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An exact arithmetic toolbox for a consistent and
reproducible structural analysis of metabolic
network models
Leonid Chindelevitch1,2, Jason Trigg1, Aviv Regev2,3,4 & Bonnie Berger1,2

Constraint-based models are currently the only methodology that allows the study of

metabolism at the whole-genome scale. Flux balance analysis is commonly used to analyse

constraint-based models. Curiously, the results of this analysis vary with the software being

run, a situation that we show can be remedied by using exact rather than floating-point

arithmetic. Here we introduce MONGOOSE, a toolbox for analysing the structure of

constraint-based metabolic models in exact arithmetic. We apply MONGOOSE to the

analysis of 98 existing metabolic network models and find that the biomass reaction is

surprisingly blocked (unable to sustain non-zero flux) in nearly half of them. We propose

a principled approach for unblocking these reactions and extend it to the problems of

identifying essential and synthetic lethal reactions and minimal media. Our structural

insights enable a systematic study of constraint-based metabolic models, yielding a deeper

understanding of their possibilities and limitations.
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F
lux balance analysis (FBA)1–6 has been the dominant
approach to analysing constraint-based metabolic network
models, as an alternative to mass-action kinetic models7 and

biochemical systems analysis8 that cannot currently be performed
on a whole-genome scale. This analysis of metabolic network
models typically reveals a number of key structural elements. It
allows the identification of blocked reactions, which are reactions
that cannot have a non-zero flux due to the constraints of the
model9, as well as enzyme subsets, which are groups of reactions
constrained to have proportional fluxes to one another10. FBA
leads to predictions about the growth rate of a cell under various
conditions defined by the availability of specific nutrients5, the
minimal media, smallest sets of nutrients allowing growth11,
essential genes12 and synthetic lethal reactions13, groups of one or
two reactions whose deletion is predicted to disable growth
altogether.

Most previously published tools for FBA use floating-point
arithmetic14. Here, we argue that performing FBA in floating-
point arithmetic may lead to inconsistent and occasionally
irreproducible analysis results. These arise because floating-
point arithmetic is designed to provide a correct answer to a
question about a slightly perturbed version of the input, which
makes sense in most applications, but not metabolic network
analysis. Indeed, since the stoichiometric coefficients are small
integers or ratios of such integers, the perturbed version of the
input does not correspond to a valid model. In other words,
floating-point arithmetic does not provide a mechanism for
ensuring that the constraints of the model are satisfied exactly,
rather than within a small tolerance.

Moreover, while previously published tools perform some
structural analysis of the input model, there are several features
that these analyses tend to lack. First, the blockage of a reaction in
the model is usually remedied by the addition of one or more
reactions from a database of biochemical reactions15, even though
the blockage may also be due to incorrect irreversibility
constraints on the reactions in the model, an idea that has only
been explored sporadically16. Second, the fact that some
reversible reactions are able to proceed in only one of the two
possible directions due to model constraints, suggesting a
discrepancy between model functionality and biological
assumptions, has not been recognized in previous analyses.
Last, the structural analysis was not guaranteed to stop after a
single cycle, proceeding instead over multiple iterations10.

We address these limitations by introducing the MONGOOSE
(MetabOlic Network GrOwth Optimization Solved Exactly)
toolbox. Its core is an exact arithmetic-based algorithmic pipeline
(Fig. 1) which incorporates a structural analysis supported by new
theoretical results. In particular, MONGOOSE classifies each
blocked reaction into one of three categories based on the cause of
blockage, and proposes small sets of constraints that can be
relaxed to remove the blockage. The toolbox also identifies
semiblocked reactions, those reversible reactions in which one of
the two possible directions is blocked and similarly proposes ways
of unblocking them. In addition, the structural analysis
performed by MONGOOSE is proven to converge after a single
cycle and allows the user to perform further analyses like the
identification of minimal media, essential genes or synthetic lethal
reactions on a significantly smaller model.

We apply MONGOOSE to the 98 genome-scale metabolic
network reconstructions collected in the UCSD Systems Biology
repository17. We show significant differences between the results of
MONGOOSE and COBRA14, a widely used toolkit for metabolic
network analysis, and produce independently verifiable correctness
certificates for those of MONGOOSE. Furthermore, we
surprisingly find that of the 89 networks with a well-defined
biomass reaction, 44 cannot exhibit in silico growth under any

condition (are blocked). MONGOOSE provides a detailed
diagnosis of the reason for this situation by identifying a small
set of constraints whose relaxation resolves the blockage. Our
toolbox also identifies all essential and synthetic lethal reactions
and defines minimal media11, problems for which MONGOOSE
provides the additional benefit of a dramatic lossless compression
of the metabolic network, similar in spirit to the use of compressive
methods in genomics18. This compression allows the complete
analysis of all 98 models to finish in less than one day.

MONGOOSE thus produces certifiably consistent and repro-
ducible results, while leveraging its structural insights to convert
many previously intractable problems in metabolic network
analysis, including those involving energy balance analysis, to
more tractable ones. Finally, MONGOOSE provides a module for
checking the correctness of any flux mode or cutset (set of
reactions whose deletion disables growth) in exact arithmetic. The
software implementing MONGOOSE is freely available at http://
mongoose.csail.mit.edu/, and also as Supplementary Software.

Results
Overview of the MONGOOSE pipeline. The MONGOOSE
pipeline is designed to perform a complete structural analysis and
reduction of a metabolic network. Previous methods, such as the
approach introduced by Gagneur and Klamt10, were able to
perform such analysis as well, but this analysis was substantially
less complete than the one we present here. In particular,
MONGOOSE provides a more detailed classification of blocked
reactions, identifies semiblocked reactions, groups together all the
enzyme subsets, and converges in a single iteration instead of
multiple ones. If the biomass reaction is blocked, MONGOOSE
can unblock it by relaxing a small number of constraints.
Importantly, the structural analysis results in the reduction of the
metabolic network model to a smaller model which preserves all
the information contained in it.

The reduced metabolic network can then be used to efficiently
identify essential and synthetic lethal reactions and minimal
growth media. The complete pipeline is illustrated in Fig. 1 and
described in more detail in the Methods, where the structural
features identified by MONGOOSE are demonstrated on a small
example from the MetaTool website19, augmented with an
additional seven metabolites and 10 reactions for illustration
purposes. An additional illustration of structural features identified
by MONGOOSE is provided in Supplementary Figure 1.

In addition to the more extensive structural analysis, a key
distinguishing feature of MONGOOSE is its use of exact
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Figure 1 | Flowchart of the MONGOOSE pipeline. A schematic

representation of the interaction between different parts of the

MONGOOSE pipeline.
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arithmetic. This ensures that a certificate is produced for each
feature which can be verified independently of the analysis. Such
a certificate may consist, for instance, of the coefficients of a linear
combination of the model constraints that imply that a particular
reaction is blocked (cannot have a non-zero flux), or that two
reactions in an enzyme subset always have fluxes that are
proportional to one another. Existence of these certificates and an
effective way of producing them are guaranteed by the theoretical
results in Supplementary Notes 1–8.

MONGOOSE identifies novel structural features. Unlike pre-
vious work14,20, where blocked reactions are identified regardless
of the cause of blockage (with the possible exception of dead ends,
reactions which contain a unique internal metabolite14),
MONGOOSE distinguishes between three kinds of blocked
reactions. We further introduce two kinds of semiblocked
reactions, that is, reversible reactions which only admit flux in
one of the directions, a feature that, to the best of our knowledge,
has not been identified in earlier work.

For each topology-blocked reaction (one whose blockage
follows from the topology of the metabolic network), MON-
GOOSE returns an informative causal chain leading to the
identification of the blockage, which helps remove the blockage in
many cases. For each stoichiometry-blocked reaction i, MON-
GOOSE can identify a linear combination of the metabolites that
contains a 1 in position i and a 0 everywhere else; the structural
result we prove in Supplementary Note 2 shows that there is
always such a linear combination. For each irreversibility-blocked
reaction i, MONGOOSE can identify a subset of irreversible
reactions that is responsible for the blockage. For each
semiblocked reaction i, MONGOOSE can identify a subset of
the constraints that is responsible for the semiblockage. It also
labels semiblocked reactions as irreversible and reverses the
direction of the effectively reverse ones by multiplying their
stoichiometric coefficients by –1.

In addition to deleting all blocked reactions and adjusting
semiblocked reactions to be irreversible, MONGOOSE groups
reactions that always have proportional fluxes into enzyme
subsets, using a previously described method10, which we show in
Supplementary Note 5 to be sufficient to identify all such subsets.
This process reduces the size of the model without losing any
information. As a final step, MONGOOSE identifies and removes
a maximal set of redundant flux balance constraints, those that
can be created from the remaining ones by taking linear
combinations. This reduction sets the stage for further analyses,
such as the identification of essential and synthetic lethal
reactions and of minimal media.

Consistency and reproducibility require exact arithmetic. A
fundamental question in constraint-based metabolic network
models is whether a particular reaction can be active under given
environmental conditions (growth media). Biochemical reactions,
and therefore stoichiometric matrices, have rational coefficients.
In fact, except for a small number of reactions involving cofactors,
most of these coefficients tend to be small integers. Since the
constraints on a metabolic network are represented through its
stoichiometric matrix, it is critical that this representation be
accurate. However, the linear programming solvers typically used
in metabolic network analysis represent the entries of stoichio-
metric matrices as floating-point numbers, leading to a marginal
loss of accuracy.

While such loss of accuracy is acceptable in many applications,
issues resulting from it have been attested to in the context of
integer programs, which use the results of linear programs to
make branching decisions in a branch-and-bound approach21.

Our experience also shows this accuracy loss to be a problem for
metabolic network analysis. Indeed, it is not sufficient to know
whether a slightly perturbed version of a metabolic network can
have a non-zero flux through a given reaction because this
knowledge gives no information about whether this condition is
true for the actual network. This argument implies that backward
stability, the usual requirement for numerical linear algebra
algorithms22, is not sufficient for metabolic network analysis,
and forward stability (the right answer for the actual network)
is needed. In addition, our theoretical results, proven in
Supplementary Notes 1–8, break down in floating-point
arithmetic and only hold in exact arithmetic.

For this reason we implement all our algorithms in exact
arithmetic and perform all our linear optimizations using the
QSopt_ex solver23. One major advantage of using this solver is
that it provides a certificate for the correctness of the solution to a
linear optimization problem, meaning that its results can be
verified independently of the solver. This ability is to be
contrasted with an almost exclusive use of floating-point-based
linear program solvers in the field of metabolic network analysis
today, which only provide approximate certificates and whose
solutions are only approximately correct. While some existing
approaches, such as the MetaTool toolbox19, do use exact
arithmetic, their application to the analysis of genome-scale
metabolic networks is mostly restricted to elementary mode
enumeration. Instead of using exact arithmetic, one could attempt
to compute the tolerance required to guarantee an exact solution
based on the input stoichiometric matrix. Unfortunately, as we
discuss in the Methods, this computation turns out to be difficult
in its own right, while approximating the tolerance from below
gives extremely small values that would make the calculation of a
solution prohibitive.

The results of MONGOOSE reveal inconsistencies in COBRA.
To certify that exact arithmetic gives different results from
floating-point arithmetic in practice, we compared our results
with those produced by the popular COBRA toolbox14. Under
default settings, COBRA successfully parsed 30 models out of the
98 models we investigated. Both COBRA and MONGOOSE
detected a well-defined biomass reaction in 17 of these 30
network models. In terms of deciding whether the biomass
reaction is blocked, there were multiple discrepancies between
COBRA and MONGOOSE. Specifically, three of the models—the
Escherichia coli iAF1260, Helicobacter pylori iIT341 and
Mycobacterium tuberculosis iNJ661—were predicted to be able
to grow by COBRA, but not by MONGOOSE. This difference is
due to COBRA not enforcing the flux balance constraints on
internal metabolites exactly—even if the deviations from exact
flux balance are small, they can make the difference between a
feasible and an infeasible problem.

Similarly, significant differences were identified between the
total numbers of blocked reactions predicted by COBRA and by
MONGOOSE. The differences did not all go in the same
direction. For instance, in the Escherichia coli iJO1366 model,
COBRA and MONGOOSE respectively found 878 and 639
blocked reactions out of a total 2,583, while in the Saccharomyces
cerevisiae iND750 model, they respectively found 635 and 796
blocked reactions out of a total 1,266. These discrepancies clearly
show that the floating-point approach differs from the exact
arithmetic approach not only in theory, but also in important
practical cases.

To further investigate the discrepancy between the floating-
point and the exact arithmetic analyses, we extracted the smallest
of the models, the Helicobacter pylori iIT341, predicted not to be
able to grow by MONGOOSE, into a 363� 461 stoichiometric
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matrix which we then submitted to the various solvers available at
NEOS24 to optimize its growth rate in rich media. Out of six
linear programming solvers on NEOS, five predicted a non-zero
growth rate, and only CPLEX25 predicted a zero growth rate, in
agreement with QSopt_ex used by MONGOOSE.

This result suggests that a toolbox like COBRA is highly
sensitive to the particular floating-point solver it uses and will be
unlikely to predict the status of the biomass reaction correctly in a
large genome-scale metabolic network unless it uses a solver such
as CPLEX25, which has the stringent feasibility tolerance
(maximum allowed violation of a constraint in a linear
program) of 10� 6 as its default value. However, even in case
the feasibility tolerance is set to the smallest allowed value of
10� 9, rounding errors lead to the failure of identifying many
pairs of reactions as belonging to the same enzyme subset, as we
show in Fig. 2 and describe in detail in the Methods; thus the
use of an exact arithmetic solver, like QSOpt_ex used in
MONGOOSE, is justified.

To make it easier for users of other toolboxes, such as
COBRA14 or CellNetAnalyzer20, to verify the correctness of the
results they obtain, we also provide a module in MONGOOSE
which can either validate or correct these external computation
results by using exact arithmetic. To do so, it suffices to provide
MONGOOSE with a description of the metabolic network and a
description of the flux vector or cutset produced by the external
software. For flux modes, MONGOOSE computes the distance
from the given vector to the flux cone determined by the model,
and either validates the result if this distance is 0, or produces the
flux mode closest to the given one if it is not. For cutsets,
MONGOOSE checks whether the set of reactions indeed forms a
cutset for the reaction of interest, and if it does not, finds a small
additional set of reactions that can be added to it to form a cutset.

The biomass reaction is blocked in 44 out of 89 models.
When MONGOOSE is run on previously published models
(Supplementary Table 1), the most striking feature is the fact that
44 out of the 89 models containing a well-defined biomass
reaction cannot exhibit growth without the additional modi-
fications discussed below. The fact that this result had not been
discovered before is due to our novel use of exact arithmetic for
the genome-scale analysis.

This finding likely indicates that the current state of our
knowledge of metabolism may be less complete than thought, and
illustrates the sensitivity of constraint-based models to the
particular coefficients used to reflect the biomass composition.
Overall, very small perturbations to the coefficients of a
biomass reaction are typically insufficient to enable growth
(Supplementary Note 8). However, the smallest perturbation
required to be made to the coefficients of the biomass reaction,
defined as the smallest d such that changing all biomass
coefficients by values at most d enables growth, varies
substantially across the blocked models we investigated, from
one as small as 3� 10� 8 for the iIN800 model of Saccharomyces
cerevisiae to 5.3 for a model of Staphylococcus aureus. These
values are shown in the last column of Supplementary Table 1.
This finding suggests that in a few models, making
small changes to the biomass coefficients is indeed sufficient to
remove the blockages, while in the majority of models, further
modifications may be required.

MONGOOSE diagnoses blockages and proposes ways to
remedy them. MONGOOSE also diagnoses the underlying cause
of blockage and proposes possible solutions. MONGOOSE distin-
guishes between three types of blocked reactions (further discussed
in the Methods). Often, a topology-blocked biomass reaction can be
resolved immediately by either adding a biomass export reaction or
treating the biomass metabolite as external, or correcting obvious
typographical errors in the model. These approaches resolve the
problem for 23 out of the 33 topology-blocked models (highlighted
in yellow in Supplementary Table 1), with 11 actually being able to
produce biomass after the correction and the rest being blocked for
the more complicated reasons described below.

Furthermore, many models do not contain a proper specifica-
tion of external metabolites, or have incorrectly compartmenta-
lized transport reactions. We correct all of these models and
unblock three out of the five that were previously blocked. All
these models are highlighted in blue in Supplementary Table 1. In
addition to being topology–blocked, the biomass reaction can be
stoichiometry or irreversibility–blocked. For the first type of
blockage, our approach relaxes some balance constraints on
internal metabolites, allowing them not to be perfectly balanced;
for the second type of blockage, it relaxes some directionality
constraints on irreversible reactions, allowing them to proceed in
the reverse direction. We find that all the 44 models which cannot
exhibit growth can be unblocked by relaxing an average of five
constraints (Supplementary Table 1).

MONGOOSE finds other blocked reactions and enzyme
subsets. In addition to the biomass reaction being blocked in
many of the models we investigated, most of them have a
large fraction of other blocked reactions. This fraction varies from
3.8% for Buchnera aphidicola to 95.1% for Pichia pastoris
PpaMBEL1254, with an average of 36.3%. As with blocked
biomass reactions, this situation suggests gaps in the current state
of our knowledge of metabolism.

All semiblocked reactions (ones for which only one direction
is effectively possible) are converted to be irreversible, and
effectively reverse ones are flipped (multiplied by –1). We find
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that up to 30% of all unblocked reactions are effectively forward,
and up to 20% of all unblocked reactions are effectively reverse,
with the maximal values reached by Rhodobacter sphaeroides and
Pichia pastoris PpaMBEL1254, respectively. The average fractions
of effectively forward and effectively reverse reactions are 12.0%
and 5.5%, respectively.

We find that a significant fraction of the unblocked reactions in
each network is part of an enzyme subset (reactions whose fluxes
are constrained to be proportional to one another). This fraction
varies from 16.0% for Aspergillus nidulans to 91.8% for Pichia
pastoris PpaMBEL1254, with an average of 53.2%. The biomass
reaction is in an enzyme subset when it is not blocked in all but
five of the models, possibly because of the large number of
metabolites (and hence constraints) it typically involves.

MONGOOSE identifies small reaction cutsets and minimal
media. A reaction cutset is a set of reactions whose deletion
disables growth by forcing the flux through the growth reaction to
be 0. A cutset containing only one reaction is called an essential
reaction. An essential reaction is thus one which is indispensable
for biomass production in silico (since we do not constrain the
fluxes through exchange reactions, this corresponds to essentiality
for growth in a rich medium). This definition of essentiality is
identical to the one used in early work on constraint-based
models26 as well as more recently in ref. 27, but differs from non-
standard topological approaches6 and the flux surplus rather than
flux balance model28.

In addition to those reactions which are in an enzyme subset
with the biomass reaction, there may be other reactions that are
essential. We find that up to 77.2% (for Buchnera aphidicola) of
all unblocked reactions not in an enzyme subset with the biomass
reaction are essential, with an average of 9.7%. A cutset
containing two reactions neither of which is essential is called a
synthetic lethal pair. We find that up to 9.7% (for Buchnera
aphidicola) of all unblocked nonessential reaction pairs are
synthetic lethal, with an average of 0.31%.

A minimal medium is a smallest set of exchange reactions that
is sufficient for the organism to produce biomass11. While the
MONGOOSE pipeline cannot find the smallest set of such
reactions (this is a computationally intractable problem in
general12), it is able to find small minimal media for all the
organisms with an unblocked biomass reaction. The size of the
smallest minimal medium ranges between 1 and 43 exchange
reactions, with an average of 10.

MONGOOSE significantly reduces the size of the networks. A
remarkable result of applying the MONGOOSE pipeline is that
the resulting stoichiometric matrix is significantly smaller than
the original stoichiometric matrix, providing an average 4.2-fold
reduction in the number of reactions. This reduction in size varies
from a factor of 1.35 for the metabolic network of Saccharomyces
cerevisiae iLL672 to a factor of 139 for Pichia pastoris PpaM-
BEL1254. We reduce a stoichiometric matrix by observing that
blocked reactions do not contribute to the metabolic capabilities
of the model; enzyme subsets can be combined into single
reactions without loss of information; and redundant constraints
do not change a model’s behaviour. We say that a stoichio-
metric matrix is in canonical form if it contains no blocked
reactions, enzyme subsets or redundant constraints, and show
(Supplementary Note 6) that the proposed reduction process
finishes after a single iteration because the reduced network is
guaranteed to not contain any of these structural elements.

MONGOOSE applies energy balance analysis to reduced
networks. Energy balance analysis29–31 provides an additional set

of constraints on possible flux vectors to ensure that they are
consistent with the laws of thermodynamics. These constraints
require, for each admissible flux vector v, an energy vector w in
the row space of the part of the stoichiometric matrix S
containing internal reactions whose entries have signs opposite
to the corresponding entries of v. We consider weakly feasible
flux vectors (called T-feasible vectors in ref. 30) by allowing w to
have non-zeros where v has zeros, but not vice versa
(equation (2)). We can apply the same theoretical results that
we used to structurally analyse and reduce the stoichiometric
matrix S to energy balance analysis, which allows us to identify
several structural features.

Enzyme subsets that contain only internal reactions and add up
to a reaction with all coefficients equal to 0 are blocked, because
any energy vector would have to have a 0 in the position
corresponding to such a reaction, therefore constraining its flux
to 0 as well. Such reactions, which we call zero loops, are a special
case of type III loops31. The fraction of enzyme subsets that are
zero loops reached 55.0% for Pichia pastoris PpaMBEL1254, with
an average of 1.7%. In addition to zero loops, energy-blocked
reactions can be identified from the irreversibility constraints,
when the requirement that wI � 0 implies that wi¼ 0 and hence
vi¼ 0. The fraction of energy-blocked reactions after the deletion
of zero loops reached 88.3% for the Buchnera aphidicola model,
with an average of 6.4%.

Energy balance analysis also allows us to identify unidirectional
reactions (analogous to the semiblocked reactions), reversible
reactions which only have one possible direction due to the
energy balance constraints. The fraction of unblocked reactions
that were effectively reverse due to energy balance constraints
reached a maximum of 11.3% for Chromohalobacter salexigens,
with an average of 1.1%. Surprisingly, there were no effectively
forward reactions due to energy balance constraints in any of the
models. Additionally, any isozymes (reactions that are multiples
of one another) can be grouped into a single isozyme subset for
the purpose of energy balance analysis, as their energy vectors are
constrained to have proportional values; they are analogous to the
enzyme subsets deduced from the flux balance constraints. The
fraction of unblocked internal reactions in an isozyme subset
reached 85.1% for Methanosarcina acetivorans iMB745, with an
average of 16.8%. All the model-specific results are displayed in
Supplementary Table 1.

Because the constraints imposed by energy balance are
nonlinear, the reductions obtained by using them lead to further
reductions due to the flux balance constraints. For this reason,
MONGOOSE alternates between the reductions due to energy
balance and flux balance until no further changes can be made
due to either one. This requires an average of six iterations. After
this process terminates, the growth reaction ends up being
blocked due to the combined effect of flux balance and energy
balance constraints in 30 out of 59 models where it is not blocked
due to flux balance constraints alone (we indicate this as
‘EnergyBlocked’ in the GrowStatus column in Supplementary
Table 1). In additon, the final network is significantly smaller
than the initial reduced network. The reduction in size varies
from a factor of 1.01 for Shewanella oneidensis to 68 for Buchnera
aphidicola, with an average reduction factor of 2.33.

MONGOOSE exhibits a reasonable running time. While the
exact arithmetic approach used by MONGOOSE necessarily
slows down the computations, in our experience, the slowdown
never exceeds an order of magnitude. Thus, the complete
structural analysis of all 98 metabolic network models required a
total of only 10 h of processing on a single processor. This
corresponds to an average of 6 min per metabolic network model.
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In comparison, the COBRA toolbox14 required, on average, just
under a minute to find the blocked reactions based on flux
variability analysis in a metabolic network, with the average
computed over the networks it was able to parse directly. COBRA
does not appear to identify enzyme subsets directly, only to find
correlated sets of fluxes based on a sample of flux vectors from the
model, which appears sufficiently different from our task to
justify excluding it from the comparison.

This small decrease in speed is, however, more than
compensated for by the reproducibility and robustness of the
results, as well as the significant reduction of the size of the
metabolic network that speeds up all subsequent analyses. In
particular, the complete identification of all essential reactions
and synthetic lethal pairs in the 56 models with a well-defined
biomass reaction that was not blocked required a total of 5 h of
additional processing time, or less than 6 min per metabolic
model, using the search algorithm described in Methods. The
iterative application of energy and flux balance to the reduced
networks required an additional 12.5 h.

Discussion
We asserted that while constraint-based metabolic network
models are a valuable tool for gaining insight into metabolism,
their analysis needs to be done in exact arithmetic to ensure that
their results are consistent and reproducible. The fact that
MONGOOSE revealed that 44 out of 89 previously published
networks containing biomass reactions cannot exhibit in silico
growth may point to the need for more complete network
reconstructions or, more likely, to the need for a more accurate
measurement of biomass coefficients.

Our work provides several important contributions to the field
of metabolic network analysis. On the theoretical front,
MONGOOSE is grounded in a solid theoretical basis consisting
of novel results about the structure of constraint-based genome-
scale metabolic network models. Furthermore, to the best of our
knowledge, the need for using exact arithmetic in metabolic
network analysis has never been explicitly demonstrated on a
large collection of existing genome-scale metabolic network
models, as we have done using MONGOOSE.

On the practical front, MONGOOSE makes three key
contributions. First, it is able to perform a complete structural
analysis of the network as a preprocessing step, providing useful
insights into possible sources of incompleteness and identifying
and troubleshooting any issues leading to the blockage of the
growth (biomass) reaction. Second, MONGOOSE substantially
compresses the metabolic network, making it more feasible to
perform further analyses (gene essentiality, synthetic lethality,
minimal media and some energy balance analysis) without losing
any information. Third, MONGOOSE provides an automated
interface that parses the network, translates the problem into a
format suitable for any linear programming solver and parses the
solution returned by the solver into a format suitable for further
processing, as well as a module for checking the validity of flux
vectors and cutsets obtained by any other solver in exact
arithmetic. All these features can be readily integrated with
existing pipelines for metabolic network analysis.

An approach based on our theoretical results could also be
used to identify some or all elementary flux modes12 and
minimal cutsets13 in a metabolic network, as discovered
independently by another research group32. Future work
could also include more fully incorporating energy balance
constraints into the analysis, as well as making use of additional
information, such as the Gibbs’ free energy of reactions, to
further constrain the problem, along the lines of refs 16,33,34.
Additional refinements could include restricting the proposed

changes to metabolic networks with blocked growth based on
biological knowledge, such as not allowing certain reactions to
proceed in the reverse direction when unblocking irreversibility
blockages.

Our primary focus has been on identifying potential model
inaccuracies as opposed to prediction, because we believe that a
faithful representation of the philosophy of constraint-based
modelling coupled with reliability and reproducibility of results
has a higher priority than predictive power. If any existing models
are designed in such a way that the inaccuracies in them cancel
out the errors introduced by floating-point arithmetic to produce
good agreement with experimental results, reversing the effect of
floating-point errors may temporarily result in a decrease of
predictive power, but only until model inaccuracies are corrected
in turn. In the future, we plan to combine our analysis efforts with
comparing predictions to experimental data. The joint efforts of
model developers and analysis tool developers will ultimately
result in models with high predictive power under a robust
analysis method.

We believe that the exact arithmetic approach to the analysis of
constraint-based metabolic networks opens a number of new
possibilities in metabolic network analysis. First, the genome-
scale metabolic network reconstructions with blocked biomass
reactions can be completed or their coefficients measured more
accurately. Second, the MONGOOSE methodology may be used
to reconcile the predictions of metabolic network models with
experimental data, leading to further refinement. Finally,
MONGOOSE can be used to support genome-scale network
reconstruction by helping the modeller identify incompletely
reconstructed pathways or unexpected features that can be
resolved experimentally. We are currently engaged in a project of
this type focusing on the reconstruction of a metabolic network
model for Bordetella pertussis. It is our hope that the community
will adopt the MONGOOSE software as the basis for further
development of metabolic network analysis methods.

Methods
This section is organized as follows. We start by describing the parser that we
developed for MONGOOSE. We go on to explain why exact arithmetic is necessary
for analysing metabolic networks models in a consistent and reproducible way.
We describe the way we compare the results of MONGOOSE with those of
COBRA14, a widely used metabolic network analysis tool, and CPLEX25, an
industrial-strength linear programming solver. We continue by illustrating the
structural features MONGOOSE identifies on an example network, and describing
its pipeline for the structural analysis of a metabolic network. We conclude
with three possible extensions to this analysis—energy balance analysis, the
identification of essential and synthetic lethal reactions, and the computational
design of minimal media.

Description of the parser. We downloaded 98 genome-scale metabolic networks
representing 60 different organisms from the UCSD Systems Biology group web-
site17 and parsed them. The majority of the models were either provided in SBML
format35 or as Excel spreadsheets. In both cases, we performed the parsing using
our own scripts in Python36. A few additional models provided in PDF format had
to be converted into a spreadsheet format before they could be parsed. We
preserved all compartment information, and considered metabolites in different
compartments to be distinct, constraining them separately.

We built our parser for models in SBML format on top of libSBML37, and the
one for models in Excel spreadsheet format, on top of xlrd38. Because there is such
a variety of formats within the latter, we had to make the parser sufficiently flexible
to accommodate all of them. In addition to parsing the files, it is also able to
identify a limited number of typos and other human errors introduced at the time
of model generation or transcription. All the models we analysed have been
extensively corrected from all the errors found by the parser, and the corrections
are presented in Supplementary Table 2.

Importance of exact arithmetic. Although floating-point arithmetic does not
guarantee a solution that satisfies the problem constraints, there is a tolerance
(defined by the linear program) that could ensure that we actually get correct
results from a floating-point computation. This tolerance is the reciprocal of the
largest determinant of a square submatrix of the constraint matrix A. Indeed, when
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a vertex is being computed, the coordinates in the basis B are determined by
ABx¼ bB, while the others are all 0, and Cramer’s rule22 shows that the
denominator of the solution to this system equals this determinant. We note that
this can be much larger than the ratio of the magnitudes of the largest and smallest
entries in the constraint matrix. For instance, a Hadamard matrix of order 20 gives
a ratio of 1 as all its entries are 1 or –1, but would require a tolerance of 20� 10, or
about 10� 13.

This problem of finding the largest determinant of a square submatrix of an
integer matrix A turns out to be NP-hard39. Khachiyan40 gives a fast
approximation algorithm that gets it within a factor of m(m/2), where m is the
number of rows of A (metabolites in the network). An alternative algorithm
suggested by Michel Goemans in personal communication can approximate its
logarithm within a factor of 2/5 using the fact that this logarithm can be extended
to a submodular nonmonotone function on the columns of A. Unfortunately,
neither of these results is practical as these estimates would require a precision of
about 100 digits for a typical genome-scale metabolic network model, making
calculations prohibitively slow.

Comparisons to COBRA. Under default settings, COBRA successfully parsed 30
models out of the 98 models we investigated, as they were written in a version of
the Systems Biology Markup Language35 matching its defaults. We did not attempt
to use COBRA to parse any models in spreadsheet formats because that would have
required substantial changes to many of the source files. Hence we restricted the
comparison with the former models.

In all our experiments, COBRA’s parameters were set to their default values,
including the use of GLPK41 as the linear program solver. By default, COBRA
declares a reaction to be blocked if the minimum and maximum absolute fluxes
through it are less than d¼ 10� 10, while the exact arithmetic of MONGOOSE does
not require any arbitrary thresholds.

Comparisons with CPLEX. We tested whether the structural features detected by
MONGOOSE are also detected by CPLEX with its lowest feasibility tolerance of
10� 9. We did so by creating a linear problem in CPLEX format for every feature in
every metabolic network that MONGOOSE found, and tested its feasibility with
CPLEX. In particular, for blocked reactions, we tested whether flux was feasible; for
semiblocked reactions, we tested whether flux in the blocked direction was feasible;
and for enzyme subsets, we tested whether the linear combination of the reaction
fluxes could be non-zero. Out of these experiments, CPLEX was not successful with
enzyme subsets, failing to identify over 100 of them in the models we tested. The
results in Fig. 2 show the eight models that had the most failures, as well as the
proportion of failures relative to the total number of pairs of reactions in an
enzyme susbet. Although CPLEX successfully determined the blocked and semi-
blocked reactions in the networks we examined, we expect it to have more diffi-
culties detecting such reactions as the size of metabolic networks continues to grow.

Structural features identified by MONGOOSE. Given a metabolic network with
stoichiometric matrix S (reduced to contain only internal metabolites) and set of
irreversible reactions I , the set of admissible fluxes contains all the vectors v that
satisfy the constraints

Sv ¼ 0 and vi � 0 8 i 2 I : ð1Þ

A reaction i is said to be blocked if the constraints imply that vi¼ 0.
If energy balance constraints are imposed on the model, then v is an admissible

flux vector if and only if

9w 2 RowðSCÞ such that viwi � 0 8 i 2 C and wi ¼ 0) vi ¼ 0 8 i 2 C; ð2Þ

where C is the set of internal reactions (those not containing any extracellular
metabolites). A reaction i is said to be blocked due to energy if energy balance
constraints imply that vi¼ 0.

Topology-blocked reactions are an extension of the notion of dead-end
reactions14. Although a dead-end reaction is a reaction that contains a unique
internal metabolite (and is therefore constrained to have no flux to balance fluxes
on that metabolite), a topology-blocked reaction is one that is revealed to be
blocked in this way by the successive deletion of dead-end reactions from the
network. This terminology is identical to the one used in the recent version of the
sybilSBML42 package for R43. In addition to orphan metabolites (ones that only
participate in a single reaction), the notion of dead-end metabolite is sometimes
extended to one that is only produced or only consumed; this is the definition used
in the COBRA toolbox14. In our classification, such a metabolite would lead to a
stoichiometry-blocked or an irreversibility-blocked reaction, two concepts which
we discuss next.

Stoichiometry-blocked reactions are reactions that are blocked only by the flux
balance constraint Sv¼ 0. In other words, a stoichiometry-blocked reaction would
be blocked even if all irreversible reactions were allowed to have flux in either
direction. The corresponding notion in energy balance analysis is zero loops.

Irreversibility-blocked reactions are reactions blocked by the entire set of
constraints in equation (1). In other words, an irreversibility-blocked reaction
would be able to have non-zero flux through it, if some or all of the irreversible

reactions were allowed to have flux in either direction. The corresponding notion
in energy balance analysis is energy-blocked reactions.

Semiblocked reactions are those that are postulated to be reversible, but are in
fact constrained by equation (1) to only admit flux in one direction, either forward
(viZ0) or reverse (vir0). We classify these as effectively forward or effectively
reverse, depending on the allowed direction of fluxes through them. Our notion of
semiblocked reactions is similar to the directionality analysis in ref. 29, but differs
from it in that it only depends on flux balance and irreversibility constraints, rather
than the energy balance ones. The corresponding notion in energy balance analysis
is unidirectional reactions.

Enzyme subsets are maximal sets of reactions such that any steady-state fluxes
in the set are in a fixed ratio. In particular, two reactions, i and j, are part of an
enzyme subset if and only if there is a constant ka0 such that vi¼ kvj for all
modes v. Each enzyme subset can be grouped together into a single reaction, which
further reduces the size of the metabolic network without loss of information. The
corresponding notion in energy balance analysis is isozyme subsets.

In the example network below, reactions R1 and R2 are topology-blocked (note
that only reaction R2 is a dead end in the sense of ref. 14, though both are detected
as such by removeDeadEnds), reactions R3 and R4 are stoichiometry-blocked, and
reactions R5 through R10 are irreversibility-blocked. In addition, reactions Eno,
Acn, AspC, Gdh and IlvEAvtA are semiblocked; of these, the first four are
effectively forward and the last one is effectively reverse. Reactions Acn and GltA
form an enzyme subset, reactions IlvEAvtA and AlaCon form another enzyme
subset, and reactions Icl and Mas form a third enzyme subset. In each case, the
proportionality coefficient between the fluxes is 1, consistent with the findings in
ref. 19. We note that reactions Acn and GltA are both irreversible, as are reactions
IlvEAvtA and AlaCon; it is always the case that the reactions in each subset are
either all irreversible (with positive proportionality coefficients) or all reversible,
provided that the semiblocked reactions have been properly adjusted, as we show
in Methods. Finally, the flux balance constraints on A through G, as well as on
metabolites Ala, Cit, CoA and Gly are deleted as redundant. This reduces the
example network from an initial size of 23� 34 to a final size of 12� 21.

Example network:

� internal metabolites: A, B, C, D, E, F, G; AcCoA, Ala, Asp, Cit, CoA, Fum, Glu,
Gly, IsoCit, Mal, OAA, OG, PEP, Pyr, Succ, SucCoA.

� external metabolites: ADP, Alaex, AMP, Aspex, ATP, CO2, FAD, FADH2,
Gluex, NAD, NADH, NADP, NADPH, NH3, PG, Sucex.

� reactions:

R1: G3A Gdh: OGþNH3þNADPH3
GluþNADP

R2: Aþ E3BþG IlvEAvtA: PyrþGlu3AlaþOG
R3: DþE3Cþ F Pyk: PEPþADP-PyrþATP
R4: C-Dþ FþG AceEF: PyrþNADþCoA-

AcCoAþCO2þNADH
R5: G-E GltA: OAAþAcCoA-CitþCoA
R6: F-Dþ E Icd: IsoCitþNADP-

OGþCO2þNADPH
R7: FþG-C SucAB: OGþNADþCoA-

SucCoAþCO2þNADH
R8: Dþ 2 G-C Icl: IsoCit-SuccþGly
R9: F-Dþ E Mas: GlyþAcCoA-MalþCoA
R10: Eþ 2FþG-2C AspCon: Asp-Aspex
Eno: PG3PEP AspA: Asp-FumþNH3
Acn: Cit3IsoCit Pck: OAAþATP-

PEPþADPþCO2
SucCD: SucCoAþADP3SuccþATPþCoA Ppc: PEPþCO2-OAA
Sdh: Succþ FAD3Fumþ FADH2 Pps: PyrþATP-PEPþAMP
Fum: Fum3Mal GluCon: Glu-Gluex
Mdh: MalþNAD3OAAþNADH AlaCon: Ala-Alaex
AspC: OAAþGlu3AspþOG SucCoACon: SucCoA-

SucexþCoA.

Description of the MONGOOSE pipeline. MONGOOSE performs all its com-
putations using the fractions module available in versions 2.6 and higher of
Python36. All linear optimizations are performed with the QSopt_ex solver23,
which uses the simplex algorithm44 and tests solution optimality in exact
arithmetic. The rational dual variables output by the solver provide a certificate for
the correctness of the solution to our linear optimization problems and can be
verified independently of the solver.

The MONGOOSE pipeline begins by converting an input metabolic model (in
the form of a stoichiometric matrix) into canonical form. A canonical form of a
stoichiometric matrix contains just the right amount of information needed to
perform further analysis, the results of which can then be post-processed to obtain
results for the original network. Formally, a matrix is said to be in canonical form if
it contains no blocked reactions, unidirectional reactions (reversible reactions
which can only proceed in the forward or only in the reverse direction) or enzyme
subsets, and has linearly independent rows. Below we describe each step of the
process for reducing a network to its canonical form.

A reaction is said to be blocked if it cannot have non-zero flux in any mode. We
propose to classify blocked reactions by the cause of blockage. Recall from the
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previous subsection that reaction i is topology-blocked if it contains a metabolite
not participating in any other reaction, stoichiometry-blocked if Sv¼ 0 implies that
vi¼ 0, or irreversibility-blocked if equation (1) implies vi¼ 0. Since topology-
blocked reactions are also stoichiomety-blocked, and stoichiomety-blocked
reactions are also irreversibility-blocked, we use the simplest cause of blockage that
applies in our classification.

Topology-blocked reactions are readily identified by a simple analysis of the
number of reactions each metabolite is involved in. Stoichiometry-blocked
reactions can be identified in a fully reversible network S by performing a Gauss–
Jordan elimination on S to find rows with a unique 1 in them, while irreversibility-
blocked reactions in a fully irreversible network can be identified by the algorithm
given in Supplementary Note 3.

It is surprising that algorithms guaranteed to work only on a fully reversible and
a fully irreversible network respectively can be combined to work on a general
network. Nevertheless, the simple algorithm consisting of a sequential application
of these two algorithms turns S into a consistent matrix by deleting all its blocked
reactions, as shown in Supplementary Note 4.

We call a reversible reaction unidirectional if it can sustain a flux of only one
sign. If this sign is positive, we call the reaction effectively forward, whereas if it is
negative, we call it effectively reverse.

To decide whether a reversible reaction i is unidirectional, it suffices to test the
feasibility of two linear programs, one with vi¼ 1 and one with vi¼ –1. Since S is
now a consistent matrix, at least one of those will always be feasible. Once all
unidirectional reactions have been identified, we reverse the effectively reverse
reactions by multiplying all their coefficients in S by –1, and then add all the
unidirectional reactions to I .

Supplementary Note 5 shows that all the enzyme subsets can be identified from
the proportional columns of the nullspace matrix K of S. Hence, the algorithm
given by Gagneur and Klamt10 correctly identifies all such subsets (something that
was not known before the structural results presented here). Furthermore, since S
no longer has any unidirectional reactions, any enzyme subset will consist either
only of irreversible reactions or only of reversible reactions.

If an enzyme subset containing reactions i1,i2,y,it has been identified, let rj be
the ratio of the flux through ij to the flux through i1, for 2rjrt. We can then lump
the enzyme subset together into a single new reaction Snew ¼ Si1 þ

Pt
j¼2 rjSij (here,

subscripts indicate matrix columns). This significantly reduces the size of S without
losing any information, since any mode in the compressed matrix can be expanded
back to a mode in the original matrix10.

After we make S consistent, deal with the unidirectional reactions and lump
together the enzyme subsets, we can remove the redundant constraints (rows that
are linear combinations of other rows) by Gaussian elimination on ST. Each of these
corresponds to a conservation relation among the metabolites in the network45.
Unlike the reduction process described by Gagneur and Klamt10, the reduction
process that we propose here is guaranteed to converge after one iteration
(Supplementary Note 6). The resulting matrix is said to be in canonical form.

Once the matrix is in canonical form, it may be necessary to unblock its
biomass reaction. If the biomass reaction is topology-blocked, this indicates an
incompleteness in the model (one of the biomass components cannot be
produced). If it is stoichiometry-blocked, it can be unblocked by removing balance
constraints from a small subset of metabolites. This subset of metabolites can
provide clues in a rational search for missing reactions. Finding the smallest such
subset is NP-hard12; however, a small subset can be found by a linear program
based on the key observation that we can look for vectors v with vbiomass¼ 1 such
that Sv has small support. If the biomass reaction is irreversibility-blocked due to
the directional restrictions on some reactions, it can be unblocked by making a
small subset of the irreversible reactions reversible. As above, finding the smallest
such subset is NP-hard, but a small subset can be found by a linear program.
Indeed, here we look for a vector v such that Sv¼ 0 with vbiomass¼ 1 and few
components of v are negative, which by Supplementary Note 3 is equivalent to
finding a small cutset for the biomass reaction in the nullspace matrix of S.

Once the stoichiometric matrix is in canonical form and its biomass reaction
has been unblocked if necessary, further queries can be performed on the metabolic
model as described in the following subsections.

Energy balance analysis. The energy balance constraints on a network with
stoichiometric matrix S and internal reactions C are given by equation (2). Similarly
to FBA, energy balance analysis constraints can be used to reduce the model and
identify its structural features, with the key difference that instead of applying to
the nullspace of the entire stoichiometric matrix S, the constraints apply to the row
space of SC , the part of the stoichiometric matrix containing the internal reactions.
The structural analysis and reduction proceed analogously to FBA, with the key
difference that unlike the nullspace of S, for which a basis must be constructed via a
Gauss–Jordan elimination, the row space of SC is given explicitly by the model.
Once the analysis is completed, the reduced version of SC is merged back with the
external reactions in S, and it is at that stage that any redundant constraints are
eliminated.

The final stage of the analysis involves finding restrictions on the signs of the
flux vectors. This task can be accomplished by finding all the elementary flux
modes of the network containing only the internal reactions29. While this is a
computationally intractable problem, Supplementary Note 8 shows that this

analysis can be performed on the fully reduced network, rather than the original
network, without loss of information.

Essential and synthetic lethal reactions. In a metabolic model, a reaction is
predicted to be essential if disabling it blocks the biomass reaction. To find all such
reactions, we first compute some modes involving the biomass reaction, and then
test those reactions that are active in each of those modes for essentiality. To test
whether a reaction i is essential, we check whether the biomass reaction can be
active when equation (1) holds with vi¼ 0. Note that every reaction in an enzyme
subset with the biomass reaction is automatically essential. To find all the
remaining ones, we generate a short flux mode u in the reduced network such that
ubiomass¼ 1 by minimizing the 1-norm of u, and then check essentiality of each
reaction i active in u by checking for feasibility of equation (1) with vi¼ 0 and
vbiomass¼ 1. In this way, for each i, we obtain a certificate of essentiality or a vector
v with vi¼ 0 and vbiomass¼ 1.

A pair of reactions is called synthetic lethal if neither of them is essential, but
disabling both of them disables growth. To compute all pairs of synthetic lethal
reactions, we use the vector u from the previous step together with the vectors v
corresponding to each nonessential reaction i active in u. Let L be the number of
such vectors. Let G denote the set of nonessential reactions active in at least one of
these vectors. We construct a matrix M of size |G| with Mi,j being the number of
modes that contain both i and j, with the diagonal element Mi,i being the number
of vectors that contain reaction i. The pair {i,j} is synthetic lethal for the L vectors if
and only if each one of them contains either i or j, which is to say that
Mi,iþMj,j�Mi,j¼ L, so we only check pairs satisfying this condition. This leads to
a substantial reduction in the number of checks.

Minimal media. A minimal medium is a minimal subset of the exchange reactions
E that can sustain the organism’s growth. The problem of finding all minimal
media is NP-hard, and has been studied previously11. MONGOOSE can identify a
number of small minimal media as follows. It starts by finding a vector v satisfying
equation (1) with vbiomass¼ 1 that minimizes the sum of components
corresponding to E. This is a minimal medium. At each subsequent step,
constraints are introduced to steer the solution away from any previously found
ones.

More specifically, if we denote by R(v) the set of non-zero components of v, a
minimal medium v uniquely minimizes

P
jeR(v)vj with a value of 0. It can be

shown that the medium with the second-best value, u, will be a linear combination
of v and another minimal medium w, if an active-set algorithm46 such as the
simplex algorithm44 is used. u can be found by solving the linear program

min
X

j2E �RðvÞ
uj subject to Su ¼ 0;u � 0; ubiomass ¼ 1;

X

j2E �RðvÞ
uj � E

for some small number E40. Once u is found, we can simply subtract the largest
multiple of v that still keeps it nonnegative, and this will be w. The same procedure
can now be repeated starting from w instead of v. This procedure continues until
no new minimal medium is found.

References
1. Varma, A. & Palsson, B. Metabolic flux balancing: basic concepts, scientific and

practical use. Nat. Biotechnol. 12, 994–998 (1994).
2. Covert, M. et al. Metabolic modeling of microbial strains in silico. Trends

Biochem. Sci. 26, 179–186 (2001).
3. Price, N., Papin, J., Schilling, C. & Palsson, B. Genome-scale microbial in silico

models: the constraints-based approach. Trends Biotechnol. 21, 162–169
(2003).

4. Price, N., Reed, J. & Palsson, B. Genome-scale models of microbial cells:
evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886–897
(2004).

5. Varma, A. & Palsson, B. Stoichiometric flux balance models quantitatively
predict growth and metabolic by-product secretion in wild-type Escherichia coli
W3110. Appl. Environ. Microbiol. 60, 3724–3731 (1994).

6. Wunderlich, Z. & Mirny, L. Using the topology of metabolic networks to
predict viability of mutant strains. Biophys. J. 91, 2304–2311 (2006).

7. Horn, F. & Jackson, R. General mass action kinetics. Arch. Ration. Mech. Anal.
47, 81–116 (1972).

8. Savageau, M. Biochemical systems analysis: I. some mathematical properties
of the rate law for the component enzymatic reactions. J. Theor. Biol. 25,
365–369 (1969).

9. Schuster, R. & Schuster, S. Detecting strictly detailed balanced subnetworks in
open chemical reaction networks. J. Math. Chem. 6, 17–40 (1991).

10. Gagneur, J. & Klamt, S. Computation of elementary modes: a unifying
framework and the new binary approach. BMC Bioinformatics 5 (2004).

11. Suthers, P. et al. A genome-scale metabolic reconstruction of Mycoplasma
genitalium, iPS189. PLoS Comput. Biol. 5 (2009).

12. Acuña, V. et al. Modes and cuts in metabolic networks: complexity and
algorithms. BioSystems 95, 51–60 (2009).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5893

8 NATURE COMMUNICATIONS | 5:4893 | DOI: 10.1038/ncomms5893 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


13. Klamt, S. & Gilles, E. Minimal cut sets in biochemical reaction networks.
Bioinformatics 20, 226–234 (2004).

14. Becker, S. et al. Quantitative prediction of cellular metabolism with
constraint-based models: the COBRA toolbox. Nat. Protoc. 2, 727–738
(2007).

15. Orth, J. & Palsson, B. Gap-filling analysis of the iJO1366 Escherichia coli
metabolic network reconstruction for discovery of metabolic functions. BMC
Syst. Biol. 6, 30 (2012).

16. Mo, M., Palsson, B. & Herrgard, M. Connecting extracellular metabolomic
measurements to intracellular flux states in yeast. BMC Syst. Biol. 3, 37 (2009).

17. In Silico Organisms http://systemsbiology.ucsd.edu/InSilicoOrganisms/
OtherOrganisms (2013).

18. Loh, P.-R., Baym, M. & Berger, B. Compressive genomics. Nat. Biotechnol. 30,
627–630 (2012).

19. von Kamp, A. & Schuster, S. Metatool 5.0: fast and flexible elementary modes
analysis. Bioinformatics 22, 1930–1931 (2006).

20. Klamt, S., Saez-Rodriguez, J. & Gilles, E. Structural and functional analysis of
cellular networks with CellNetAnalyzer. BMC Syst. Biol. 1 (2007).

21. Neumaier, A. & Shcherbina, O. Safe bounds in linear and mixed-integer
programming. Math. Program. A 99, 283–296 (2004).

22. Trefethen, L. & Bau, D. Society for Industrial and Applied Mathematics. SIAM,
1997.

23. Applegate, D., Cook, W., Dash, S. & Espinoza, D. Exact solutions to linear
programming problems. Oper. Res. Lett. 35, 693–699 (2007).

24. NEOS Server for Optimization http://www.neos-server.org/ (2013).
25. CPLEX Optimizer http://www-01.ibm.com/software/integration/optimization/

cplex-optimizer (2014).
26. Edwards, J., Ibarra, R. & Palsson, B. In silico predictions of Escherichia coli

metabolic capabilities are consistent with experimental data. Nat. Biotechnol.
19, 125–130 (2001).

27. Samal, A. et al. Low degree metabolites explain essential reactions and enhance
modularity in biological networks. BMC Bioinformatics 7, 118 (2006).

28. DeMartino, A., Granata, D., Marinari, E., Martelli, C. & Van Kerrebroeck, V.
Optimal fluxes, reaction replaceability, and response to enzymopathies
in the human red blood cell. J. Biomed. Biotechnol. doi:10.1155/2010/415148
(2010).

29. Yang, F., Qian, H. & Beard, D. Ab initio prediction of thermodynamically
feasible reaction directions from biochemical network stoichiometry. Metab.
Eng. 7, 251–259 (2005).

30. Beard, D., Babson, E., Curtis, E. & Qian, H. Thermodynamic constraints for
biochemical networks. J. Theor. Biol. 228, 327–333 (2004).

31. Schellenberger, J., Lewis, N. & Palsson, B. Elimination of thermodynamically
infeasible loops in steady-state metabolic models. Biophys. J. 100, 544–553
(2011).

32. Ballerstein, K., von Kamp, A., Klamt, S. & Haus, U. Minimal cut sets in a
metabolic network are elementary modes in a dual network. Bioinformatics 28,
381–387 (2012).
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