply connected). The classical single- and double-layer potentials,

Wsingle(z) =

∫

Γ

σ(z′) log(z′ − z)dz′, (3)

and

Wdouble(z) =
1

2πi

∫

Γ

µ(z′)

z′ − z
dz′, (4)

where σ(z) and µ(z) are referred to as the monopole and dipole densities, respectively,
have been used extensively to formulate integral equations [22, 37, 38]. For example,
a second-kind Fredholm equation is readily obtained by combining the double-layer po-
tential, (4), with the Dirichlet boundary condition, (2), or by combining the single-layer
potential, (3), with the Neumann boundary condition.

In desingularized methods, the most common approach is to use the single-layer
potential,

WΓ′(z) =

∫

Γ′

σ(z′) log(z′ − z)dz′, (5)

where Γ′ encloses, but does not intersect, Γ. Enforcing the boundary condition on Γ
leads to an ill-conditioned Fredholm equation of the first kind. Nevertheless, as discussed
in [25], if W (z) can be continued analytically throughout the region enclosed between
Γ and Γ′, highly accurate solutions can be obtained, despite this ill-conditioning. The
density σ(z) is often approximated as a weighted combination of Dirac delta functions,
as in

σ(z) =
∑

n

σnδ(zn − z), (6)

in which case
WΓ′(z) ≈

∑

n

σn log(zn − z). (7)

Using a double-layer distribution instead of the single-layer distribution in (5) does not
yield a second-kind integral equation, as it does in the classical formulations, but this is
nevertheless a viable option [16, 39]. The approach in this work is similar, in that we also
use dipole potentials as basis functions. However, the source points are not restricted
to lie on any given curve, but may be placed anywhere outside Ω. Assuming that W (z)
is also holomorphic for z ∈ Γ, it can always be expressed as a series of complex dipole
potentials,

W (z) =

∞∑

n=1

an
z′n − z

, ∀z ∈ Ω, (8)

where the z′n are referred to as the poles of W (z).
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According to a theorem by Wolff [40] (see also [41, Ch.1, Theorem 13]), given the
appropriate choice of poles, z′n /∈ Ω, (8) converges uniformly on any closed set in Ω. In
this sense, we may say that the set of single-pole functions is a complete set, which can
be used to approximate any functionW (z) which is holomorphic for z ∈ Ω. This theorem
does not cover the case ofW (z) having a branch-point on Γ. Nevertheless, in Section 7.1.4
we show a solution with error < 10−10 even for such a case. The convergence theory of
rational function approximations to functions with branch-points is rather involved, and
we therefore refer the interested reader to a couple of relevant works [42, 43].

Our algorithm is based on approximating the complex potential using N poles plus
a constant, or equivalently as an N th order rational function

W (z) ≈ a0 +
N∑

n=1

an
z′n − z

=
PN (z)

QN (z)
(9)

where PN and QN are complex-coefficient polynomials of degree N . To determine
a0, a1, . . . , aN , or equivalently, the coefficients of PN (z), we start with an initial guess for
the poles, and associate a complex basis function with each pole,

φCn (z) =
1

z′n − z
, (10)

with real and imaginary parts,

φRn (z) = Re
[
φCn (z)

]
, φIn(z) = Im

[
φCn (z)

]
. (11)

Note that φRn (z) and −φIn(z) are real-valued basis functions that correspond to x- and
y-directed dipole potentials. In the special case of the constant term, the complex basis
function becomes a real-valued basis function,

φC0 = φR0 = 1. (12)

Defining U(z) = Re[W (z)] and V (z) = Im[W (z)], and using (10)-(12),

U(z) ≈ Û(z) =

N∑

n=0

aRnφ
R
n (z)−

N∑

n=1

aInφ
I
n(z), (13)

and its harmonic conjugate,

V (z) ≈ V̂ (z) =

N∑

n=1

aRnφ
I
n(z) +

N∑

n=1

aInφ
R
n (z), (14)

where the basis function coefficients aRn ≡ Re(an) and aIn ≡ Im(an) are determined by
minimizing an error metric on the boundary Γ. More precisely,

a ≡ [aR0 , a
R
1 + iaI1, . . . , a

R
N + iaIN ]

T (15)

is determined by solving the minimization problem

min
a

∣∣∣
∣∣∣Û − f

∣∣∣
∣∣∣
Γ
≡ min

a

〈
Û − f, Û − f

〉 1

2

Γ
, (16)
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where the norm, || · ||Γ, is induced by a Hermitian inner-product, 〈·, ·〉Γ, the definition of
which is deferred to Section 3. The minimization in (16) is equivalent to requiring that

the residual, f − Û , be orthogonal to the span of the basis functions, or equivalently,

〈
φRn , f − Û

〉
Γ
= 0, n = 0, 1, . . . , N, (17a)

〈
φIn, f − Û

〉
Γ
= 0, n = 1, . . . , N. (17b)

Expanding the inner products and using (13) leads to the normal equations,

[
ΦRR ΦRI

ΦIR ΦII

][
aR

aI

]
=

[
fRφ

f Iφ

]
, (18)

where Φαβ
mn =

〈
φαm, φ

β
n

〉
Γ
and (fαφ )m = 〈f, φαm〉Γ.

Finding the basis function coefficients by least-squares minimization is common in
desingularized methods. What is less common is our use of dipole potentials as basis
functions, and also our use of a continuous error metric, as in (16). In Section 3 we
will define a Hermitian inner product, and show that under mild conditions, enforcing
the residual orthogonality (17) is equivalent to enforcing the boundary conditions at
pole-location-related quadrature points.

2.2. Pole relocation

In the next step of the algorithm, the poles are moved to improve the approximation
of W (z). This is done by fitting a rational function to the complex function

Ŵ (z) = f(z) + iV̂ (z), z ∈ Γ (19)

where V̂ (z) in (14) is based on the current set of poles. To obtain a “better” set of poles,

we seek a rational approximation to Ŵ (z) in the form P (z)/Q(z) where both P (z) and
Q(z) are polynomials of degree ≤ N , and then use the zeros of Q(z) as the “better”
poles.

This rational fitting is done by minimizing a norm induced by the same inner-product
used in (17). Ideally, we would want to minimize ||P/Q − Ŵ ||Γ, but this is a nonlinear
and non-convex problem. So, instead, we follow the commonly-used strategy of first
scaling the residual P/Q− Ŵ by Q, and then correcting this scaling by dividing by

Q̂(z) =

N∏

n=1

(z′n − z) , (20)

which is an approximation for Q(z) based on the current set of poles. The minimization
problem is then

min
P,Q

∣∣∣∣∣

∣∣∣∣∣
P −QŴ

Q̂

∣∣∣∣∣

∣∣∣∣∣
Γ

, (21)

where P andQ are represented with polynomial bases, denoted pn and qn, n = 0, 1, . . . , N ,
respectively. To avoid the trivial solution, Q(z) is assumed to be monic in the qn basis.
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The minimization in (21) leads to the orthogonality conditions,
〈
pn

Q̂
,
P −QŴ

Q̂

〉

Γ

= 0,

〈
qnŴ

Q̂
,
P −QŴ

Q̂

〉

Γ

= 0, n = 0, 1, . . . , N. (22)

The choice of polynomial bases determines the conditioning of (22), and, as the monomial
basis is a particularly poor choice, other choices have been proposed [44–46].

The above approach to rational fitting has a long history, dating back to Levy [47]
and Sanathanan and Koerner [48], and its application to real functions is much older.
Usually, however, the minimization problem in (21) corresponds to fitting a rational
function at a finite set of points on the imaginary axis or the unit circle. For that more
common case, many implementations have been suggested, including vector fitting (VF),
iterated rational fitting (IRF) [46, 49], and recently, robust rational least-squares [50].
We use VF as the default method, but in some cases it becomes poorly conditioned and
we switch to a variant of IRF, the details of which are given in Appendix A.

The main difference between VF and IRF is the choice of basis polynomials. In VF,
the choice is pn(z) ≡ qn(z) ≡ ℓn(z), where

ℓn(z) =





Q̂(z) if n = 0

Q̂(z)

(z′n − z)
if 1 ≤ n ≤ N.

(23)

For n = 1, 2, . . . , N , the ℓn(z) are, up to a scaling factor, the Lagrange polynomials for
interpolating at the z′n. As these polynomials are zero at all poles but one, they usually
lead to a fairly well-conditioned linear system. However, if two or more poles are very
close, conditioning may deteriorate. If this happens, we switch to using IRF, in which
two polynomial bases are derived. For the pn(z), we use polynomials orthonormal with
respect to the inner-product

〈u, v〉ΓP =

〈
u

Q̂
,
v

Q̂

〉

Γ

, (24)

and for the qn(z) we use polynomials orthonormal with respect to the inner product

〈u, v〉ΓQ =

〈
Ŵu

Q̂
,
Ŵ v

Q̂

〉

Γ

. (25)

As a result of this choice, the linear system to be solved is made-up of two blocks of
orthonormal columns, one for P and one for Q (see Appendix A).

Once Q(z) is obtained, its roots are computed and they become the poles for the

next iteration. Using these poles, Û(z), the approximate solution of (2), is recomputed

by solving (18) and then using (13). Similarly, using (14), V̂ (z) is recomputed, Ŵ (z)
in (19) is updated, and the poles are relocated again.

When computing the roots of Q(z) we may encounter roots inside Ω. Although we

do not discard these poles, their corresponding basis functions are not used to form Û(z)

and V̂ (z). Hence, they are tacitly excluded from (13)-(18). As the algorithm progresses,
these poles usually migrate outside of Ω. Any poles that remain in Ω when the algorithm
stops are discarded.
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2.3. Initial guess for the poles

The proposed algorithm is found to be quite insensitive to the initial pole locations.
We set them using the following heuristic, but even random initial locations seem to do
fine. The initial guess for the z′n is obtained by solving (22) assuming Ŵ (z) = f(z),

which is purely real, Q̂(z) = 1, and then allowing P and Q to be of degree 2N . Out of
the 2N zeros of Q we pick N zeros that are outside Ω, and, if there are not enough of
these, we supplement them with zeros inside Ω so that we have N zeros in total. These
N zeros are used as the poles for the first iteration. The justification for using 2N poles
along with a purely real Ŵ (z) is based on considering the fitting problem when Ω is a

disk. For a disk, a purely real Ŵ (z) can be constructed with N poles inside Ω and N
poles outside Ω. Using only the poles outside, we obtain a function that is holomorphic
in the disk and its real part fits f(z) on Γ.

2.4. Algorithm summary

The main steps of the algorithm are as follows:

Algorithm 1 Solve simply-connected Dirichlet problem

1: Set the z′n to the initial guess, as explained in Section 2.3.
2: while stopping criterion not met do
3: Solve (18) for the aRn and aIn. Use only z′n /∈ Ω.

4: Use the aRn and aIn to form V̂ according to (14) and Ŵ according to (19).

5: Form Q̂ according to (20), use all z′n.
6: Solve (22) for P and Q.
7: z′n = roots(Q).
8: end while

3. Inner product definition and quadrature rules

In each iteration of Algorithm 1, two norm minimization problems must be solved:
one to determine an approximate complex potential given the poles, (16), and one to
update the poles using the approximate complex potential, (21). Both problems can
be formulated as follows: given a set basis functions ψ1, ψ2, . . . ψNψ defined on Γ, and
a function to approximate, g, also defined on Γ, we wish to determine the vector of
coefficients c that solves the norm minimization problem

min
c

∥∥∥∥∥∥

Nψ∑

n=1

cnψn − g

∥∥∥∥∥∥
Γ

. (26)

The unique solution to this problem is given by

c = Ψ−1gψ, (27)

where Ψmn = 〈ψm, ψn〉Γ and (gψ)m = 〈g, ψm〉Γ. It can be easily shown that Ψ is Hermi-
tian positive definite and hence invertible, provided that the ψn are linearly independent

9



(that this is so for the φRn and φIn follows from a trivial modification of Theorem 4 in [8],
where it was proved in a 3D context). The inner product used in this work is

〈u, v〉Γ =

∫ 1

0

u (z(s)) v∗ (z(s))λ(s)ds, (28)

where λ(s) denotes a positive weight function, and z(s) is a parametrization of Γ. In
view of this definition, the inner-product integrals in Ψ and gψ may be evaluated using
a quadrature rule. If (28) can be evaluated with a single quadrature rule for all u’s and
v’s occurring in inner-product integrals in Ψ and gψ, it is simpler and more numerically

stable not to use (27) explicitly, but instead to sample
√
λ(s)g(s) and the

√
λ(s)ψn(s)

at the quadrature nodes, and to set-up an overdetermined linear system for c,




√
λ1ψ1(s1) · · ·

√
λ1ψNψ(s1)

...
. . .

...
√
λKψψ1(sKψ ) · · ·

√
λKψψNψ(sKψ)







c1
...

cNψ


 ≈




√
λ1g(s1)

...
√
λKψg(sKψ)


 , (29)

where s1, s2, . . . , sKψ are the quadrature nodes and λ1, λ2, . . . , λKψ are the quadrature
weights. Equation (29) may also be written as

Λ
1

2 Ψ̂c ≈ Λ
1

2 ĝ, (30)

where

Λ = diag(λ1, λ2, . . . , λKψ )

ĝ = [g(s1), g(s2), . . . , g(sKψ)]
T (31)

Ψ̂mn = ψn(sm).

The least-squares solution to (30) is given analytically by

c =
(
Ψ̂HΛΨ̂

)−1

Ψ̂HΛĝ, (32)

where superscriptH denotes Hermitian transpose. It is more numerically stable, however,
to obtain this solution by QR decomposition with column pivoting applied to (29). If the
quadrature rule is exact, then the solution given in (32) also solves (26) (see, e.g., [22,
Ch. 4]).

3.1. Quadrature rules for (16)

The basis functions used to solve (16), restricted to Γ and seen as a function of the
parameter s, are the real and imaginary parts of

φCn (s) =
1

z′n − z(s)
. (33)

Clearly, constructing quadrature rules that will integrate inner products of these functions
for arbitrary z(s) is not practical. However, the parametrization of z(s) is ours to choose,
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and we choose it to be a piecewise rational function, i.e.,

z(s) =





r1(s) if 0 ≤ s < h1

r2(s) if h1 ≤ s < h2
...

rM (s) if hM−1 ≤ s < 1

, (34)

where the rm(s) are rational functions in s. This choice of parametrization is quite
general, as piecewise rational functions can be used to represent any geometry of prac-
tical interest, and they are easily generated from Γ using readily available libraries (we
use both Matlab’s spline toolbox and the Chebfun system [51]). With this choice of
parametrization, the φCn (s) are themselves piecewise-rational functions, each piece hav-
ing known poles in the complex s plane. Quadrature rules for products of rational func-
tions with known poles are readily available, and this is the motivation for our choice of
parametrization1. However, the actual basis functions used in (16) are φRn (s) and φ

I
n(s),

and these are not piecewise-rational functions of s, as they depend on both s and s∗. To
overcome this difficulty, we use the Schwartz reflection principle. We write the real basis
functions as

φRn (s) =
1

2





1

z′n − r1(s)
+

1

[z′n − r1(s)]
∗ if h0 ≤ s < h1

1

z′n − r2(s)
+

1

[z′n − r2(s)]
∗ if h1 ≤ s < h2

...
1

z′n − rM (s)
+

1

[z′n − rM (s)]
∗ if hM−1 ≤ s < hM

, (35)

where h0 = 0, hM = 1. Note that the expression for φIn is similar. Although φRn and
φIn are functions of both s and s∗, for real s they can be written as piecewise rational
functions in s alone. These rational functions can be obtained by replacing [z′n − rm(s)]

∗

by [z′n − rm(s∗)]
∗
everywhere in (35), and similarly for φIn. We then have,

φ(R,I)n (s) =

Lm∏

l=1

(
s− β

(R,I)
lmn

)

Lm∏

l=1

(s− αlmn) (s− α∗
lmn)

for s ∈ [hm, hm+1), m = 0, 1, . . . ,M − 1, (36)

where Lm is the degree of the numerator or denominator of rm(s), whichever is higher.
In (36), αlmn is the lth pole associated with the nth basis function, restricted to the mth

section of the boundary, i.e., it is the lth zero of z′n − rm(s).

1Another advantage of this parametrization is that determining whether a pole is inside or outside
of Ω is easy (see Appendix B).
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Quadrature rules that are exact for the inner products of the basis functions are
readily obtained using rational Gauss-Chebyshev quadrature rules as building blocks.
These rules integrate exactly integrals of the form

∫ 1

−1

R(s)T ∗(s∗)
1√

1− s2
ds, (37)

where R(s) and T (s) are rational functions that have poles at known locations (and need
not be proper) [52]. Once the αlmn are determined, a quadrature rule for each section of
the boundary is calculated, in O(NLm) time, using the Matlab toolbox Rcheb [52]. The
rules are then concatenated to obtain a single rule for the entire boundary.

Using these quadrature rules implies a specific choice for the inner-product weight
function, denoted λ(s) in (28), namely,

λ(s) =





λ1(s) if h0 ≤ s < h1

λ2(s) if h1 ≤ s < h2
...

λM (s) if hM−1 ≤ s < hM

, (38)

where

λm(s) =
hm+1 − hm√

(hm+1 − hm)2 − (2s− hm+1 − hm)
2
. (39)

This choice of λ(s) is dictated primarily by the ease with which rational Gauss-Chebyshev
quadrature rules may be computed. However, it also has the advantage that when
the boundary consists of a single rational-function section, using the Chebyshev weight
function implies that the approximation will be close to optimal in the max-norm sense,
provided the boundary data is smooth enough [52, 53]. When the boundary is composed
of more than one section, this is no longer so, but the Chebyshev weight function still
helps suppress Runge’s phenomenon near s = 0 and s = 1. Lastly, this choice of weight
function makes our error metric dependent on the parametrization z(s). To avoid this,
one could choose λ(s) = |dz/ds|, which would make the inner product a line integral and
hence invariant to the choice of parametrization, but this choice would complicate the
construction of the quadrature rules. A compromise is to make the weight of each section
of the boundary proportional to its length, and this can be done with the chosen weight
function by making the size of the interval [hm, hm+1] proportional to the length of the
mth section of the boundary.

We still need to ensure that the inner-products between basis functions and the
boundary data f (z(s)) are calculated accurately. Assuming the boundary data is smooth
on each section of the boundary, this can be accomplished by making the quadrature
rules exact for improper rational functions with a sufficiently high numerator polynomial
degree. In Rcheb, this is done by adding poles at infinity when generating the quadrature
rules.

3.2. Quadrature rules for problem (21)

The inner products for this second norm minimization problem are given in (22). All
the integrands in this case can be written as rational functions of s, with poles due to
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the zeros of Q̂ (z(s)) as well as the poles of Ŵ (z(s)). Recalling the definition of Ŵ (z(s))
given in (19), its real part is just the boundary data, and hence is assumed piecewise
smooth, while the imaginary part has the same poles as those used for (16). To these

poles we must add all zeros of Q̂ (z(s)), which are the zeros of all the z′n−rm(s), including
any poles z′n ∈ Ω. Although the quadrature rules are calculated quickly by Rcheb, it is
usually more economical to call it only once, with the poles for (21) and then to solve
both equations with the same set of quadrature points.

The proposed scheme for evaluating inner-product integrals with quadrature yields
linear matrix equations very much like those of conventional desingularized methods,
except that quadrature dictates the location and weight of each testing point. This
scheme takes into account the location of the sources, the shape of the boundary, and
the variation of the boundary data, and minimizes a continuous error norm.

The total number of testing points used, K, is given by

K =M(N∞ + 1) + (3Nout +Nin)
M∑

m=1

Lm, (40)

with the notation

M number of rational-function sections of the boundary

N∞ number of infinite poles added

Nout number of poles outside of Ω

Nin number of poles inside of Ω

Lm degree of numerator or denominator of rm(s), whichever higher.

As the scheme is based on Gaussian quadrature, this number is in a sense optimal for
computing with the continuous error norm, and the computation of the testing points is
done with a fast and accurate library routine. We have found that, in all but the sim-
plest cases, many uniformly distributed testing points are needed to match the accuracy
obtained by the Gaussian quadrature scheme, so the extra computational burden is gen-
erally worthwhile. However, the representation of the boundary with piecewise rational
functions should be made as simple as possible, i.e., with the fewest sections and lowest
orders. If the boundary is broken into many sections, then taking into account all the
poles when computing the quadrature rule for each section can be excessive. It is better
to take into account only poles that are close to a given section. The rest of the poles
can be dealt with more efficiently by a small number of poles at infinity. We refer to this
process as pole pruning.

3.2.1. Pole pruning

Adding N∞ poles at infinity makes the quadrature rule exact for integrands that
are products of a rational function and a polynomial of degree 2N∞ − 1. Hence, we
can omit poles that are distant enough that their corresponding potentials are smooth.
To determine which poles are far enough, we need to estimate the error committed in
approximating a rational function by a polynomial on the integration interval. As a
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prototypical rational function we take a third-order pole function,

Rs0(s) =
1

(s− s0)3
, (41)

as this is the highest pole order that will appear in the integrands, and estimate the error
committed in approximating it by a polynomial, as a function of the pole s0. The max-
norm error of the polynomial that interpolates at Chebyshev nodes is almost minimal
and it is the same for all s0 on the ellipse

s(φ) =
ρeiφ + ρ−1e−iφ

2
, φ ∈ [0, 2π], (42)

where ρ > 1 is the so-called elliptical radius (see, e.g., [54]). For any s0 /∈ [−1, 1] we can
calculate the elliptical radius corresponding to the ellipse which passes through it,

ρ(s0) = max

(∣∣∣∣s0 +
√
s20 − 1

∣∣∣∣ ,
∣∣∣∣s0 −

√
s20 − 1

∣∣∣∣
)
. (43)

Although there are bounds for the error in approximating a function such as Rs0(s) by a
polynomial, we found it more practical to tabulate the degrees of polynomials that yield
approximation errors less than ǫ, for relevant values of ǫ and ρ(s0) (Fig. 3). To obtain
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Figure 3: Polynomial degree that yields approximations of Rs0(s) with errors less than
ǫ, as a function of ρ. For ρ ≈ 10, errors under 10−14 can be obtained with polynomial
degrees under 20.

these polynomial degrees, we again used the Chebfun system, which truncates a Cheby-
shev expansion once the expansion coefficients drop sufficiently below ǫ. The tabulation
is then interpolated or extrapolated as necessary so that we can rapidly calculate the
optimal ρ beyond which poles can be discarded and replaced by poles at infinity, without
incurring errors much larger than ǫ. As shown in Fig. 3, for all but the most distant
poles, the choice of ǫ influences the required polynomial degree appreciably. Hence, if
only moderate accuracy is sought, significant reduction may be gained by using a larger
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ǫ. To take advantage of this, we set ǫ according to

ǫ = min(10−4, 0.01∆E), (44)

where ∆E is the normalized error obtained when solving (17) in the previous iteration (a
more precise definition is given below in (58)). Thus, if the solution is not very accurate,
fewer quadrature nodes are used, but their number is increased if the algorithm is allowed
to iterate and higher accuracy is achieved. In the very first iterations, ∆E can be large,
so we bound epsilon from above by 10−4. Of course, this rule is heuristic and has been
derived from numerical experiments in which it appeared to do well, but it is by no means
optimal and a different rule could perform better.

3.2.2. Froissart doublets

Admittedly, the quadrature scheme just described is somewhat complicated, but we
have found this complication to be worthwhile. The reason is related to the occurrence of
pole-zero pairs, called Froissart doublets [55–57], which almost coincide with the bound-
ary. These pole-zero pairs are a numerical artifact, and they do not contribute to the
fidelity of the fit, but instead they fit errors in the data. In our case, the errors in the
imaginary part of the data are quite large in the first iterations, so these artifacts occur
often. If uniformly distributed testing points are used, the doublets frequently occur
closer to the boundary than the separation between testing points. When the poles of
these doublets are used to solve (16), the resulting potential is inaccurate between testing
points. In turn, the estimate of Im[W (z)] is inaccurate, and the improvement in accuracy
from one iteration to the next may stall. One could try to filter these poles in various
ways, for example, based on their small residues and distances from the boundary, but
this would limit the obtainable accuracy. By using the proposed quadrature scheme, all
the poles outside of Ω, no matter how close they are to its boundary, can be safely used
to solve (16).

In Fig. 4a, an artifact caused by a Froissart doublet can be observed near the top
of Γ. The pole of the doublet is extremely close to the boundary (the distance is about
10−9 of the perimeter of Γ), which explains the appearance of the artifact despite having
used 2000 uniformly distributed testing points. When the quadrature scheme is used,
with just 203 points, the artifact disappears (Fig. 4b).

4. Dirichlet problem, multiply-connected domain

Other Laplace BVPs can also be solved with the proposed scheme, after appropriate
adaptations. As an example of a Dirichlet problem in a multiply-connected domain
we consider the exterior Dirichlet problem; multiply-connected interior problems can
be treated similarly. In the exterior Dirichlet problem, the potential U(x, y) obeys the
Laplace equation everywhere outside of a set of disjoint domains Ω1,Ω2, . . . ,ΩJ bounded
by contours Γ1,Γ2, . . . ,ΓJ , respectively. As before, Dirichlet boundary conditions are
imposed,

U |on Γj = fj, j = 1, 2, . . . J (45)

and in addition, the potential must be bounded at infinity. Of course, the poles must
now be restricted to lie inside the Ωj . Also, the complex potential W (z) is no longer
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(a) (b)

Figure 4: Equipotential lines for a monopole (marked by a red dot) inside an L-shaped
region. In (a), 2000 points were uniformly distributed on Γ, in (b), 203 points were
distributed by the quadrature scheme.

single-valued, but can be written as the sum of J logarithmic terms and a single-valued
holomorphic function W̃ (z) (see, e.g., [37, §29]). We have,

W (z) = W̃ (z) +

J∑

j=1

Aj log
(
z − zΩj

)
, zΩj ∈ Ωj , (46)

where the Aj may be assumed real, and the zΩj can be anywhere inside Ωj , preferably
as far from its boundary as possible. If the Aj were known, the logarithmic terms
could be subtracted from the boundary data, and the algorithm for the simply-connected
Dirichlet problem could be applied to W̃ (z). Our approach is therefore to estimate the

Aj iteratively, along with the imaginary part of W̃ (z). On each iteration, we solve

Nout∑

n=0

aRnφ
R
n (z)−

Nout∑

n=1

aInφ
I
n(z) +

J∑

j=1

Aj log
∣∣z − zΩj

∣∣ ≈ f(z),

with f(z) = fj(z) for z ∈ Γj ,

subject to

J∑

j=1

Aj = 0,

(47)

for the aRn , the a
I
n, and the Aj . The condition that the sum of Aj ’s is zero, needed to

ensure the solution is bounded at infinity, can be enforced by eliminating one of the Aj ,

say, AJ = −∑J−1
j=1 Aj . Instead of (47) we then have,

Nout∑

n=0

aRnφ
R
n (z)−

Nout∑

n=1

aInφ
I
n(z) +

J−1∑

j=1

Aj log

∣∣∣∣∣
z − zΩj
z − zΩJ

∣∣∣∣∣ ≈ f(z). (48)

As before, we solve (48) by sampling at quadrature nodes, weighting the equation by
the square roots of the quadrature weights, and solving the linear system in the least-
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squares sense. In contrast to the previous case, however, the inner products involving the
logarithmic basis functions will not be integrated exactly. We must therefore add poles at
infinity when deriving the quadrature rules for each section of the boundary. Fortunately,
the logarithmic singularity is weak, so when the zΩj are not too close to the boundary,
the restriction of the logarithmic term to the boundary curve can be approximated well
by piecewise polynomials. The poles at infinity added by the pole-pruning process of
Section 3.2.1 usually suffice, although extra poles at infinity can be added if necessary.

Once (48) has been solved, a rational function is fitted to an estimate of the boundary

values of W̃ (z),

W̃ (z) ≈ f(z)−
J−1∑

j=1

Aj log

∣∣∣∣∣
z − zΩj
z − zΩJ

∣∣∣∣∣+ iV̂ (z), z ∈
J⋃

j=1

Γj = Γ. (49)

The real part is estimated as f(z), the known values of Re[W (z)] on the boundaries, with

the real part of the logarithmic terms subtracted. The estimate for Im[W̃ (z)] is V̂ (z),

given by (14), and it remains as it was for the simply-connected problem when W̃ (z) and
W (z) were the same.

5. Exterior Neumann problem

Now consider the case when the normal derivative of the potential on the boundary
is prescribed. For brevity, we discuss only the exterior problem, which can be formulated
as

∇2U(x, y) = 0, for all (x, y) /∈
J⋃

j=1

Ωj ,

∂U

∂n

∣∣∣∣
on Γj

= fj ,

lim
|z|→∞

U(x, y)|z| <∞, z = x+ iy,

(50)

where the Ωj are again simple disjoint domains bounded by the Γj . This problem is
uniquely solvable if and only if

J∑

j=1

∫

Γj

fj(z)|dz| = 0. (51)

The approach we adopt for this problem follows [37, §32]. As in the exterior Dirichlet
problem, we seek the solution as the real part of a function W (z) that is holomorphic

outside the Ωj , and which can be written as a sum of a single-valued part, W̃ (z), and J
logarithmic terms. In this case, however, the logarithmic terms are known in advance:

Aj = − 1

2π

∫

Γj

fj(z)|dz|, (52)
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and they can be subtracted from the boundary data. After this subtraction,

f̃j(z) = fj(z)−
J∑

j=1

Aj log
∣∣z − zJj

∣∣ , (53)

can be used to write a Neumann boundary condition for Re
[
W̃ (z)

]
. Denoting W̃ (z) =

Ũ(z) + iṼ (z), this condition reads,

∂Ũ

∂n

∣∣∣∣∣
on Γj

= f̃j . (54)

If W̃ (z) is approximated by a weighted combination of dipole potentials, it becomes
inconvenient to enforce (54) directly, as the differentiation increases the order of the
poles. Instead, we integrate (54) with respect to arc-length and use the Cauchy-Riemann
equations to obtain,

Ṽ (z) =

∫ z

zj

f̃j(z)|dz|+ vj ≡ Fj(z) + vj , (55)

where the integration is along Γj , from an arbitrary point zj to the point z, and the

vj are constants yet to be determined. Finding a harmonic function Ṽ that satisfies
the boundary condition (55) is known as a modified Dirichlet [37] or Muskhelishvili [58]
problem, and given the condition at infinity in (50), it is solvable only for a unique set

of vj constants. These can be determined along with an approximate solution for Ṽ , by
solving

Nout∑

n=1

aRnφ
I
n(z) + aInφ

R
n (z)− vj ≈ Fj(z), for z ∈ Γj, (56)

for the aRn , the a
I
n, and the vj . As before, (56) is solved in the least-squares sense after

sampling the basis functions at quadrature nodes and weighting the equations by the
square roots of quadrature weights. Once (56) is solved, the rational fitting algorithm is

applied to an estimate of the boundary values of W̃ (z) given by,

W̃ (z) ≈
Nout∑

n=1

aInφ
I
n(z) + aRnφ

R
n (z) + i [Fj(z) + vj ] , for z ∈ Γj . (57)

As expected, in the Neumann problem, it is the imaginary part of the complex potential
that is prescribed by the boundary data (up to J additive constants), while its real part
and the J constants are estimated iteratively. Note that the n = 0 term corresponding
to the constant basis function is omitted from the sum in (57) so as to conform with the
boundary condition at infinity in (50).

The formulation just described differs from one that is commonly used for Neumann
problems in integral-equation formulations (e.g., in [38]). These formulations typically
use a single-layer potential so that enforcing the boundary condition of (50) leads to a
second-kind Fredholm equation. We could have formulated our solution similarly, i.e., by

18



representing the potential as a weighted combination of monopole potentials. Enforcing
the boundary condition would then lead to a weighted combination of dipole potentials
approximating the normal derivative of U . The chosen formulation does have some
advantages, however. First, the functions to be approximated, the Fj(s), are smoother
than the fj(s), so fewer basis functions may be needed for their approximation. Second,
a common situation in Neumann problems is that the Aj of (52) are zero, so that the
complex potential W (z) is single valued. This occurs when the boundary is composed
of a single contour, or when the Ωj represent impenetrable objects. In these cases, it is
convenient to approximate W (z) using single-valued basis functions, instead of having
a superposition of non-single-valued functions that can be made single-valued by an
appropriate choice of branch cuts, as would occur if monopoles were used. For instance,
using the proposed formulation, it is easy to obtain equipotential contours and field lines
as the level sets of Re [W (z)] and Im [W (z)], without having to keep track of the proper
Riemann-sheet on which to evaluate the logarithmic kernel.

6. Large-scale problems

The proposed algorithm for setting the poles and testing-points works well for moderately-
sized geometries, but its computational cost is too high for larger ones. However, it is
still possible to tackle large-scale problems by partitioning the geometry into smaller
domains and running the algorithm for each of these domains separately, possibly in
parallel. Once the poles and testing points are obtained for the entire geometry, we
solve the full problem with the locally-optimized poles and testing points. If the cost
of solving the full problem becomes prohibitive, it may be possible to use an iterative
domain-decomposition approach, along the lines of [59], [60], or [61], which could also be
used to improve the locations of the poles and testing points from one iteration to the
next.

We propose a scheme for geometries made up of a large number of simple closed
curves. The scheme consists of partitioning the boundary curves into clusters so that
each curve belongs to a single cluster, as shown in Fig. 5. Various algorithms for obtaining
such a partition exist, and we use the simplest one, the k-means clustering, or Lloyd’s,
algorithm [62]. To keep the partitioning simple, each curve is entirely within one cluster
and represented by its centroid, on which the clustering algorithm operates. Then, to
each cluster we add a “buffer region,” as shown in Fig. 5, so that curves close to the edge
of the cluster have all their nearby interactions taken into account. The buffer region is
obtained by adding to each curve all the curves with centroids closer than some radius,
and this radius is chosen as twice the distance to the nearest centroid among all other
curves. Poles that, after the local optimization, are found inside the buffer region are
not used when solving the full problem.

7. Numerical results

The proposed method was implemented in Matlab, and results for a number of sample
problems were obtained. This implementation, which is freely available for download [63],
was run on a 2GHz Intel Xeon machine with 8GB of RAM. The error metric adopted in
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Figure 5: Boundary curves partitioned into three clusters with buffer regions (delimited
by dashed lines).

this work is ∆E,

∆E =
‖û− f‖w
‖f‖w

, (58)

where f and û are vectors of samples at the quadrature points of the exact and ap-
proximate boundary values, respectively. The ‖ · ‖w norm includes multiplication by the
quadrature weights, so that it is an approximation of the continuous norm. The residual,
Û − U , is itself a harmonic function throughout Ω and hence is largest at the boundary.
We also used the maximum-norm error,

∆Emax =
max
z∈Γ

∣∣∣f(z)− Û(z)
∣∣∣

||f(z)||L2(Γ)/||1||L2(Γ)
, (59)

where ||1||L2(Γ) is just the length of Γ. In practice, we estimated ∆Emax by sampling f

and Û on a large number of points on the boundary.

7.1. Interior Dirichlet Problem

Problems of increasing difficulty were considered. Where applicable, results were
compared to results obtained with the standard Nyström method, implemented along
the lines of [38]. However, we have not compared with more sophisticated Nyström
schemes, such as those of [1, 2, 5, 6], which have been recently proposed for handling
more “difficult” geometries and excitations.

7.1.1. A few well-separated poles

We begin with the simplest problems, in which the exact solution is known in advance
to have just a few, well-separated, poles, i.e.,

f(z) = Re

[
N0∑

k=1

a0k
z′k − z

]
, z′k /∈ Ω, z ∈ Γ (60)
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Although this excitation suits our basis functions perfectly, the solution obtained is not
always very accurate even if N = N0. If the estimate of Im [W (z)] is inaccurate enough,
the poles may be relocated to poor positions, and using these poles will not lead to a
more accurate estimate of Im [W (z)]. This problem can be alleviated by using N > N0,
though the number of poles that must be added beyond N0 depends on the location of
the poles of the solution and also on the shape of the boundary. This dependence is
explored below.

A plot of error vs. iteration count is shown in Fig. 6, for an ellipse with unit semi-
major axis and an aspect ratio of two, and boundary data as in (60) with N0 = 6, a0k =
k/N0, and z′k = 1.5 exp [iπ(2k + 1)/6]. When N = N0, the error does not decrease
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Figure 6: Error vs. iteration for an ellipse and 6-pole boundary data. One of the poles
remains inside the ellipse, both for N = 6 and N = 7.

much below 0.1%, but when N = N0 +1, the error drops exponentially, approaching the
machine epsilon after 45 iterations. The reason for this dramatic difference in accuracy is
that when N = N0, a single pole remains inside Ω and the estimate of Im[W (z)] obtained
with the remaining five poles is not accurate enough to make it migrate outside of Ω.
Consequently, the improvement in accuracy stalls. In contrast, when N = N0 + 1, the
extra pole allows for a better approximation of the imaginary part and six poles appear
outside of Ω. They are then relocated until the error approaches the machine epsilon.

A natural possibility is to increase N adaptively, whenever the improvement in ac-
curacy stalls. For example, one can calculate σK(∆E), the standard deviation of ∆E in
the previous K iterations, and add a pole whenever

σK(∆E) < µK(∆E)ǫ, (61)

where µK(∆E) is the K-average of ∆E and ǫ is a small number. A more sophisticated
strategy might be found along the lines of [57], which could also be used to decrease the
number of poles if necessary. We have implemented the simple strategy with K = 5 and
ǫ = 0.5%, which appears to yield a practical tradeoff between the conflicting goals of
only adding poles when necessary, and keeping the number of iterations moderate. This
adaptive scheme, which makes the algorithm fully automatic, is available as part of the
downloadable package [63]. However, to keep the results section concise, we only show
results for the nonadaptive version.
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We consider next boundary curves of the form,

z(s) = [1/γ + (1/γ − 1) cos(2πνs)] ej2πs, s ∈ [0, 1] (62)

with γ = 1.75, and ν = 2, 4, 6. A plot of the ν = 6 curve is shown in Fig. 7, together
with a set of ten points distributed on a circle of radius R, which represent the poles of
the boundary data. This radius was set to 1.1, 1.5, and 3, while the number of poles was

R

r1 = 1

r2 = 2/γ − 1

r2

r1

2π

ν

Figure 7: Boundary curve and poles of boundary data used in Table 1.

kept to ten. The algorithm was run for a maximum of 100 iterations and we determined
the smallest N required so that ∆E < 10−14 when the algorithm stops. The results of
this experiment are summarized in Table 1 where this value of N is given, together with
∆Emax, estimated by evaluating the approximate solution at 20000 boundary points. In

Table 1: Results for boundary curves as in Fig. 7.

❍
❍
❍
❍
❍

R
ν 2 4 6

∆Emax N ∆Emax N ∆Emax N

1.1 8.8× 10−15 10 1.4× 10−14 11 1.6× 10−14 14

1.5 3.1× 10−15 18 5.6× 10−15 22 8.3× 10−15 18

3 4.3× 10−15 25 7.8× 10−15 27 1.4× 10−14 29

all cases, ∆Emax is of the same order of magnitude as the tolerance for ∆E, although
in a few cases it is slightly larger than 10−14. We see that, in contrast to conventional
desingularized- and integral-equation- methods, the proposed method works best when
the poles of f are close to the boundary, adding only a few spurious poles during the
solution. Evidently, when the poles are further away their locations are more difficult to
ascertain. We note that ν has only minor influence on N .
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7.1.2. Almost-singular boundary data

When the boundary data is singular, or almost so, the accuracy of most numerical
methods suffers. A possible remedy is to add basis functions that can approximate
the singular boundary data to the set of basis functions being used (for an example in
the context of desingularized methods, see [64]). In the proposed method this happens
automatically, as the basis functions are chosen from a large over-complete set. In the
next example, the boundary is an ellipse with unit semi-minor axis, and an aspect ratio
of two, and the boundary data is,

f(z) = Re

{
exp

[
1

z − 1.01

]}
, z ∈ Γ. (63)

This implies that the exact complex potential has an essential singularity very close to
the boundary. Nevertheless, errors on the order of ∆Emax = 10−11 are obtained with no
more than 25 poles (Fig. 8). These errors could not be reduced further, and in fact, as
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Figure 8: Almost-singular boundary data. Comparison of the error vs. number of basis
functions (2N) obtained with the proposed method and the Nyström method.

more poles are added the error increases slightly. Compared to the proposed algorithm,
the Nyström method yields very large errors, and its convergence rate is very slow. For
200 collocation points the Nyström method yields ∆Emax = 0.38, and, outside the range
of the figure, 1000 collocation points still yield only ∆E = 0.05.

Of course, for the same number of basis functions, the computation time of the
Nyström method is shorter by a factor related to the number of pole relocation iterations.
Even so, the Nyström method is more time-consuming in this example for any reasonable
accuracy. For example, for ∆E = 0.05, the Nyström method takes about 6s, while the
proposed method takes 2.5s and it uses five poles. For higher accuracies the differences
increase and it quickly becomes impractical to use a direct solver with the Nyström
method. If the boundary data is smoother, for example, if the essential singularity is
moved to z = 1.1, the Nyström method can be faster. It requires 0.9s and N = 400 for
∆E = 10−5, whereas the proposed method requires 2.5s and five poles to achieve the
same accuracy.

At each point on the error curves in Fig. 8 we calculated the error of anN -pole solution
and a 2N -point Nyström solution, so as to match the number of basis functions. The
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maximum error for both the Nyström method and the proposed method was calculated by
evaluating the approximate potential on 8N boundary points. To obtain this potential
in the Nyström method we used a 8N × 8N collocation matrix, which multiplies the
double-layer density interpolated trigonometrically for its values at the 8N points.

7.1.3. Almost-sharp corners

The influence of the shape of the boundary in the previous examples is limited to
determining where the solution is sampled; it does not influence the location of poles of
the solution as these are set by the boundary data. In the next example, we consider
a Green’s-function type problem, where a boundary curve of form (62) with ν = 2 is
excited by a monopole potential,

f(s) = log |z(s)|. (64)

As the parameter γ → 2 in (62) the problem becomes more difficult, because the minimal
radius of curvature decreases, and also the sharp tips of the boundary approach the
monopole and each other. A solution of this problem with γ = 1.9, obtained with 35
poles is shown in Fig. 9. The inhomogeneous distribution of poles and testing points is

N = 35
K = 343
∆E = 7×10−5

Iterations: 35
Time: 5.1s

Figure 9: Equipotential contours (logarithmically spaced) and field lines for a monopole
inside the curve: z(s) = [1/1.9 + (1/1.9− 1) cos(4πs)] ej2πs. The poles of the solution are
marked by green circles, with centers colored according to the magnitude of the residues
(darker means larger residues). The testing points are marked by blue dots.

clearly necessary in order to approximate the rapidly varying field where the radius of
curvature is small. To calculate the testing points, the boundary was parameterized by
a single polynomial in s, of degree 34, which approximates f(s) to machine precision.
Equipotential contours and field lines are also shown in Fig. 9. These were obtained as
the level sets of Re [W (z)] and Im [W (z)] by use of Matlab’s ‘contour’ command. The
evaluation of W (z) throughout Ω is trivial, as it only requires the summation of the
partial-fraction expansion for W (z). This may be contrasted with the more elaborate
schemes needed to evaluate integral equation solutions throughout the domain, especially
close to the boundary (see, e.g., [1]).

Plots of ∆Emax vs. N are shown in Fig. 10 for curves with γ = 1.5, 1.75, 1.9, together
with results obtained with the Nyström method. The points for the Nyström method
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Figure 10: Comparison of the proposed algorithm and the Nyström method for boundary
curves with decreasing minimal radius of curvature. The difference between the methods
is more significant for smaller minimal radius of curvature.

were distributed uniformly in the parameter s of (62), implying a higher density near
the origin, which helps in resolving the rapid variation in the double-layer density there.
The proposed algorithm was allowed to run for a maximum of 100 iterations, though the
poles stopped moving after roughly 50 iterations. The rate of convergence with respect
to the number of poles is approximately exponential, and the minimal error obtained
is similar to that of the Nyström method. It is also evident that the proposed method
generally yields a more accurate solution per basis function than the Nyström method,
and that the difference between the two increases with γ.

7.1.4. Perfectly sharp corners

When the boundary has sharp corners, the potential may have singularities at the
corners, making it impossible to represent with simple poles alone. It is still possible,
however, to obtain very good approximate solutions with a moderate number of poles.
Such an example is shown in Fig. 1b, and another one is shown in Fig. 11. As can be
observed in both figures, the poles and testing points cluster near the reentrant corners,
and appear to be approximating a branch-cut which exists in the analytical continuation
of the solution (see [43] for a discussion of the curves on which poles cluster when ap-
proximating algebraic functions by rational functions). The distribution of poles near the
reentrant corner is examined in Fig. 12, where the poles are plotted in descending order
of distance from the corner, for a solution with 82 poles of the L-shaped boundary. The
distances, which are normalized with respect to the distance of the exciting line-source
from the corner, are seen to decrease at an almost constant exponential rate, with the
closest poles clustered even more densely. The closest pole is placed at a normalized
distance of about 10−11, indicating that poles must be located very precisely if high
accuracy is to be achieved. Moreover, it seems inevitable that the testing points must
also be adapted so that they are located with comparable precision. One might wonder
whether the sharp turn in the equipotential lines near the corner is achieved with poles
having large residues of differing phases. As shown in Fig. 12, this is not the case. Al-
though the residues have absolute values that span 19 orders of magnitude, the smallest
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N = 30
M = 230
∆Emax = 1.8× 10−5

Iterations: 60
Time: 3.2s

∆Emax = 1.8 × 10−5

Dipoles

Testing points

Figure 11: Equipotential contours (logarithmically spaced) and field lines for a monopole
inside an L-shaped domain.

ones correspond to the closest poles.
We now examine the convergence of the algorithm with N (Fig. 13). As seen in

Fig. 13a, the dependence of the error on N is not as smoothly exponential as in the pre-
vious examples. This more uneven error decrease is due to inaccuracies in the imaginary
part that result in poles converging to locations inside Ω. For example, when N = 20
four of the poles remain inside Ω, while when N = 30 all poles move outside of Ω. As a
result, ∆E decreases by more than two orders of magnitude when going from N = 20 to
N = 30. As shown in Fig. 13b, the condition number increases with N , but the norm of
the vector of residues (normalized with respect to N) decreases. This is similar to [25], in
which such behavior was observed when the sources enclosed all the singularities of the
analytic continuation of the potential. It is remarkable that this occurs in the present
example as the potential cannot be continued analytically beyond the corners.

7.2. Exterior Dirichlet problem

The exterior Dirichlet problem differs from the interior problem by the presence of
logarithmic terms in the former. Also, the region in which the poles may be placed
in the exterior problem is bounded, which probably makes their location easier. A
typical difficulty in exterior problems occurs when the boundary is composed of two or
more curves that nearly touch. An example of this sort consists of two circular curves
with boundary values −1 on the lower curve and +1 on the upper one, and relative
separations d/R = 0.01, 0.1, 0.5, as shown in Fig. 14. This example has an analytic
solution [65] to which we may compare the results. Specifically, seen as a two-conductor
electrostatic problem, a global parameter of interest is the capacitance, proportional to
the magnitude of the logarithmic terms, and a local parameter of interest is the charge
density, proportional to the normal derivative of the potential. As can be seen in Fig. 14,
for both of these parameters, the proposed method requires far fewer degrees of freedom
than the Nyström method, and this difference increases as the conductors approach.
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Figure 12: Distances to reentrant corner, normalized with respect to the distance of
the exciting line-source from the corner, and corresponding absolute value of residues,
normalized with respect to the largest one.

Also of note is that the proposed method is far less sensitive to the separation between
conductors. To a good approximation, the N needed to achieve a given error scales like
1/d when using the Nyström method, but it scales like log(1/d) when using the proposed
method.

7.3. Large-scale problems: exterior Neumann example

In the last example, we solve a Neumann problem of potential flow around impenetra-
ble ellipses of random radius, eccentricity, and orientation, many of which are very close
to one another. This geometry was generated by a simple modification of the method
described in [1] for generating a distribution of random circles. The velocity field far
from the ellipses is assumed uniform, of unit amplitude, and in the x direction. The
corresponding BVP is then given by (50) with fj(z) = − cos [θj(z)] where θj(z) is the
angle between the outward-pointing normal to the jth curve and the x axis.

We use the partitioning scheme of Section 6 and set the number of clusters so that
each cluster has only a few ellipses. Thus, the run-time and memory requirements for
each cluster are kept very moderate. For example, for a geometry with 100 ellipses, we
used ten clusters, with the largest cluster having 13 ellipses (not including the ones added
as buffers). For each cluster, we used three poles per ellipse (including the ones used
as buffers), and stopped the algorithm if the error dropped below 1% or 100 iterations
were exhausted. The algorithm was run in parallel on four cores of a desktop PC, using
Matlab’s parallel computing toolbox, and the run-time for determining the pole and
testing point locations was 87s. We then assembled a linear system of size 4832 × 706
with the poles and testing-points of all clusters and solved it by QR decomposition in 5s.
The error of this solution was ∆E = 0.013, slightly higher than the error tolerance for
each cluster. The largest geometry solved, which consisted of 300 ellipses, is shown in
Fig. 15, together with computed flow lines. Here we used 35 clusters, and the run-time
for determining the pole and testing points was 9 minutes. The resulting linear system
was of size 14581× 2150. Although fairly large, this system has, on average, 7.2 degrees
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Figure 13: L-shaped domain, monopole excitation. Despite singularities on the boundary,
errors smaller than 10−10 can be obtained with no more than 100 poles (a). Also,
although the condition number increases with N , the norm of the vector of residues
(normalized with respect to N) decreases with N (b).
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Figure 14: Two closely-spaced curves. Full lines, N -pole solution. Dashed lines, 2N
Nyström solution. The accuracy of the proposed method is far less sensitive to the
separation between circles than the Nyström method.

of freedom per curve, and it was solved in 2 minutes by QR decomposition. The error
tolerance for each cluster was again ∆E < 0.01 and the error of the full solution was
∆E = 0.014.

8. Summary

In this paper, we describe an algorithm for solving 2D Laplace BVPs with a desin-
gularized method. The algorithm is based on rational-function fitting techniques, and
it uses rational Gauss-Chebyshev quadrature rules to locate testing points at which the
boundary conditions are enforced in a least-squares sense. To use these rules, the bound-
ary curves are parameterized by piecewise-rational functions, which can be used to ap-
proximate quite arbitrary boundary curves. The algorithm can be viewed as an adap-
tive desingularized method, in which the sources are not restricted to curves conformal
with the boundary curves, but can be placed anywhere outside the BVP domain. This
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Figure 15: Stream lines around 300 ellipses. Calculation using the partitioning scheme
took 11 minutes on a single 2Ghz PC with a four-core processor.

added flexibility allows the method to adapt to difficult boundary geometries and almost-
singular boundary data, yielding solutions with errors approaching the machine epsilon
for a relatively small number of degrees of freedom. Examples shown include boundaries
with sharp and almost-sharp corners, boundary data that is derived from functions with
essential singularities, and boundary curves that nearly touch. We also described a par-
titioning scheme, in which pole optimization is limited to curves within a cluster, that
can be used to tackle large-scale problems.

As the proposed method relies on a correspondence between analytic functions in
the complex plane and harmonic functions, and on properties of rational functions, it
may be difficult to generalize to 3D Laplace problems. On the other hand, generalizing
the method for 2D Helmholtz or Biharmonic BVPs appears more straightforward. The
general solution of the Biharmonic equation can be expressed in terms of two functions
that are analytic throughout the BVP domain, and rational functions could be used for
their approximation. For Helmholz BVPs, it may be possible to exploit a connection be-
tween the singularities of the analytic continuations of solution to Helmholtz and Laplace
BVPs with the same boundary data. For exterior problems, it was shown in [66] that
the convex hull of singularities of Helmholtz and Laplace BVPs are the same, assuming
the same boundary data. Therefore, the location of poles in a Laplace problem can serve
as a guide for the location of sources in a Helmholtz problem (see [67] for an example of
this idea). In particular, locating the Helmholtz sources so that they enclose the convex
hull of singularities of the Laplace problem guarantees that all of the singularities of
the Helmholtz problem are enclosed. According to the conjectures in [25], which have
recently been proved [30], this guarantees exponential convergence.
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Appendix A. Iterated rational fitting

The IRF method we use is based on a variant of [46] presented in [49]. As explained

in Section 2.2, we seek a rational function P/Q that approximates Ŵ , and we do so by
solving weighted linear least-squares problems of the from (21). Using the quadrature
rules of Section 3.2, we discretize the continuous norm in (21) and write the minimization
problem as,

min
a,b

K∑

k=1

N∑

n=0

√
λk

Q̂(zk)

∣∣∣bnznk − anz
n
k Ŵ (zk)

∣∣∣ (A.1)

in which the unknowns are the monomial coefficients of P (z) and Q(z), denoted b and
a, respectively. To avoid the trivial solution, a normalization condition, to be specified
below, must be imposed on one of the polynomials.

Let us rewrite (A.1) in matrix form, using the notation

Λ = diag(λ1, λ2, . . . , λK),

Q̂ = diag
[
Q̂(z1), Q̂(z2), . . . , Q̂(zK)

]
,

Ŵ = diag
[
Ŵ (z1), Ŵ (z2), . . . , Ŵ (zK)

]
, (A.2)

Vkn = znk , n = 0, 1, . . . , N,

c =

[
b

a

]
.

We obtain,

min
c

∣∣∣
∣∣∣Λ 1

2 Q̂−1
[
V,−ŴV

]
c

∣∣∣
∣∣∣ . (A.3)

The conditioning of the Vandermonde matrix, V, can be very poor (sampling points on
the real line, for example), or very good (sampling points on the unit circle, for example),
and this can affect the conditioning of the minimization problem (A.3). To deal with this

problem, we construct two orthonormal bases, one for the column space ofA = Λ
1

2 Q̂−1V

and one for the column space of B = Λ
1

2 Q̂−1ŴV. This can be done with the Arnoldi
iteration [68, 69], by noting that the columns of A form a Krylov subspace,

K = span[d,Zd,Z2d, . . . ,ZNd], (A.4)
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where Z = diag (z1, z2, . . . , zK) and d = diag(Λ
1

2 Q̂−1), and similarly for the columns of
B. Once we have constructed the orthonormal bases,

colsp(P) = colsp(A), P†P = I (A.5)

colsp(Q) = colsp(B), Q†Q = I, (A.6)

we rewrite (A.3) in the new basis,

min
c̃

||[P,−Q] c̃|| , (A.7)

and impose the normalization condition c̃2N = 1, which corresponds to Q(z) being monic
in the new basis. The solution of the minimization problem is then obtained by solving
the over-determined linear system

[P,−Q1:N−1]c̃ = QN (A.8)

in the least-squares sense. In (A.8), we denote the column corresponding to the Nth-
degree polynomial basis function by QN , while the rest of the Q matrix is denoted by
Q1:N−1. The numerical stability of (A.7) is generally much better than that of (A.3), as
the unknowns are coefficients of two sets of orthonormal columns.

Once (A.3) is solved, the zeros of Q(z), which are the poles for the next iteration, can
be obtained without transforming back to the monomial basis. They are the eigenvalues
of a generalized companion matrix [46],

C = H1:N,1:N −HN+1,N c̃N+1:2N eTN , (A.9)

where eN is theN th column of the order-N identity matrix andH is the upper Hessenberg
matrix obtained from the Arnoldi iteration used to generate the orthonormal basis for
colsp(B).

Appendix B. Determining whether a pole is inside D

When a pole is close to the boundary, or the boundary shape is complicated, it may
be nontrivial to find out whether a pole is inside D or not. By restricting ourselves to
boundaries described by piecewise rational functions, a solution to this problem is readily
obtained. Using Cauchy’s theorem, a pole z′ is inside D if and only if

∫

C

1

z − z′
dz =

∫ 1

0

1

z(s)− z′
dz(s)

ds
ds = 2πi (B.1)

This integral cannot be calculated exactly using the rational Gauss-Chebyshev rules
because the Chebyshev weight function is absent. However, it can be calculated analyti-
cally by breaking it up into rational-function sections, writing the integrands as rational
functions, and using a partial-fraction expansion.
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