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ABSTRACT

Relational databases benefit significantly from elasticity,
whereby they execute on a set of changing hardware re-
sources provisioned to match their storage and processing re-
quirements. Such flexibility is especially attractive for scien-
tific databases because their users often have a no-overwrite
storage model, in which they delete data only when their
available space is exhausted. This results in a database that
is regularly growing and expanding its hardware proportion-
ally. Also, scientific databases frequently store their data
as multidimensional arrays optimized for spatial querying.
This brings about several novel challenges in clustered, skew-
aware data placement on an elastic shared-nothing database.

In this work, we design and implement elasticity for an
array database. We address this challenge on two fronts:
determining when to expand a database cluster and how
to partition the data within it. In both steps we propose
incremental approaches, affecting a minimum set of data
and nodes, while maintaining high performance. We in-
troduce an algorithm for gradually augmenting an array
database’s hardware using a closed-loop control system. Af-
ter the cluster adds nodes, we optimize data placement for
n-dimensional arrays. Many of our elastic partitioners incre-
mentally reorganize an array, redistributing data only to new
nodes. By combining these two tools, the scientific database
efficiently and seamlessly manages its monotonically increas-
ing hardware resources.

1. INTRODUCTION
Scientists are fast becoming first-class users of data man-

agement tools. They routinely collect massive amounts of
data from sensors and process it into results that are spe-
cific to their discipline. These users are poorly served by
relational DBMSs; as a result many prefer to roll their own
solutions. This ad-hoc approach, in which every project
builds its own data management framework, is detrimental
as it exacts considerable overhead for each new undertak-
ing. It also inhibits the sharing of experimental results and
their techniques. This problem is only worsening as science
becomes increasingly data-centric.
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Such users want to retain all of their data; they only selec-
tively delete information when it is necessary [11, 30]. Their
storage requirements are presently very large and growing
exponentially. For example, the Sloan Digital Sky Survey
produced 25 TB of data over 10 years. The Large Synoptic
Survey Telescope, however, projects that it will record 20
TB of new data every night [16]. Also, the Large Hadron
Collider is on track to generate 25 petabytes per year [1].

Scientists use sensors to record a physical process, and
their raw data is frequently comprised of multidimensional
arrays. For example, telescopes record 2D sets of pixels
denoting light intensity throughout the sky. Likewise, seis-
mologists use sensor arrays to record data about subsurface
areas of the earth. Simulating arrays on top of a relational
system may be an inefficient substitute for representing n-
dimensional data natively [29].

Skewed data is a frequent quandary for scientific databases,
which need to distribute large arrays over many hosts. Zipf’s
law observes that information frequently obeys a power dis-
tribution [33], and this axiom has been verified in the physi-
cal and social sciences [26]. For instance, Section 3.2 details
a database of ship positions; in it the vessels congregate in
and around major ports waiting to load or unload. In gen-
eral, our experience is that moderate to high skew is present
in most science applications.

There has been considerable research on elasticity for rela-
tional databases [14, 13, 18]. Skew was addressed for elastic,
transactional workloads in [27], however this work supports
neither arrays nor long-running, analytical queries. Our
study examines a new set of challenges for monotonically
growing databases, where the workload is sensitive to the
spatial arrangement of array data.

We call this gradual expansion of database storage re-
quirements and corresponding hardware incremental elas-

ticity, and it is the focus of this work. Here, the number of
nodes and data layout are carefully tuned to reduce work-
load duration for inserts, scale out operations, and query
execution.

Incremental elasticity in array data stores presents several
novel challenges not found in transactional studies. While
past work has emphasized write-intensive queries, and man-
aging skew in transactions, this work addresses storage skew,
or ensuring that each database partition is of approximately
the same size. Because the scientific database’s queries are
read-mostly, its limiting factor is often I/O and network
bandwidth, prioritizing thoughtful planning of data place-
ment. Evenly partitioned arrays may enjoy increased paral-
lelism in their query processing. In addition, such databases
benefit significantly from collocating contiguous array data,
owing to spatial querying [29]. Our study targets a broad
class of elastic platforms; it is agnostic to whether the data
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is stored in a public cloud, a private collection of servers that
grow organically with load, or points in between.

We research an algorithm that determines when to scale
out an elastic array database using a control loop. It evalu-
ates the recent resource demand from a workload, and com-
pensates for increased storage requirements. The algorithm
is tuned to each workload such that it minimizes cluster cost
in node hours provisioned.

The main contributions of this work are:

• Extend partitioning schemes for skew-awareness, n-
dimensional clustering, and incremental reorganization.

• Introduce an algorithm for efficiently scaling out sci-
entific databases.

• Evaluate this system on real data using a mix of science-
specific analytics and conventional queries.

This paper is organized as follows. The study begins with
an introduction to the array data model and how it affects
incremental elasticity. Next, we explore two motivating use
cases for array database elasticity, and present a workload
model abstracted from them. Elastic partitioning schemes
immediately follow in Section 4. Section 5 describes our
approach for incrementally expanding a database cluster.
Our evaluation of the partitioners and node provisioner is in
Section 6. Lastly, we survey the related work and conclude.

2. ARRAY DATA MODEL
In this section, we briefly describe the architecture on

which we implement and evaluate our elasticity. Our pro-
totype is designed for the context of SciDB [2]; its features
are detailed in [10]. It executes distributed array-centric
querying on a shared-nothing architecture.

An array database is optimized for complex analytics. In
addition to select-project-join queries, the system caters to
scientific workloads, using both well known math-intensive
operations and user-defined functions. Singular value de-
composition, matrix multiplication, and fast fourier trans-
forms are examples of such queries. Their data access pat-
terns are iterative and spatial, rather than index lookups
and sequential scans.

SciDB has a shared-nothing architecture, which supports
scalability for distributed data stores. This loosely cou-
pled construction is crucial for high availability and flexible
database administration. The approach is a natural choice
for elasticity - such systems can simply scale out to meet
workload demand with limited overhead.

Scientists prefer a no-overwrite storage model [30]. They
want to make their experiments easily reproducible. Hence,
they retain all of their prior work, even when it is erroneous,
resulting in a monotonically growing data store.

Storage and query processing in SciDB is built from the
ground up on an array data model. Each array has dimen-
sions and attributes, and together they define the logical
layout of this data structure. For example, a user may de-
fine a 2D array of (x, y) points to describe an image.

An array has one or more named dimensions. Dimen-
sions specify a contiguous array space, either with a declared
range, or unbounded, as in a time series. A combination
of dimension values designates the location of a cell, which
contains any number of scalar attributes. The array’s dec-
laration lists a set of named attributes and their types, as in
a relational table declaration.
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Figure 1: Array example in a scientific database
with four 2x2 chunks.

Individual array cells may be empty or occupied, and only
non-empty cells are stored in the database. Hence the ar-
ray’s on disk footprint is a function of the number of cells it
contains, rather than the declared array size.

Scientists frequently query their data spatially, exploiting
relationships between cells based on their position in array
space. Therefore, chunks, or n-dimensional subarrays, are
the unit of I/O and memory allocation for this database.
In each array dimension, the user defines a chunk interval
or stride. This specifies the length of the chunk in logical
cells. Physical chunk size is variable, and corresponds to the
number of non-empty cells that it stores. A single chunk is
on the order of tens of megabytes in size [10].

SciDB vertically partitions its arrays on disk; each phys-
ical chunk stores exactly one attribute. This organization
has been demonstrated to achieve one to two orders of mag-
nitude speedup for relational analytics [31]. Array databases
exploit the same principles; their queries each typically ac-
cess a small subset of an array’s attributes.

The data distribution within an array is either skewed or
unskewed. The latter have approximately the same number
of cells in each of its chunks. In contrast, skewed arrays have
some chunks that are densely packed and others with little
or no data.

Figure 1 shows an example of an array in this database.
Its SciDB schema is:

A<i:int32, j:float>[x=1:4,2, y=1:4,2]

Array A is a 4x4 array with a chunk interval of 2 in each
dimension. The array has two dimensions: x and y, each
of which ranges from 1..4, inclusive. This schema has two
attributes: an integer, i, and a float named j. It stores 6 non-
empty cells, with the first containing (1, 1.3). The attributes
are stored separately, owing to vertical partitioning.

This array is skewed - the data primarily resides in the
center, and its edges are sparse. To balance this array among
two nodes, the database might assign the first chunk to one
host and store the remaining three on the other. Therefore,
each partition would serve exactly three cells.

In summary, the array data model is designed to serve
multidimensional data structures. Its vertically partitioned,
n-dimensional chunking is optimized for complex analytics,
which often query the data spatially. Its shared-nothing ar-
chitecture makes SciDB scalable for distributed array stor-
age and parallel query processing. In the next section, we
will discuss how this database serves two real scientific work-
loads.



3. USE CASES AND WORKLOAD MODEL
In this section, we examine two motivating use cases for

elastic scientific databases and present a benchmark for each.
The first consists of satellite imagery for modeling the earth’s
surface, and the second uses marine vessel tracks for oceanog-
raphy. We also introduce our cyclic workload model, which
is derived from the use cases. The model enables us to eval-
uate our elastic array partitioners and assess the goodness
of competing provisioning plans.

3.1 Remote Sensing
MODIS (Moderate Resolution Imaging Spectroradiome-

ter) is an instrument aboard NASA’s satellites that records
images of the entire earth’s surface every 1-2 days [3]. It
measures 36 spectral bands, which scientists use to model
the atmosphere, land, and sea.

We focus on the first two bands of MODIS data because
queries that model visible light reference them frequently,
such as calculating the land’s vegetation index. Each array
(or “band”) has the following schema:

Band<si_value:int, radiance:double, reflectance:double,
uncertainty_idx:int, uncertainty_pct:float,
platform_id:int, resolution_id:int>[time=0,*,1440,
longitude=-180,180,12, latitude=-90,90,12]

Both of our bands have three dimensions: latitude, longi-
tude and time. The time is in minutes, and it is chunked in
one day intervals. Latitude and longitude each have a stride
of 12◦. We elected this schema because its chunks have an
average disk footprint of 50 MB; this chunk size is opti-
mized for high I/O performance as found in [29]. This array
consists of measurements (si value, radiance, reflectance),
provenance (platform id, resolution), and uncertainty infor-
mation from the sensors. Taken together, they provide all of
the raw information necessary to conduct experiments that
model the earth’s surface. Inserts arrive once per day in
our experiments, this is patterned after the rate at which
MODIS collects data.

MODIS has a uniform data distribution. If we divide
lat/long space into 8 equally-sized subarrays, the average
collection of chunks is 80 GB in size with a standard devia-
tion of 8 GB. The data is quite sparse, having less than 1% of
its cells occupied. This sparsity comes about because scien-
tists choose a high fixed precision for the array’s dimensions,
which are indexed by integers.

3.2 Marine Science
Our second case study concerns ship tracks using the Au-

tomatic Identification System [23] from the U.S. Coast Guard.
We studied the years 2009-2012 from the National Oceanic
and Atmospheric Administration’s Marine Cadastre reposi-
tory [5]; the U.S. government uses this data for coastal sci-
ence and management.

The International Maritime Organization requires all large
ships to be outfitted with an AIS transponder, which emits
broadcasts at a set frequency. The messages are received by
nearby ships, listening stations, and satellites. The Coast
Guard monitors AIS from posts on coasts, lakes, and rivers
around the US. The ship tracks array is defined as:

Broadcast<speed:int, course:int, heading:int,
ROT:int, status:int, voyageId:int, ship_id:int,
receiverType:char, receiverId:string,
provenance:string>[time=0,*,43200,
longitude=-180,-66,4, latitude=0,90,4]

Broadcasts are stored in a 3D array of latitude, longitude
and time, where time is divided into 30-day intervals, and
recorded in minutes. The latitude and longitude dimensions
encompass the US and surrounding waters. Each broadcast
publishes the vessel’s position, speed, course, rate of turn,
status (e.g., in port, underway), ship id, and voyage id. The
broadcast array is the majority of AIS’s data, however it
also has a supporting vessel array. This data structure has
a single dimension: vessel id. It identifies the ship type,
its dimensions (i.e., length and width), and whether it is
carrying hazardous materials. The vessel array is small (25
MB), and replicated over all cluster nodes.

AIS data is chunked into 4◦x4◦x30 day subarrays; their
stored size is extremely skewed. The chunks have a me-
dian size of 924 bytes, with a standard deviation of 232
megabytes. Nearly 85% of the data resides in just 5% of
the chunks. This skew is a product of ships congregating
near major ports. In contrast, MODIS has only slight skew;
the top 5% of chunks constitute only 10% of the data. AIS
injects new tracks into the database once every 30 days, re-
flecting the monthly rate at which NOAA reports this data.

3.3 Workload Benchmarks
Our workloads have two benchmarks: one tests conven-

tional analytics and the other science-oriented operations.
The first, Select-Project-Join, evaluates the database’s per-
formance on cell-centric queries, which is representative of
subsetting the data. The science benchmark measures
database performance on domain-specific processing for each
workload, which often accesses the data spatially. Both
benchmarks refer to the newest data more frequently, “cook-
ing” the measurements into data products. The individual
benchmark queries are available at [4].

The MODIS benchmark extends the MODBASE study [28],
which is based on interviews with environmental scientists.
Its workload first interrogates the array space and the con-
tents of its cells generating derived arrays such as the nor-
malized difference vegetation index (NDVI). It then con-
structs several earth science specific projections, including
a model for deforestation and a regridding the sparse data
into a coarser, dense image.

AIS is used by the Bureau of Ocean Management to study
the environment. Their studies include coastline erosion
modeling and estimating the noise levels in whale migration
paths. We evaluate their use case by studying the density of
ships grouped by geographic region, generating maps of the
types of ships emitting messages, and providing up-to-date
lists of distinct ships.

3.3.1 Select-Project-Join

Selection: The MODIS selection test returns 1/16th of its
lat/long space, at the lower left-hand corner of the Band 1
array. This experiment tests the database’s efficiency when
executing a highly parallelizable operator. AIS draws from
the broadcast array, filtering it to a densely trafficked area
around the port of Houston, to assess the database’s ability
to cope with skew.
Sort: For MODIS, our benchmark calculates the quantile
of Band 1’s radiance attribute based on a uniform, random
sample; this is a parallelized sort and it summarizes the dis-
tribution of the array’s light measurements. AIS calculates a
sorted log of the distinct ship identifiers from the broadcast
array. Both of these operations test how the cluster reacts
to non-trivial aggregation.



Join: MODIS computes a vegetation index by joining its
two bands where they have cells at the same position in
array space. It is executed over the most recent day of data.
AIS generates a 3D map of recent ship ids and their their
type (e.g., commercial, military). It joins Broadcast with
the Vessel array by the ship id attribute.

3.3.2 Science Analytics

Statistics: MODIS’s benchmark takes a rolling average of
the light levels on Band 1 at the polar ice caps over the past
several days for environmental monitoring. AIS computes a
coarse-grained map of track counts where the ships are in
motion for identifying locations that are vulnerable to coast
erosion. Both are designed to evaluate group-by aggregation
over dimension space.
Modeling: The remote sensing use case executes k-means
clustering over the lat/long and NDVI of the Amazon rain-
forest to identify regions of deforestation. The ship tracking
workload models vessel voyage patterns using non-parametric
density estimation; it identifies the k-nearest neighbors for a
sample of ships selected uniformly at random, flagging high-
traffic areas for further exploration.
Complex Projection: The satellite imagery workload ex-
ecutes a windowed aggregate of the most recent day’s veg-
etation index, a MODBASE query. The aggregate yields
an image-ready projection by evaluating a window around
each pixel, where its sample space is partially overlapping
with that of other pixels, generating a smooth picture. The
marine traffic workload predicts vessel collisions by plotting
each ship’s position several minutes into the future based on
their most recent trajectory and speed.

3.4 Cyclic Workload Model
As we have seen, elastic array databases grow monoton-

ically over time. Scientists regularly collect new measure-
ments, insert them into the database, and execute queries
to continue their experiments. To capture this process, our
workload model consists of three phases: data ingest, reor-
ganization, and processing. We call each iteration of this
model a workload cycle.

Each workload starts with an empty data store, which
is gradually filled with new chunks. Both workloads insert
data regularly, prompting the database to scale out peri-
odically. Although the system is routinely receiving new
chunks, it never updates preexisting ones, owing to SciDB’s
no-overwrite storage model.

In the first phase, the data is received in batches, and each
insert is of variable size. For example, shipping traffic has
seasonal patterns; it peaks around the holidays. Bulk data
loads are common in scientific data management [12], as sci-
entists often collect measurements from sensors at fixed time
intervals, such as when a satellite passes its base station. In-
serts are submitted to a coordinator node, and it distributes
the incoming chunks over the entire cluster.

During this phase, the database first determines whether
the it is under-provisioned for the incoming insert, i.e., its
load exceeds its capacity. If so, the provisioner calculates
how many nodes to add, using the algorithm in Section 5. It
then redistributes the preexisting chunks, and finally inserts
the new ones using an algorithm in Section 4.

In determining when and how to scale out, the system
uses storage as a surrogate for load. Disk size approximates
the I/O and network bandwidth used for each workload’s

queries, since both are a function of their input size. Also,
storage skew strongly influences the level of parallelism a
database executes, making it a reliable indicator for both
workload resource demand and performance.

After new data has been ingested, the database executes
a query workload. In this step, the scientists continue their
experiments, querying both the new data and prior results,
and they may store their findings for future reference, further
expanding the database’s storage.

The elasticity planner in Section 5 both allocates sufficient
storage capacity for the database and seeks to minimize the
overhead associated with elasticity. We assess the cost of a
provisioning plan in node hours. Consider a database that
has executed φ workload cycles, where iteration i it has Ni

nodes provisioned, an insert time of Ii, ri for its reorganiza-
tion duration, and a query workload latency of wi. Hence,
this configuration’s cost is:

cost =

φ
∑

i=1

Ni(Ii + ri + wi) (1)

This metric sums the time for each iteration, and multiplies
it by the number of cluster nodes, computing the effective
time used by this workload. By estimating this cost, the
provisioner approximates the hardware requirements of an
ongoing workload.

4. ELASTIC PARTITIONERS FOR

SCIENTIFIC ARRAYS
Well-designed data placement is essential for efficiently

managing an elastic array database cluster. A good par-
titioner balances the storage load evenly among its nodes,
while minimizing the cost of redistributing chunks as the
cluster expands. In this section, we visit several algorithms
to manage the distribution of a growing collection of data
on a shared-nothing cluster.

In this work, we propose and evaluate a variety of range
and hash partitioners. Range partitioning stores arrays clus-
tered in dimension space, which expedites group-by aggre-
gate queries and ones that access data contiguously, as is
common in linear algebra. Also, many science workloads
query data spatially and benefit greatly from preserving the
logical layout of their inputs. Hash partitioning is well-
suited for fine-grained storage planning. It places chunks
one at a time, rather than having to subdivide planes in
array space. Hence, equi-joins and most “embarrassingly
parallel” operations are best served by hash partitioning.

4.1 Features of Elastic Array Partitioners
Elastic and global partitioners expose an interesting trade

off between locally and globally optimal partitioning plans.
Most global partitioners guarantee that an equal number of
chunks will be assigned to each node, however they do so
with a high reorganization cost, since they shift data among
most or all of the cluster nodes. In addition, this class of
approaches are not skew-aware; they only reason about log-
ical chunks, rather than physical storage size. Elastic data

placement dynamically revises how chunks are assigned to
nodes in an expanding cluster. It also makes efficient use
of network bandwidth, because data moves between a small
subset of nodes in the cluster.

Table 1 identifies four features of elastic data placement
for multidimensional arrays. Each of these characteristics



Partitioner Incremental Fine-Grained Skew- n-Dimensional
Scale Out Partitioning Aware Clustering

Append X X

Consistent Hash X X

Extendible Hash X X X

Hilbert Curve X X X

Incr. Quadtree X X X

K-d Tree X X X

Uniform Range X

Table 1: Taxonomy of array partitioners.

speeds up the database’s cluster scale out, query execution,
or both. The partitioning schemes in Section 4.2 implement
a subset of these traits.

Partitioners having incremental scale out execute a lo-
calized reorganization of their array when the database ex-
pands. Here, data is only transferred from preexisting nodes
to new ones, and not rebalanced globally. All of our algo-
rithms, except Uniform Range, bear this trait.

Fine-grained partitioning, in which the partitioner assigns
one chunk at a time to each host, is used to scatter storage
skew, which often spans adjacent chunks. Hash algorithms
subdivide their partitioning space with chunk-level granu-
larity for better load balancing. Such approaches come at a
cost, however, because they do not preserve array space on
each node for spatial querying.

Many of the elastic partitioners are also skew-aware, mean-
ing they use the present data distribution to guide their
repartitioning plans at each scale out. Skewed arrays have
chunks with great variance in their individual sizes. Hence,
when a reorganization is required, elastic partitioners iden-
tify the most heavily loaded nodes and split them, passing
on approximately half of their contents to new cluster ad-
ditions. This rebalancing is skew resistant, as it evaluates
where to split the data’s partitioning table based on the
storage footprint on each host.

Schemes that have n-dimensional partitioning subdivide
the array based on its logical space. Storing contiguous
chunks on the same host reduces the query execution time of
spatial operations [29]. This efficiency, however, often comes
at a load balancing cost, because the partitioners divide ar-
ray space by broad ranges.

4.2 Elastic Partitioning Algorithms
We now introduce several partitioners for elastic arrays,

each bearing one or more of the features in Table 1. These
partitioners are optimized for a wide variety of workloads,
from simple point-by-point access on uniformly distributed
data to spatial querying on skewed arrays.
Append: One approach for range partitioning an array
with efficient load balancing is an append-only strategy. Dur-
ing inserts, the partitioner sends each new chunk to the first
node that is not at capacity. The coordinator maintains a
sum of the storage allocated on the receiving host, spilling
over to the next one when its current target is full. Append is
analogous to traditional range partitioning because it stores
chunks sorted by their insert order. This partitioner works
equally well for skewed and uniform data distributions, be-
cause it adjusts its partitioning table based on storage size,
rather than logical chunk count.

Append’s partitioning table consists of a list of ranges, one
per node. When new data is inserted, the database generates
chunks at the end of the preexisting array. Adding a new
node is a constant time operation for Append; it creates a
new range entry in the partitioning table on its first write.

This approach is attractive because it has minimal over-
head for data reorganization. When a new node is added,
it picks up where its predecessor left off, making this an
efficient option for a frequently expanding cluster. On the
other hand, Append has poor performance if the cluster adds
several nodes at once, because it only gradually makes use
of the new hosts. Also, it is grouped by just one possible
dimension: time, using insert order, hence any other dimen-
sions are unlikely to be collocated. In addition, the append
partitioner may have poor query performance if new data
is accessed at more frequently, as in “cooking” operations
which convert raw measurements into data products. The
vegetation index in Section 3.3 is one such example.
Consistent Hash: For data that is evenly distributed
throughout an array, Consistent Hash [24] is a beneficial
partitioning strategy. This hash map is distributed around
the circumference of a circle. Nodes and chunks are hashed
to an integer, which designates their position on the circle’s
edge. The partitioner determines a chunk ci’s destination
node by tracing the edge, starting at ci’s hashed position.
The chunk is assigned to the first node it encounters.

When a new node is inserted, it hashes itself on the cir-
cular hash map. The partitioner then traces its map, re-
assigning chunks from several preexisting nodes to the new
addition. This produces a partitioning layout with an ap-
proximately equal number of chunks per node. It executes
lookup and insert operations in constant time, proportional
to the duration of a hash operation.

Consistent Hash strives to send an equal number of chunks
to each node. It does not, however, address storage skew.
Its chunk-to-node assignments are made independent of the
array’s data distribution. It also does not cater to spatial
querying, because its partitions using a hash function, rather
than the data’s position in array space.
Extendible Hash: Extendible Hash [19] is designed for
distributing skewed data for point querying. The algorithm
begins with a set of hash buckets, one per node. When the
cluster scales out, the partitioner splits the hash buckets of
the most heavily burdened nodes, partially redistributing
their contents to the new hosts.

The algorithm determines a chunk’s host assignment by
evaluating the bits of its hashed value, from least to most
significant. If the partitioner has two servers, the first host
serves all chunks having hashes with the last bit equal to
zero, whereas the remaining chunks are stored on the other
node. Subsequent repartitionings slice the hash space by
increasingly significant bits.

This approach uses the present data distribution to plan
its repartitioning operations, therefore it is skew-aware. Be-
cause it refers to a flat partitioning table, Incremental Hash
does not take into account the array’s multidimensional struc-
ture. This makes for a more even data distribution at the
expense of spatial query performance.
Hilbert Curve: For point skew, where small fragments of
array space have most of the data, we propose a partitioner
based on the Hilbert space-filling curve. This continuous
curve serializes an array’s chunk order such that the Eu-
clidean distance between neighboring chunks on the curve
is minimized. The algorithm assigns ranges of chunks based
on this order to each node, hence it partitions at a finer
granularity than approaches that slice on dimension ranges.

In its most basic form, the Hilbert Curve is only applicable
to 2D squares; our partitioner uses a generalized implemen-



tation of it for rectangles [32]. Like Extendible Hash, when
the cluster reaches capacity, it splits the most heavily bur-
dened node(s) at the median of their range. This scheme
does so at the granularity of a chunk, which may result in
better load balancing than dimension ranges.

This approach is optimized for skew, because it splits the
hottest partition one at a time, and it does so incrementally
by only reorganizing the most in-demand nodes. It facil-
itates spatial querying by serializing the chunks along the
space-filling curve.
Incremental Quadtree: The Quadtree is a tree data struc-
ture that recursively subdivides a 2D space into n-dimensional
ranges. It is so named because at each repartitioning, it
quarters the overloaded partition(s). This scheme is repre-
sented as a tree where each non-leaf node has exactly four
children [20]. The Quadtree is an example of the more gen-
eral binary space partitioners, which accommodate an arbi-
trary number of dimensions. If a Quadtree partitioner as-
signed one host to each of its leaf nodes, the algorithm would
not be capable of incremental scale out. Each time a node
reached capacity, the database would need to redistribute
its contents over four nodes, three of which are new.

To address this challenge, we propose an Incremental Quad-
tree. It has the flexibility to subdivide an array on arbi-
trary dimensions, while maintaining the logical array space.
The Incremental Quadtree selects the most loaded nodes for
splitting for scalable repartitioning decisions. When a node
is split, the partitioner decides how to most evenly redis-
tribute the data based on its four quarters.

If the splitting host is a single leaf node in the Quadtree,
the partition is quartered. The algorithm then identifies the
quarter or pair of adjacent quarters having their summed
size closest to half of the host’s storage and marks this sub-
array as a new partition. If the host has already been quar-
tered, the adjacent pair that is closest to halving the storage
becomes a new partition. This approach makes each node’s
partition reside at exactly one level of the Quadtree, making
contiguous chunks more likely to be stored together. It also
reacts directly to areas of skew, splitting on the dimension(s)
that are most heavily burdened.

The Incremental Quadtree has efficient scale out opera-
tions because in each repartitioning it only sends data to
newly provisioned nodes based upon its splits. It is opti-
mized for spatial querying because it moves chunks accord-
ing to their position in array space. This scheme is skew-
aware because at each scale out operation it subdivides the
hosts with the largest storage load.
K-d Tree: A K-d Tree [9] is also an efficient strategy for
range partitioning over skewed, multidimensional data. When
a new machine is added to the cluster, the algorithm splits
the most heavily burdened host. In the beginning, the split-
ting server finds the median point of its storage along the
array’s first dimension, denoting a plane where there are an
equal number of cells on either side of it. The splitter cuts
its range at the median, reassigning half of its contents to
the new host. On subsequent splits, the partitioner cycles
through the array’s dimensions, such that each plane is split
an approximately equal number of times.

The K-d Tree stores its partitioning table as a binary tree.
Each host is represented by a leaf node, and the non-leaf
nodes are partitioning points in the array’s space. To locate
a chunk, the algorithm traverses the tree from the root node.
If the root is not a leaf, the partitioner compares the chunk’s
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Figure 2: An example of K-d Tree range partitioning
for skewed data.

position to its split point, progressing to the child node on
the chunk’s side of the divide. The lookup continues until it
reaches a leaf node. This operation completes in logarithmic
time relative to the cluster’s node count.

Figure 2 demonstrates a K-d Tree that begins by parti-
tioning an array over two nodes; it is divided on the x-axis
at the dimension’s midway point, 5. The left hand side ac-
cumulates cells at a faster rate than the right, prompting the
partitioner to cut its y-axis for the second split, where this
dimension equals 2. Next, the K-d Tree returns to cutting
vertically as N3 joins the cluster.
This skew-aware scheme limits data movement for nodes

that are not affected by recent inserts. It splits only the
fullest nodes, making reorganization simple and limiting net-
work congestion. This approach, and all of the other “split-
ting” algorithms, does have a limitation for unskewed data.
If a cluster has a node count that is not a power of two,
the partitioner suffers from storage skew because some of
its partitions will be the result of fewer splits. For example,
a database with 6 nodes distributing 200 GB of data uni-
formly would have two nodes hosting 50 GB and four nodes
with 25 GB. The next algorithm, Uniform Range, addresses
this shortcoming.
Uniform Range: We submit an alternative formulation
of n-dimensional range partitioning to serve unskewed ar-
rays. This algorithm starts by constructing a tall, balanced
binary tree to describe the array’s dimension space. The
data structure is the same as the one in Figure 2, but with
the requirement that each leaf node be an equal depth from
the tree’s root. If the partitioner has a height of h, then
it has l = 2h leaf nodes, where l is much greater than the
anticipated cluster size. Of course, h can be increased as
necessary, and the partitioner provides better load balanc-
ing with higher h values.
For a cluster comprised of n hosts, Uniform Range assigns

its l leaf nodes in blocks of size l/n, where the leafs are
sorted by their traversal order in the tree. This maintains
multidimensional clustered access, without compromising on
load balancing. When the cluster scales out, it rebalances,
calculating a new l/n slice for each host.

When a node is added to the partitioner, it iterates over all
of the tree leafs, and updates each’s destination node based
on the new l/n. This is a linear time operation, proportional
to l.

This approach has a high reorganization cost compared
to the incremental approaches because it executes a global
reorganization at each scale out. A new node may create a
cascade of moves, especially when several hosts are added to-
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database nodes.

gether. Uniform Range maintains n-dimensional clustering
for its arrays, although it is not skew-aware.

To recap, we have examined several partitioning algo-
rithms that we extend for elastic array databases. Each is
optimized for either spatial or point queries. Almost all in-
cremental; hence they localize their redistributions by only
sending chunks to newly added hosts.

5. ELASTIC PROVISIONING

FOR ARRAY DATABASES
In this section we study an approach for provisioning ma-

chines for an expanding array database. The elastic planner
is designed to provide users with a consistent level of service
as they query a growing body of data. We first introduce
a control loop for determining when to scale out, and by
how many nodes. The tuning of this algorithm to a specific
workload is addressed subsequently.

5.1 The Leading Staircase
Identifying the right hardware resources for a array database

and its queries is an important challenge. The cluster needs
to be large enough to maintain high performance, while
not needlessly over-provisioned. If a distributed database
expands eagerly, adding several nodes at each scale out,
the system will save reorganization time and have better
throughput at a higher provisioning cost. In contrast, if the
planner injects one node at a time, it will rebalance the data
more frequently, albeit using fewer servers. The provisioner
quantifies this trade-off by minimizing its operating costs as
defined by Equation 1 in Section 3.

To address this challenge, we propose a leading staircase
algorithm, as depicted in Figure 3. Its name refers to the ob-
servation that an elastic array database expands its cluster
size in a series of discrete steps, much like a flight of stairs in-
creases in height as they are climbed. When the demand and
provisioned curve first intersect, the cluster has reached ca-
pacity. The provisioner now models its next step. The plan-
ner projects future demand via a Proportional-Derivative
(PD) Control Loop [7] based on the last s workload cycles.
Using this projected demand, it adds k nodes, raising the
database’s capacity to serve the next p workload iterations.

This approach models the rate to expand the database to
meet present demand as well as forecasted load increases.

By steadily augmenting the cluster, the database enjoys a
stable quality of service. The system never coalesces nodes
because its resource demands grow monotonically. This is
a departure from the management of elasticity for transac-
tional workloads, which vacillate between peaks and troughs
of hardware demand.

The provisioner models demand using an extension of the
PD controller which it evaluates at each batch of inserts.
This control loop is a generic feedback mechanism used for
regulating systems such as home thermostats and automo-
tive cruise control. The PD loop revolves around a set

point, which defines its desired system state. For the elas-
tic database this is a provisioning level that has sufficient
resources for the next p workload cycles. Its process vari-

able gives the regulator feedback, and the workload’s present
storage demand provides this guidance.

The PD loop calculates the next step height, k, using
two components, the proportional and derivative. Its pro-
portional term, π, denotes the present provisioning error,
as quantified by taking the difference between the storage
demand after the incoming insert less the cluster’s present
capacity. In this model the database consists of N homoge-
neous nodes, and each having a capacity of c GB. This ap-
proach, however, easily generalizes to a heterogeneous clus-
ter by assigning individual capacities to the nodes. For the
present load of li, it ha

π = li −N × c (2)

If the proportional term is negative, and the system is
not over capacity, and the provisioner is done. Otherwise,
it evaluates the derivative, ∆, which determines the rate of
change of demand over the past s workload iterations

∆ = (li − li−s)/s (3)

It then calculates the number of new nodes to provision,
k, using the following equation:

k = ⌈(π + p∆)/c⌉ (4)

The control loop first compensates for the demand that
exceeds present capacity in its proportional term. It then
forecasts the system’s storage requirements for p future in-
serts based on the demand’s derivative. Lastly, the con-
troller converts GBs to nodes provisioned by dividing by the
node capacity. It takes the ceiling of this quantity because
the provisioner cannot allocate partial nodes.

This algorithm has several appealing properties. First, it
is reactive to changing storage requirements at each work-
load cycle. By modeling current demand, it adjusts the scale
out quantity to the most recent workload iterations. Second,
it is efficient; the algorithm ensures that the cluster capacity
closely matches database load. It is also simple, and as we
will demonstrate, effective for elastic array databases.

5.2 Tuning Database Elasticity
The leading staircase has two workload-specific parame-

ters: s, the number of samples from which to project de-
mand, and p, the workload iterations to plan in the next
provisioning step. Each captures a facet of how the sys-
tem reacts to increasing load. The sample count controls
algorithm’s sensitivity to changes in storage demand, and p



designates how aggressively the provisioner expands as de-
mand rises. In this section we put forth a series of techniques
to fit the planner to a given workload.
Sampling What-If Analysis: Our first workload-specific
parameter, s, determines how many samples to use for the
controller’s derivative term. If s is too large, the cluster will
be slow to respond to changes in demand; too small, and its
scale out will be volatile and inefficient. By determining the
sample size that best predicts demand, the planner extrap-
olates the variability of a workload’s long-term demand.

The leading staircase determines the cluster’s reactivity
by doing a what-if analysis on the observed workload cycles.
The tuning starts when the provisioner accepts an insert
which surpasses the initial cluster capacity, at the dth work-
load cycle, and may be refined as the workload progresses.

for s = 1 to ψ do
error[s] = 0
for i = s+ 1 to d do

∆est = (li − li−s)/s
∆i = li+1 − li
error[s] += |∆i −∆est|

end for
error[s] = error[s] / (d - s)

end for
return s with minimum errors

Algorithm 1: What-if tuning of sampling parameter, s,
based on d workload iterations.

The tuner fits s to the workload via a simulation over the
previous workload iterations using Algorithm 1. It evaluates
s = 1, .., ψ, where ψ is the extent of exploration requested
by the user. For each s, the tuner evaluates a sliding window
over the prior workload performance, learning the derivative
over the last s points and predicting the change in demand
from the next insert.

For each estimated derivative, the analysis takes the abso-
lute difference between its prediction and the corresponding
observed demand to quantify model error. It then averages
the errors, electing the one with the lowest mean.
Scale Out Cost Model Next, the tuner calibrates how
rapidly to expand the cluster in response to an ever-increasing
demand for storage, the p in Figure 3. Recall that this term
denotes how many workload iterations into the future the
provisioner plans in its next scale out. A lazy configuration
has a low p, looking ahead perhaps one insert at every ex-
pansion. This arrangement calls for sizable data movement,
because at each expansion the database redistributes preex-
isting chunks to the new nodes. On the other hand, a high
p setting prompts the database to expand eagerly, and it
can better parallelize the rebalancing with larger stair steps.
Over-provisioning is more likely for an eager configuration,
reducing the benefits of elastic infrastructure.

The tuning algorithm uses an analytical cost model to
compare competing values of p. The model approximates
the cost of a p configuration in node hours, simulating Equa-
tion 1. For each p, the tuner simulatesm workload iterations
in the future, where m is a user-supplied parameter.

The tuner models the three phases of each workload iter-
ation, its insert, potential reorganization, and query work-
load. For each insert and reorganization, it approximates
the cost of I/O, at δ per GB, and network transfer, where
the t denotes the bandwidth cost. Both of these constants

are derived empirically in our experiments. After that, the
model estimates the iteration’s query workload latency us-
ing the last measurement of benchmark time, and scaling it
by the projected increases in storage and parallelism. The
model multiplies the projected duration of each workload
cycle by its node count, estimating its summed node hours.

The cluster begins with a configuration of N0 nodes. Re-
call that the modeling begins after d iterations, when the
cluster first reaches capacity, hence ld ≥ N0 × c. The cost
model works from a constant insert rate of µ, derived from
the increase in storage over the last s workload cycles. The
simulation starts at the cluster’s present state, therefore l0
is assigned to ld. Workload cycle i has a projected load of:

li = l0 + µ× i (5)

Next, the model calculates the node count at iteration i
as:

Ni,p =

{

Ni−1,p If li ≤ Ni−1,p × c
⌈(l0 + µ× (i+ p))/c⌉ otherwise

If the li is less than the provisioned capacity, then the
cluster size remains the same, otherwise it recalculates the
capacity for p upcoming workload iterations. Now that the
model has estimated its load and node count for iteration i,
it predicts the workload’s insert time:

Ii,p = µ
1

Ni,p

δ + µ
Ni,p − 1

Ni,p

t (6)

The coordinator node ingests the data, distributing it
evenly among the cluster’s Ni,p hosts. The cost model es-
timates that the database inserts 1/N th

i,p of the data locally,
at an I/O cost of δ. The remaining fraction of the data is
evenly distributed over Ni,p − 1 nodes, at a rate of t.
We next estimate the cost of rebalancing the database in

the event of a cluster expansion:

ri,p =
li
Ni,p

(Ni,p −Ni−1,p)t (7)

The estimator determines the average load per node in the
new configuration, li/Ni,p, and multiplies it by the number
of new nodes, Ni,p −Ni−1,p. It then converts this estimate
from data transferred to network time.

The analysis finally evaluates how the proposed configu-
ration will affect query execution time. The last observed
workload cycle had an elapsed query time of w0, and was dis-
tributed among N0 nodes. A future iteration i has a latency
estimate of:

wi,p = w0

li
l0

N0

Ni,p

(8)

The first term denotes the base workload time over l0 GB
of data. The subsequent fraction scales the base work by the
projected increase in load over the next i workload cycles.
The cost is multiplied by N0 to capture the work completed
during w0 in node hours, and divided by Ni,p to estimate its
present level of parallelism.

We estimate the overall cost of a configuration of p as:

costp =
m
∑

i=1

Ni,p(Ii,p + ri,p + wi,p) (9)
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Figure 4: Elastic partitioner insert and reorganiza-
tion durations. Labels denote load balancing perfor-
mance in relative standard deviation.

This equation estimates the duration of m workload cy-
cles, and multiplies each iteration time by its projected node
count. This cost is in node hours, placing the analytical
model in the same terms as the workload cycle cost in Equa-
tion 1. It is our goal to minimize the node hours consumed
by a workload, hence the tuner selects the p with the lowest
overall cost from Equation 9.

6. EXPERIMENTAL EVALUATION
Throughout this paper we have introduced a framework

for managing elasticity for array databases. In this section,
we first test our partitioning algorithms for both conven-
tional queries and complex, science-oriented analytics, us-
ing the benchmarks in Section 3.3. Then, we evaluate the
leading staircase provisioner and the tuning of its param-
eters. Our results will show that incremental handling of
data placement and node provisioning produces significant
efficiencies for expanding array databases.

6.1 Experimental Setup
We conduct our experiments on a dedicated cluster with

8 nodes, each of which has 20 GB of RAM and 2.1 GHz
processors. The AIS ship tracking dataset is 400 GB in size,
and its workload cycles are of length 120 days, for quarterly
modeling of its 3 years. The MODIS workload contains 630
GB of data, drawn from 14 days, and has one workload cycle
per day. We run each of our experiments three times and
report the average. Each node has a capacity of 100 GB.

We use Round Robin as a baseline for our partitioners.
It assigns chunks to nodes in circular order; hence to find
chunk i in one of k nodes, Round Robin calculates i modulus
k, tasking each host with an equal number of the chunks.
The baseline is not designed for incremental elasticity - with
each scale out, many of the chunks will shift their location,
and it is not skew-aware in its management of storage.

6.2 Elastic Partitioners
Elastic partitioners efficiently reorganize a database as its

underlying cluster expands. For this set of experiments, we
configure the cluster to start with a pair of nodes, and add
two servers each time it reaches capacity, ending with the
database occupying all eight hosts in our testbed. We chose
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Figure 5: Benchmark times for elastic partitioners.

this configuration to evaluate how each partitioner performs
over several moderately-sized cluster expansions, and exam-
ine all three phases of our workload model.

6.2.1 Data Loading and Redistribution

In Figure 4, we present the performance of our elastic par-
titioners for each workload when inserting and rebalancing
its database. We assess the evenness of a scheme’s stor-
age distribution by the relative standard deviation (RSD) of
each host’s load. After each insert, this metric analyzes the
database size on each node, taking its standard deviation
and dividing by the mean. We average these measurements
over all inserts to convey the storage variation among nodes
as a percent of the average host load, and a lower value
indicates a more balanced partitioning.

Insert time is near constant for each workload, indepen-
dent of the partitioner. This is to be expected, as all algo-
rithms benefit from evenly distributing the new data over
their cluster. Append takes slightly longer than the oth-
ers because it is almost always inserting data over the more
costly network link.

Reorganization tells a more complicated story. Append
has a fast redistribution for both workloads, as it requires
no data movement, although this savings in time produces
a poor load balancing owing to its limited use of the most
recently added nodes, and its total reorganization and insert
time is 20% less than the competition on average.

The global partitioning schemes, Round Robin and Uni-
form Range, have a considerably higher redistribution time.
There is simply more overhead in reshuffling the chunks
among all of the nodes. Interestingly, this cost is not as
pronounced on the baseline for AIS data. Round Robin’s
circular addressing scheme parallelizes the transfer of large
chunks because they are contiguous. The two global algo-
rithms highlight the importance of incremental approaches;
they have a reorganization time that is 2.5X longer on aver-
age, and their mean RSD is almost 10% worse.

The remaining algorithms complete in comparable times,
with K-d Tree having a slight advantage owing to its precise
skew management by splitting nodes at their median. It
is interesting to see that Extendible Hash’s performance is
similar to that of Consistent Hash; the hash space is well-
distributed in both cases.

These results clearly demonstrate that the fine-grained
partitioners have an advantage in balancing load evenly. Our
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Figure 6: Join duration for unskewed data.

three fine-grained partitioners - Round Robin, Extendible
Hash, and Consistent Hash - have an average RSD of 13%.
In contrast, the remaining partitioners have a mean figure of
44%, over three times as much imbalance. If the primary ob-
jective of the partitioner is to evenly distribute array chunks,
then these approaches are well-suited for this task.

6.2.2 Benchmark Performance

Figure 5 shows each partitioner’s performance as they ex-
ecute their workload’s benchmark. In this section, we first
evaluate each elastic partitioner’s performance on conven-
tional query processing and then explore their handling of
scientific workloads.
Select-Project-Join: The simpler conventional queries are
generally shorter running, stemming from their lack of com-
plex math operations and having scant synchronization among
nodes. Each scheme executes the SPJ benchmarks with per-
formance proportional to the evenness of its data distribu-
tion. The range partitioners perform more slowly on AIS,
as they slice the array’s space at a coarser granularity than
the hash-based approaches. Uniform Range and Incremen-
tal Quadtree on AIS are both particularly susceptible to
slowdown due to poor load balancing.

In Figure 6, we examine a join in which the MODIS database
computes vegetation indexes over the most recent day of
measurements. Append’s performance is erratic, as the chunks
being joined are stored on only one or two hosts. This be-
havior is repeated in other experiments, because this parti-
tioning has poor load balancing and does not exploit n di-
mensional space. All of the other partitioning schemes have
similar runtimes as the queried chunks are evenly distributed
across all nodes. The non-splitting partitioners, Consistent
Hash and Uniform Range, have a slight reduction in latency
for cycles 7-10 where the host count is 6. This is attributable
to their assignment of an equal number of chunks per node
regardless of the cluster size.
Science Analytics: For this complex, math-intensive set
of queries, we see that both MODIS and AIS are quite sen-
sitive to n-dimensional clustering. Each does best with a
skew-aware, n-dimensional range partitioner, with K-d Tree
for AIS and Incremental QuadTree on MODIS. These ap-
proaches group chunks based on their position in array space
and address skew. Uniform Range slightly outperforms K-d
Tree and Hilbert Curve for the MODIS study; the global
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Figure 7: k-nearest neighbors on skewed data.

partitioner’s expensive data redistribution at each scale out
has marginally better load balancing. AIS shows that Uni-
form Range is brittle to skew, and this approach has the
poorest performance for the ship tracker use case.

AIS’s k-nearest neighbor query durations are shown in
Figure 7. Recall that this query estimates the volume of
marine traffic based on the distance between a randomly
selected ship and the vessels closest to it. This calculation
profits from preserving the spatial arrangement of an array,
as K-d Tree and Hilbert Curve clearly have the fastest exe-
cution time, completing this query in half the duration of the
baseline. Incremental Quadtree starts with a high-level split,
putting it on par with Uniform Range, however, once it has
executes a skew-aware redistribution to four nodes, the al-
gorithm readily catches up with the other high performers.
The skew-aware range partitioners gradually reduce their
latency as more nodes are added because they evenly dis-
tribute the time dimension. Append continues to present
unstable execution times for this query, due to limited par-
allelism, and the hash algorithms have a similar variance in
their duration, as their partitioning is unclustered.

In total benchmark time, the skew-aware, incremental,
multidimensionally clustered strategies are fastest. Incre-
mental QuadTree, Hilbert Curve, and K-d Tree complete
their workloads 25% more rapidly than the baseline. Al-
though these partitioners have poorer load balancing, they
make up for it in more efficient spatial querying.

6.2.3 Workload Cost

In overall workload duration, and by proxy the cost in
Equation 1, the top benchmarking strategies prevail. In-
cremental QuadTree, Hilbert Curve, and K-d Tree boast a
greater than 20% mean improvement over the baseline, and
similar gains over the hash-based schemes. This confirms
that multidimensional clustering trumps pure load balanc-
ing for efficient end-to-end workload execution. Intuitively,
this is because the database pays just once per scale out op-
eration to reorganize the data, but repeatedly compensates
for the scattered distribution of contiguous chunks with ev-
ery query that accesses the data spatially.

6.3 Database Provisioning
We now evaluate the performance of the leading staircase

algorithm for elastically scaling out an array database. This
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study begins by demonstrating the leading staircase’s behav-
ior on real data, and then verifies the control loop’s tuning
via what-if analysis and analytical cost modeling.
Staircase Provisioner: We first experiment with controller
having set points of 1, 3, and 6 workload cycles on the
MODIS workload in Figure 8. Our arrays are partitioned
with Consistent Hash, since it has even load balancing and
a simple redistribution technique, permitting us to focus on
provisioner performance. Each host continues to have a 100
GB capacity, prompting several scale out operations for all
configurations, and we use four samples for our control loop,
based on the findings in Table 2.

The most conservative approach, in which the provisioner
scales out for just one workload cycle into the future, follows
the demand curve very closely. Its inflection points are often
slightly below demand; it is this state that prompts the scale
out. This setting is rarely significantly over-provisioned,
however, it executes six reorganizations, reshuffling the data
with high frequency.

The moderately responsive configuration, with a scale out
parameter of 3, consistently adds two nodes at a time. This
approach reorganizes half as often as the prior configuration.
This reduced volatility comes at a cost; the cluster has five
workload cycles where this setting uses more nodes than the
lazy set point.

The last setting, in which p = 6, produces an eager cluster
expansion. It scales out in large steps, when the database is
smaller, requiring less data movement in its redistribution.
This configuration executes the query workload very quickly,
using increased parallelism.
Staircase Tuning: Our provisioner tuning starts by eval-
uating s, using the what-if analysis in Algorithm 1. Recall
that this parameter denotes the number of samples to evalu-
ate when the control loop derives its next step. We evaluate
this tuner on the first third of our iterations for each use
case, and test on the remaining ones. The training phase
shows what the tuner recommends based on a limited sam-
ple before the first scale out, and the test data verifies this
parameter against subsequent workload cycles.

Table 2 shows the outcome of this analysis for s = 1...4.
We test the accuracy of each demand projection by taking
the absolute difference between the predicted and observed
storage load, and report the average. The strong correlation

Samples (s) 1 2 3 4
AIS Train 1.6 1.8 2.0 2.2
AIS Test 0.6 0.6 0.7 0.7
MODIS Train 2.7 1.8 2 1.6
MODIS Test 4.2 3.2 3.2 3.1

Table 2: Demand prediction error rates (in GB) for
various sampling levels in elastic partitioner tuning.

Cost Estimate Measured Cost
p = 1 61 13
p = 3 51 12
p = 6 86 16

Table 3: Analytical cost modeling of MODIS con-
troller set points. Costs in node hours.

between the training and testing errors verifies that this pa-
rameter is well-modeled.

Each of our datasets is best served by a very different
sample count. For AIS, it has the best estimate of future
demand when s = 1, because the ship tracks have a notice-
able variance in their monthly demand. This is unsurpris-
ing considering the commercial shipping is subject seasonal
shifts due to holiday shopping patterns. In contrast, the
MODIS workload realizes the most accurate storage demand
estimates with more samples, as it has a steadier long-term
patterns in growth.

After configuring s for each workload, we identify p, the
most efficient number planning cycles for the provisioner’s
scale out. Table 3 shows the cost model’s qualitative es-
timates in node hours, over workload cycles 5-8, the first
several iterations, using s = 4 samples, per Table 2. We use
the contents of Figure 8 to validate the cost model.

The modeled costs closely correlate with the observed re-
sources used by this workload. A planning length of 6 ex-
pands too aggressively, and is not worthwhile for MODIS.
The tuning also accurately anticipates that a lazy scale out
is wasteful, and the observed costs validate this claim. The
cost model correctly identifies that a set point of 3 will have
the lowest cost, as this moderate approach correctly balances
cluster expansion costs with efficient workload execution.

In closing, we find that the staircase provisioner provides
a flexible approach to scaling out an elastic array database,
and that by tuning its parameters this algorithm is easily
fitted to a new workload. The control loop, paired with
the analytical cost estimator, enables us to both capture the
elasticity of real workloads and respond it efficiently.

7. RELATED WORK
There has been much interest in research at the intersec-

tion of database elasticity and array data management. In
this section we review the current state of the art.
Scientific Databases: The requirements for scientific data
management were explored in [6, 22, 30]. An implementa-
tion was reviewed in [10] and demonstrated in [11]. We dis-
cuss how these challenges shape our approach in Section 2.

RasDaMan [8] is an array database that simulates mul-
tidimensional data on top of relational infrastructure. In
contrast, we work from a scientific database built entirely
around n-dimensional arrays and chunks.

Pegasus [17] maps scientific workloads to a high perfor-
mance grid. Our work is similar in that we balance load,
however our contribution revolves around evenly distribut-



ing storage rather than workflows, and has an incrementally
expanding hardware platform.

In [29], the authors studied the organization of scientific
data. We leverage the same array data model and build
upon their n-dimensional chunking scheme, but this work
generalizes SciDB to elasticity by addressing how data is
assigned to nodes, rather than how it is written to disk.
Elasticity: There has been considerable interest in bringing
elasticity to relational databases. [15] studied elastic storage
for transactional shared infrastructure, and [13] addressed
transactional workloads for multitenancy. Zephyr [18] ex-
tended this line of inquiry, solving live migration for trans-
actional databases. Schism [14] offers workload-driven par-
titioning strategies for OLTP in the cloud. In contrast, this
study focuses on incrementally expanding scientific databases,
which may or may not be in the cloud.
Data Partitioning: Shared-nothing database partitioning
was studied in [25]. They optimally partitioned data over
a static hardware configuration for transactional workloads.
Our research is orthogonal, addressing elasticity for large,
read-mostly analytics.

We build upon several well-known data partitioning algo-
rithms, extending them for multidimensional use, and evalu-
ate how well they serve elastic scientific databases. We con-
sider Extendible [19] and Consistent [24] Hash, as well as
K-d Trees [9], Hilbert Curves [32], and Quadtrees [20]. Sim-
ilar to [21], we study incremental partitioning, however our
approach is for n-dimensional arrays. Our results demon-
strate significant improvements in performance from explic-
itly taking array dimensionality and skew into account for
data partitioning.

8. CONCLUSIONS AND FUTURE WORK
In this work, we explore the challenge of elasticity for ar-

ray databases. Our approach addresses the competing goals
of balancing load and minimizing overhead incurred by an
incrementally expanding shared-nothing database. We first
survey two motivating use cases, using them to derive a
workload model for this platform.

We extend a series of data placement algorithms for incre-
mental reorganization. The schemes are classified according
to four features: incremental scale out, fine-grained parti-
tioning, skew-awareness, and multidimensional clustering.
We found that fine-grained, chunk-at-a-time partitioning re-
sults in the best load balancing. The remaining three traits
yielded faster query execution, owing to spatial querying
over clustered data. The latter category performed best over
all, with the K-d Tree having the lowest summed workload
time for both use cases.

We then introduced the leading staircase algorithm to
scale out the database elastically, and a set of techniques for
tuning it. Our experiments confirm that the provisioning
tuner captures the scale out behavior of two real datasets.

One future direction is to more tightly integrate workloads
with data placement. This entails modeling CPU, I/O, and
network bandwidth to better understand how the database
spends time, and the individual chunks that stand to benefit
most directly from residing on the same server.
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