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Abstract—The classical formulation of the program-synthesis
problem is to find a program that meets a correctness specifica-
tion given as a logical formula. Recent work on program synthesis
and program optimization illustrates many potential benefits
of allowing the user to supplement the logical specification
with a syntactic template that constrains the space of allowed
implementations. Our goal is to identify the core computational
problem common to these proposals in a logical framework. The
input to the syntax-guided synthesis problem (SyGuS) consists
of a background theory, a semantic correctness specification
for the desired program given by a logical formula, and a
syntactic set of candidate implementations given by a grammar.
The computational problem then is to find an implementation
from the set of candidate expressions so that it satisfies the
specification in the given theory. We describe three different
instantiations of the counter-example-guided-inductive-synthesis
(CEGIS) strategy for solving the synthesis problem, report on
prototype implementations, and present experimental results on
an initial set of benchmarks.

I. INTRODUCTION

In program verification, we want to check if a program
satisfies its logical specification. Contemporary verification
tools vary widely in terms of source languages, verification
methodology, and the degree of automation, but they all
rely on repeatedly invoking an SMT (Satisfiability Modulo
Theories) solver. An SMT solver determines the truth of
a given logical formula built from typed variables, logical
connectives, and typical operations such as arithmetic and
array accesses (see [1], [2]). Despite the computational in-
tractability of these problems, modern SMT solvers are ca-
pable of solving instances with thousands of variables due
to sustained innovations in core algorithms, data structures,
decision heuristics, and performance tuning by exploiting
the architecture of contemporary processors. A key driving
force for this progress has been the standardization of a
common interchange format for benchmarks called SMT-LIB
(see smt-lib.org) and the associated annual competition (see
smtcomp.org). These efforts have proved to be instrumental
in creating a virtuous feedback loop between developers and
users of SMT solvers: with the availability of open-source
and highly optimized solvers, researchers from verification
and other application domains find it beneficial to translate
their problems into the common format instead of attempting
to develop their own customized tools from scratch, and the
limitations of the current SMT tools are constantly exposed by
the ever growing repository of different kinds of benchmarks,
thereby spurring greater innovation for improving the solvers.

In program synthesis, we wish to automatically synthesize
an implementation for the program that satisfies the given
correctness specification. A mature synthesis technology has

the potential of even greater impact on software quality than
program verification. Classically, program synthesis is viewed
as a problem in deductive theorem proving: a program is
derived from the constructive proof of the theorem that states
that for all inputs, there exists an output, such that the desired
correctness specification holds (see [3]). Our work is motivated
by a recent trend in synthesis in which the programmer, in
addition to the correctness specification, provides a syntactic
template for the desired program. For instance, in the pro-
gramming approach advocated by the SKETCH system, a pro-
grammer writes a partial program with incomplete details, and
the synthesizer fills in the missing details using user-specified
assertions as the correctness specification [4]. We call such
an approach to synthesis syntax-guided synthesis (SyGuS).
Besides program sketching, a number of recent efforts such as
synthesis of loop-free programs [5], synthesis of Excel macros
from examples [6], program de-obfuscation [7], synthesis of
protocols from the skeleton and example behaviors [8], synthe-
sis of loop-bodies from pre/post conditions [9], integration of
constraint solvers in programming environments for program
completion [10], and super-optimization by finding equivalent
shorter loop bodies [11], all are arguably instances of syntax-
guided synthesis. Also related are techniques for automatic
generation of invariants using templates and by learning [12]–
[14], and recent work on solving quantified Horn clauses [15].

Existing formalization of the SMT problem and the in-
terchange format does not provide a suitable abstraction for
capturing the syntactic guidance. The computational engines
used by the various synthesis projects mentioned above rely
on a small set of algorithmic ideas, but have evolved inde-
pendently with no mechanism for comparison, benchmarking,
and sharing of back-ends. The main contribution of this paper
is to define the syntax-guided synthesis (SyGuS) problem in
a manner that (1) captures the computational essence of these
recent proposals and (2) is based on more canonical formal
frameworks such as logics and grammars instead of features
of specific programming languages. In our formalization, the
correctness specification of the function f to be synthesized
is given as a logical formula ϕ that uses symbols from a
background theory T . The syntactic space of possible im-
plementations for f is described as a set L of expressions
built from the theory T , and this set is specified using a
grammar. The syntax-guided synthesis problem then is to find
an implementation expression e ∈ L such that the formula
ϕ[f/e] is valid in the theory T . To illustrate an application of
the SyGuS-problem, suppose we want to find a completion of
a partial program with holes so as to satisfy given assertions.
A typical SyGuS-encoding of this task will translate the
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concrete parts of the partial program and the assertions into
the specification formula ϕ, while the holes will be represented
with the unknown functions to be synthesized, and the space
of expressions that can substitute the holes will be captured
by the grammar.

Compared to the classical formulation of the synthesis
problem that involves only the correctness specification, the
syntax-guided version has many potential benefits. First, the
user can use the candidate set L to limit the search-space for
potential implementations, and this has significant computa-
tional benefits for solving the synthesis problem. Second, this
approach gives the programmer the flexibility to express the
desired artifact using a combination of syntactic and semantic
constraints. Such forms of multi-modal specifications have the
potential to make programming more intuitive. Third, the set
L can be used to constrain the space of implementations for
the purpose of performance optimizations. For example, to
optimize the computation of the product of two two-by-two
matrices, we can limit the search space to implementations that
use only 7 multiplication operations, and such a restriction can
be expressed only syntactically. Fourth, because the synthesis
problem boils down to finding a correct expression from the
syntactic space of expressions, this search problem lends itself
to machine learning and inductive inference as discussed in
Section III. Finally, it is worth noting that the statement “there
exists an expression e in the language generated by a context-
free grammar G such that the formula ϕ[f/e] is valid in a
theory T ” cannot be translated to determining the truth of a
formula in the theory T , even with additional quantifiers.

The rest of the paper is organized in the following manner.
In Section II, we formalize the core problem of syntax-
guided synthesis with examples. In Section III, we discuss
a generic architecture for solving the proposed problem us-
ing the iterative counter-example guided inductive synthesis
strategy [16] that combines a learning algorithm with a ver-
ification oracle. For the learning algorithm, we show how
three techniques from recent literature can be adapted for our
purpose: the enumerative technique generates the candidate
expressions of increasing size relying on the input-output
examples for pruning; the symbolic technique encodes parse
trees of increasing size using variables and constraints, and
it calls an SMT solver to find a parse tree consistent with
all the examples encountered so far; and the stochastic search
uniformly samples the set L of expressions as a starting point,
and then executes (probabilistic) traversal of the graph where
two expressions are neighbors if one can be obtained from
the other by a single edit operation on the parse tree. We
report on a prototype implementation of these three algorithms,
and evaluate their performance on a number of benchmarks in
Section IV.

II. PROBLEM FORMULATION

At a high level, the functional synthesis problem consists
of finding a function f such that some logical formula ϕ
capturing the correctness of f is valid. In syntax-guided
synthesis, the synthesis problem is constrained in three ways:
(1) the logical symbols and their interpretation are restricted
to a background theory, (2) the specification ϕ is limited

to a first order formula in the background theory with all
its variables universally quantified, and (3) the universe of
possible functions f is restricted to syntactic expressions
described by a grammar. We now elaborate on each of these
points.

Background Theory: The syntax for writing specifications is
the same as classical typed first-order logic, but the formulas
are evaluated with respect to a specified background theory
T . The theory gives the vocabulary used for constructing
formulas, the set of values for each type, and the interpretation
for each of the function and relation (predicate) symbols in
the vocabulary. We are mainly interested in theories T for
which well-understood decision procedures are available for
determining satisfaction modulo T (see [1] for a survey).
A typical example is the theory of linear integer arithmetic
(LIA) where each variable is either a boolean or an integer,
and the vocabulary consists of boolean and integer constants,
standard boolean connectives, addition (+), comparison (≤),
and conditionals (ITE). Note that the background theory can
be a combination of logical theories, for instance, LIA and the
theory of uninterpreted functions with equality.

Correctness Specification: For the function f to be syn-
thesized, we are given the type of f and a formula ϕ as
its correctness specification. The formula ϕ is a Boolean
combination of predicates from the background theory, in-
volving universally quantified free variables, symbols from the
background theory, and the function symbol f , all used in a
type-consistent manner.

Example 1: Assuming the background theory is LIA, con-
sider the specification of a function f of type int× int 7→ int:

ϕ1 : f(x, y) = f(y, x) ∧ f(x, y) ≥ x.

The free variables in the specification are assumed to be
universally quantified: a given function f satisfies the above
specification if the quantified formula ∀x, y. ϕ1 holds, or
equivalently, if the formula ϕ1 is valid.

Set of Candidate Expressions: In order to make the synthe-
sis problem tractable, the “syntax-guided” version allows the
user to impose structural (syntactic) constraints on the set of
possible functions f . The structural constraints are imposed
by restricting f to the set L of functions defined by a given
context-free grammar GL. Each expression in L has the same
type as that of the function f , and uses the symbols in the
background theory T along with the variables corresponding
to the formal parameters of f .

Example 2: Suppose the background theory is LIA, and the
type of the function f is int× int 7→ int. We can restrict the set
of expressions f(x, y) to be linear expressions of the inputs
by restricting the body of the function to expressions in the
set L1 described by the grammar below:

LinExp := x | y | Const | LinExp + LinExp

Alternatively, we can restrict f(x, y) to conditional expres-
sions with no addition by restricting the body terms from the
set L2 described by:

Term := x | y | Const | ITE(Cond,Term,Term)

Cond := Term ≤ Term | Cond ∧ Cond | ¬Cond | (Cond)



Grammars can be conveniently used to express a wide range
of constraints, and in particular, to bound the depth and/or the
size of the desired expression.

SyGuS Problem Definition: Informally, given the correct-
ness specification ϕ and the set L of candidates, we want
to find an expression e ∈ L such that if we use e as
an implementation of the function f , the specification ϕ is
valid. Let us denote the result of replacing each occurrence
of the function symbol f in ϕ with the expression e by
ϕ[f/e]. Note that we need to take care of binding of input
values during such a substitution: if f has two inputs that the
expressions in L refer to by the variable names x and y, then
the occurrence f(e1, e2) in the formula ϕ must be replaced
with the expression e[x/e1, y/e2] obtained by replacing x and
y in e by the expressions e1 and e2, respectively. Now we can
define the syntax-guided synthesis problem, SyGuS for short,
precisely:

Given a background theory T , a typed function
symbol f , a formula ϕ over the vocabulary of T
along with f , and a set L of expressions over the
vocabulary of T and of the same type as f , find an
expression e ∈ L such that the formula ϕ[f/e] is
valid modulo T .

Example 3: For the specification ϕ1 presented earlier, if the
set of allowed implementations is L1 as shown before, there
is no solution to the synthesis problem. On the other hand, if
the set of allowed implementations is L2, a possible solution
is the conditional if-then-else expression ITE(x ≥ y, x, y).

In some special cases, it is possible to reduce the deci-
sion problem for syntax guided synthesis to the problem of
deciding formulas in the background theory using additional
quantification. For example, every expression in the set L1 is
equivalent to ax+by+c, for integer constants a, b, c. If ϕ is the
correctness specification, then deciding whether there exists an
implementation for f in the set L1 corresponds to checking
whether the formula ∃ a, b, c. ∀X.ϕ[f/ax + by + c] holds,
where X is the set of all free variables in ϕ. This reduction
was possible for L1 because the set of all expressions in L1

can be represented by a single parameterized expression in the
original theory. However, the grammar may permit expressions
of arbitrary depth which may not be representable in this way,
as in the case of L2.

Synthesis of Multiple Functions: A general synthesis prob-
lem can involve more than one unknown function. In principle,
adding support for problems with more than one unknown
function is merely a matter of syntactic sugar. For exam-
ple, suppose we want to synthesize functions f1(x1) and
f2(x2), with corresponding candidate expressions given by
grammars G1 and G2, with start non-terminals S1 and S2,
respectively. Both functions can be encoded with a single
function f12(id, x1, x2). The set of candidate expressions is
described by the grammar that contains the rules of G1 and
G2 along with a new production S := ITE(id = 0, S1, S2),
with the new start non-terminal S. Then, every occurrence of
f1(x1) in the specification can be replaced with f12(0, x1, ∗)
and every call to f2(x2) can be replaced with f12(1, ∗, x2).
Although adding support for multiple functions does not

fundamentally increase the expressiveness of the notation,
it does offer significant convenience in encoding real-world
synthesis problems.

Let Expressions in Grammar Productions: The SMT-LIB
interchange format for specifying constraints allows the use of
let expressions as part of the formulas, and this is supported by
our language also: (let [var = e1] e2). While let-expressions
in a specification can be desugared, the same does not hold
when they are used in a grammar. As an example, consider
the grammar below for the set of candidate expressions for
the function f(x, y):

T := (let [z = U ] z + z)

U := x | y | Const | U + U | U ∗ U | (U)

The top-level expression specified by this grammar is the
sum of two identical subexpressions built using arithmetic
operators, and such a structure cannot be specified using a
standard context-free grammar. In the example above, every
let introduced by the grammar uses the same variable name. If
the application of let-expressions are nested in the derivation
tree, the standard rules for shadowing of variable definitions
determine which definition corresponds to which use of the
variable.

SYNTH-LIB Input Format: To specify the input to the
SyGuS problem, we have developed an interchange format,
called SYNTH-LIB, based on the syntax of SMT-LIB2—the
input format accepted by the SMT solvers (see smt-lib.org).
The input for the SyGuS problem to synthesize the function f
with the specification ϕ1 in the theory LIA, with the grammar
for the languages L1 is encoded in SYNTH-LIB as:

(set-logic LIA)
(synth-fun f ((x Int) (y Int)) Int
((Start Int (x y

(Constant Int)
(+ Start Start)))))

(declare-var a Int)
(declare-var b Int)
(constraint (= (f a b) (f b a)))
(constraint (>= (f a b) a))
(check-synth)

Optimality Criterion: The answer to our synthesis problem
need not be unique: there may be two expressions e1 and e2 in
the set L of allowed expressions such that both implementa-
tions satisfy the correctness specification ϕ. Ideally, we would
like to associate a cost with each expression, and consider the
problem of optimal synthesis which requires the synthesis tool
to return the expression with the least cost among the correct
ones. A natural cost metric is the size of the expression. In
presence of let-expressions, the size directly corresponds to the
number of instructions in the corresponding straight-line code,
and thus such a metric can be used effectively for applications
such as super-optimization.

III. INDUCTIVE SYNTHESIS

Algorithmic approaches to program synthesis range over a
wide spectrum, from deductive synthesis to inductive synthesis.
In deductive program synthesis (e.g., [3]), a program is synthe-
sized by constructively proving a theorem, employing logical
inference and constraint solving. On the other hand, inductive



synthesis [17]–[19] seeks to find a program matching a set
of input-output examples. It is thus an instance of learning
from examples, also termed as inductive inference or machine
learning [20], [21]. Many current approaches to synthesis
blend induction and deduction [22]; syntax guidance is usually
a key ingredient in these approaches.

Inductive synthesizers generalize from examples by search-
ing a restricted space of programs. In machine learning, this
restricted space is called the concept class, and each element
of that space is often called a candidate concept. The concept
class is usually specified syntactically. Inductive learning is
thus a natural fit for the syntax-guided synthesis problem
introduced in this paper: the concept class is simply the set L
of permissible expressions.

A. Synthesis via Active Learning

A common approach to inductive synthesis is to formulate
the overall synthesis problem as one of active learning using
a query-based model. Active learning is a special case of
machine learning in which the learning algorithm can control
the selection of examples that it generalizes from and can
query one or more oracles to obtain both examples as well as
labels for those examples. In our setting, we can consider the
labels to be binary: positive or negative. A positive example
is simply an interpretation to f in the background theory
T that is consistent with the specification ϕ; i.e., it is a
valuation to the arguments of the function symbol f along with
the corresponding valuation of f that satisfies ϕ. A negative
example is any interpretation of f that is not consistent with ϕ.
We refer the reader to a paper by Angluin [23] for an overview
of various models for query-based active learning.

In program synthesis via active learning, the query oracles
are often implemented using deductive procedures such as
model checkers or satisfiability solvers. Thus, the overall
synthesis algorithm usually comprises a top-level inductive
learning algorithm that invokes deductive procedures (query
oracles); e.g., in our problem setting, it is intuitive, although
not required, to implement an oracle using an SMT solver for
the theory T . Even though this approach combines induction
and deduction, it is usually referred to in the literature simply
as “inductive synthesis.” We will continue to use this termi-
nology in the present paper.

Consider the syntax-guided synthesis problem of Sec. II.
Given the tuple (T , f , ϕ, L), there are two important choices
one must make to fix an inductive synthesis algorithm: (1)
search strategy: How should one search the concept class L?
and (2) example selection strategy: Which examples do we
learn from?

B. Counterexample-Guided Inductive Synthesis

Counterexample-guided inductive synthesis (CEGIS) [16],
[24] shown in Figure 1 is perhaps the most popular approach
to inductive synthesis today. CEGIS has close connections
to algorithmic debugging using counterexamples [19] and
counterexample-guided abstraction refinement (CEGAR) [25].
This connection is no surprise, because both debugging and
abstraction-refinement involve synthesis steps: synthesizing a
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VERIFICATION
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Learning SucceedsLearning Fails

“Concept Class”, Initial Examples

Fig. 1. Counterexample-Guided Inductive Synthesis (CEGIS)

repair in the former case, and synthesizing an abstraction
function in the latter (see [22] for a more detailed discussion).

The defining aspect of CEGIS is its example selection strat-
egy: learning from counterexamples provided by a verification
oracle. The learning algorithm, which is initialized with a
particular choice of concept class L and possibly with an initial
set of (positive) examples, proceeds by searching the space of
candidate concepts for one that is consistent with the examples
seen so far. There may be several such consistent concepts,
and the search strategy determines the chosen candidate, an
expression e. The concept e is then presented to the verification
oracle OV , which checks the candidate against the correctness
specification. OV can be implemented as an SMT solver that
checks whether ϕ[f/e] is valid modulo the theory T . If the
candidate is correct, the synthesizer terminates and outputs this
candidate. Otherwise, the verification oracle generates a coun-
terexample, an interpretation to the symbols and free variables
in ϕ[f/e] that falsifies it. This counterexample is returned to
the learning algorithm, which adds the counterexample to its
set of examples and repeats its search; note that the precise
encoding of a counterexample and its use can vary depending
on the details of the learning algorithm employed. It is possible
that, after some number of iterations of this loop, the learning
algorithm may be unable to find a candidate concept consistent
with its current set of (positive/negative) examples, in which
case the learning step, and hence the overall CEGIS procedure,
fails.

Several search strategies are possible for learning a can-
didate expression in L, each with its pros and cons. In the
following sections, we describe three different search strategies
and illustrate the main ideas in each using a small example.

C. Illustrative Example

Consider the problem of synthesizing a program which
returns the maximum of two integer inputs. The specification
of the desired program max is given by:

max(x, y) ≥ x ∧ max(x, y) ≥ y ∧
(max(x, y) = x ∨max(x, y) = y)

The search space is suitably defined by an expression
grammar which includes addition, subtraction, comparison,
conditional operators and the integer constants 0 and 1.



Expression to Verifier Learned Test Input

x 〈x = 0, y = 1〉
y 〈x = 1, y = 0〉
1 〈x = 0, y = 0〉

x+ y 〈x = 1, y = 1〉
ITE(x ≤ y, y, x) –

TABLE I
A RUN OF THE ENUMERATIVE ALGORITHM

D. Enumerative Learning

The enumerative learning algorithm [8] adopts a dynamic
programming based search strategy that systematically enu-
merates concepts (expressions) in increasing order of complex-
ity. Various complexity metrics can be assigned to concepts,
the simplest being the expression size. The algorithm needs
to store all enumerated expressions, because expressions of
a given size are composed to form larger expressions in the
spirit of dynamic programming. The algorithm maintains a
set of concrete test cases, obtained from the counterexamples
returned by the verification oracle. These concrete test cases
are used to reduce the number of expressions stored at each
step by the dynamic programming algorithm.

We demonstrate the working of the algorithm on the illus-
trative example. Table I shows the expressions submitted to
the verification oracle (an SMT solver) during the execution of
the algorithm and the values for which the expression produces
incorrect results. Initially, the algorithm submits the expression
x to the verifier. The verifier returns a counterexample 〈x =
0, y = 1〉, corresponding to the case where the expression
x violates the specification. The expression enumeration is
started from scratch every time a counterexample is added. All
enumerated expressions are checked for conformance with the
accumulated (counter)examples before making a potentially-
expensive query to the verifier. In addition, suppose the
algorithm enumerates two expressions e and e′ which evaluate
to the same value on the examples obtained so far, then only
one of e or e′ needs to be considered for the purpose of
constructing larger expressions.

Proceeding with the illustrative example, the algorithm then
submits the expression y and the constant 1 to the verifier. The
verifier returns the values 〈x = 1, y = 0〉 and 〈x = 0, y =
0〉, respectively, as counterexamples to these expressions. The
algorithm then submits the expression x+y to the verifier. The
verifier returns the values 〈x = 1, y = 1〉 as a counterexample.
The algorithm then submits the expression shown in the last
row of Table I to the verifier. The verifier certifies it to be
correct and the algorithm terminates.

The optimization of pruning based on concrete counterex-
amples helps in two ways. First, it reduces the number of
invocations of the verification oracle. In the example we have
described, the correct expression was examined after only
four calls to the SMT solver, although about 200 expressions
were enumerated by the algorithm. Second, it reduces the
search space for candidate expressions significantly (see [8]
for details). For instance, in the run of the algorithm on
the example, although the algorithm enumerated about 200
expressions, only about 80 expressions were stored.

Production Component
E → ITE(B,E,E) Inputs: (i1 : B)(i2, i3 : E)

Output: (o : E)
Spec: o = ITE(i1, i2, i3)

B → E ≤ E Inputs: (i1, i2 : E)
Output: (o : B)
Spec: o = i1 ≤ i2

TABLE II
COMPONENTS FROM PRODUCTIONS

E. Constraint-based Learning

The symbolic CEGIS approach uses a constraint solver
both for searching for a candidate expression that works
for a set of concrete input examples (concept learning) and
verification of validity of an expression for all possible inputs.
We use component based synthesis of loop-free programs
as described by Jha et al. [5], [7]. Each production in the
grammar corresponds to a component in a library. A loop-
free program comprising these components corresponds to an
expression from the grammar. Some sample components for
the illustrative example are shown in Table II along with their
corresponding productions.

The input/output ports of these components are typed and
only well-typed programs correspond to well-formed expres-
sions from the grammar. To ensure this, Jha et al.’s encod-
ing [5] is extended with typing constraints. We illustrate the
working of this algorithm on the maximum of two integers
example. The library of allowed components is instantiated
to contain one instance each of ITE and all comparison
operators(≤,≥,=) and the concrete example set is initialized
with 〈x = 0, y = 0〉. The first candidate loop-free program
synthesized corresponds to the expression x. This candidate
is submitted to the verification oracle which returns with
〈x = −1, y = 0〉 as a counterexample. This counterexample is
added to the concrete example set and the learning algorithm
is queried again. The SMT formula for learning a candidate
expression is solved in an incremental fashion; i.e., the con-
straint for every new example is added to the list of constraints
from the previous examples. The steps of the algorithm on the
illustrative example are shown in Table III.

If synthesis fails for a component library, we add one in-
stance of every operator to the library and restart the algorithm
with the new library. We also tried a modification to the
original algorithm [5], in which, instead of searching for a
loop-free program that utilizes all components from the given
library at once, we search for programs of increasing length
such that every line can still select any component from the
library. The program length is increased in an exponential

Iteration Loop-free program Learned counter-example

1 o1 := x 〈x = −1, y = 0〉
2 o1 := x ≤ x

o2 := ITE(o1, y, x) 〈x = 0, y = −1〉
3 o1 := y ≥ x

o2 := ITE(o1, y, x) –

TABLE III
A RUN OF THE CONSTRAINT LEARNING ALGORITHM



fashion (1, 2, 4, 8, · · · ) for a good coverage. This approach
provides better running times for most benchmarks in our set,
but it can also be more expensive in certain cases.

F. Learning by Stochastic Search
The stochastic learning procedure is an adaptation of the

algorithm recently used by Schufza et al. [11] for program
super-optimization. The learning algorithm of the CEGIS loop
uses the Metropolis-Hastings procedure to sample expressions.
The probability of choosing an expression e is proportional to a
value Score(e), which indicates the extent to which e meets the
specification ϕ. The Metropolis-Hastings algorithm guarantees
that, in the limit, expressions e are sampled with probability
proportional to Score(e). To complete the description of the
search procedure, we need to define Score(e) and the Markov
chain used for successor sampling. We define Score(e) to be
exp(−βC(e)), where β is a smoothing constant (set by default
to 0.5), and the cost function C(e) is the number of concrete
examples on which e does not satisfy ϕ.

We now describe the Markov chain underlying the search.
Fix an expression size n, and consider all expressions in L with
parse trees of size n. The initial candidate is chosen uniformly
at random from this set [26]. Given a candidate e, we pick a
node v in its parse tree uniformly at random. Let ev be the
subexpression rooted at this node. This subtree is replaced by
another subtree (of the same type) of size equal to |ev| chosen
uniformly at random. Given the original candidate e, and a
mutation e′ thus obtained, the probability of making e′ the
new candidate is given by the Metropolis-Hastings acceptance
ratio α(e, e′) = min(1,Score(e′)/Score(e)).

The final step is to describe how the algorithm selects the
expression size n. Although the solver comes with an option
to specify n, the expression size is typically not known a priori
given a specification ϕ. Intuitively, we run concurrent searches
for a range of values for n. Starting with n = 1, with some
probability pm (set by default to 0.01), we switch at each step
to one of the searches at size n±1. If an answer e exists, then
the search at size n = |e| is guaranteed to converge.

Consider the earlier example for computing the maxi-
mum of two integers. There are 768 integer-valued expres-
sions in the grammar of size six. Thus, the probability of
choosing e = ITE(x ≤ 0, y, x) as the initial candidate
is 1/768. The subexpression to mutate is chosen uniformly
at random, and so the probability of deciding to mutate
the boolean condition x ≤ 0 is 1/6. Of the 48 boolean
conditions in the grammar, y ≤ 0 may be chosen with
probability 1/48. Thus, the mutation e′ = ITE(0 ≤ y, y, x)
is considered with probability 1/288. Given a set of con-
crete examples {(−1,−4), (−1,−3), (−1,−2), (1, 1), (1, 2)},
Score(e) = exp(−2β), and Score(e′) = exp(−3β), and so e′

becomes the new candidate with probability exp(−β). If, on
the other hand, e′ = ITE(x ≤ y, y, x) had been the mutation
considered, then Score(e′) = 1, and e′ would have become
the new candidate with probability 1.

Our algorithm differs from that of Schufza et al. [11] in
three ways: (1) we do not attempt to optimize the size of
the expression while the super-optimizer does so; (2) we
synthesize expression graphs rather than straight-line assembly

code, and (3) since we do not know the expression size n, we
run concurrent searches for different values of n, whereas the
super-optimizer can use the size of the input program as an
upper bound on program size.

IV. BENCHMARKS AND EVALUATION

We are in the process of assembling a benchmark suite
of synthesis problems to provide a basis for side-by-side
comparisons of different solution strategies. The current set
of benchmarks is limited to synthesis of loop-free functions
with no optimality criterion; nevertheless, the benchmarks
provide an initial demonstration of the expressiveness of the
base formalism and of the relative merits of the individual
solution strategies presented earlier. Specifically, in this section
we explore three key questions about the benchmarks and the
prototype synthesizers.
• Complexity of the benchmarks. Our suite includes a

range of benchmarks from simple toy problems to non-
trivial functions that are difficult to derive by hand. Some
of the benchmarks can be solved in a few hundredths of
a second, whereas others could not be solved by any of
our prototype implementations. In all cases, however, the
complexity of the problems derives from the size of the
space of possible functions and not from the complexity
of checking whether a candidate solution is correct.

• Relative merits of different solvers. The use of a
standard format allows us to perform the first side-to-
side comparison of different approaches to synthesis.
None of the implementations were engineered with high-
performance in mind, so the exact solution times are not
necessarily representative of the best that can be achieved
by a particular approach. However, the order of magni-
tude of the solution times and the relative complexity of
the different approaches on different benchmarks can give
us an idea of the relative merits of each of the approaches
described earlier.

• Effect of problem encoding. For many problems, there
are different natural ways to encode the space of desired
functions into a grammar, so we are interested in observ-
ing the effect of these differences in encoding for the
different solvers.

To account for variability and for the constant factors
introduced by the prototype nature of the implementations,
we report only the order of magnitude of the solution times
in five different buckets: 0.1 for solution times less than half
a second, 1 for solution times between half a second and 15
seconds, 100 for solution times up to two minutes, 300 for
solution times of up to 5 minutes, and infinity for runs that
time out after 5 minutes.

The benchmarks themselves are grouped into three cate-
gories: hacker’s delight problems, integer benchmarks, and
assorted boolean and bit-vector problems.

Hacker’s delight benchmarks: This set includes 57 differ-
ent benchmarks derived from 20 different bit-manipulation
problems from the book Hacker’s Delight [27]. These bit-
vector problems were among the first to be successfully
tackled by synthesis technology and remain an active area of
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Fig. 2. Selected performance results for the three classes of benchmarks

research [4], [5], [16]. For these benchmarks, the goal is to
discover clever implementations of bit-vector transformations
(colloquially known as bit-twiddling). For most problems,
there are three different levels of grammars numbered d0, d1
and d5; level d0 involves only the instructions necessary for
the implementation, so the synthesizer only needs to discover
how to connect them together. Level d5, on the other extreme,
involves a highly unconstrained grammar, so the synthesizer
must discover which operators to use in addition to how to
connect them together.

Fig. 2 shows the performance of the three solvers on a sam-
ple of the benchmarks. For the Hacker’s Delight benchmarks
(hd) we see that the enumerative solver dominates, followed
by the stochastic solver. The symbolic search was the slowest,
failing to terminate on 29 of the 57 benchmarks. It is worth
mentioning, however, that none of the grammars for these
problems required the synthesizer to discover the bit-vector
constants involved in the efficient implementations. We have
some evidence to suggest that the symbolic solver can discover
such constants from the full space of 232 possible constants
with relatively little additional effort. On the other hand, for
many of these problems the magic constants come from a
handful of values such as 1, 0, or 0xffffffff, so it is
unnecessary for the enumerative solver to search the space of
232 possible bit-vectors.

Finally, because these benchmarks have different grammars
for the same problem, we can observe the effect of using
more restrictive or less restrictive grammars as part of the
problem description. We can see in the data that all solvers
were affected by the encoding of the problem for at least some
benchmark; although in some cases, the pruning strategies
used by the solvers were able to ameliorate the impact of
the larger search space.

Integer benchmarks: These benchmarks are meant to be
loosely representative of synthesis problems involving func-
tions with complex branching structures involving linear inte-
ger arithmetic. One of the benchmarks is array-search,
which synthesizes a loop-free function that finds the index of
an element in a sorted tuple of size n, for n ranging from
2 to 16. This benchmark proved to be quite complex, as no
solver was able to synthesize this function for n > 4. The max
benchmarks are similar except they compute the maximum of
a tuple of size n.

Fig. 2 shows the relative performance of the three solvers
on these benchmarks for sizes up to 4. With one exception, the
enumerative solver is the fastest for this class of benchmarks,
followed by the stochastic solver. The exception was max3
where the stochastic solver was faster.

Boolean/Bit-vector benchmarks: The parity benchmark
computes the parity of a set of Boolean values. The different
versions represent different grammars to describe the set of
Boolean functions. As with other benchmarks, the enumerative
solver was always faster, whereas the symbolic solver failed
on every instance. These results show the impact that different
encodings of the same space of functions can have on the
solution time for both of the solution strategies that succeeded.
Unlike the hd benchmarks where the different grammars for
a given benchmark were strict subsets of each other, in this
case the encodings AIG and NAND correspond to different
representations of the same space of functions.

The Morton benchmarks, which involve the synthesis
of a function to compute Morton numbers, are intended as
challenge problems, and could not be completed by any of
the synthesizers.

Observations: The number of benchmarks and the maturity
of the solvers are too limited to draw broad conclusions,



but the overall trend we observe is that the encoding of
the problem space into grammar has a significant impact on
performance, although the solvers are often good at mitigating
the effect of larger search spaces. We can also see that non-
symbolic techniques can be effective in exploring spaces of
implementations and can surpass symbolic techniques, espe-
cially when the problems do not require the synthesizer to
derive complex bit-vector constants, which is true for all the
bit-vector benchmarks used. Moreover, we observe that the
enumerative technique was better than the stochastic search for
all but two benchmarks, so although both implementations are
immature, these results suggest that it may be easier to derive
good pruning rules for the explicit search than an effective
fitness function for the stochastic solver.

The symbolic solver used for these experiments represents
one of many possible approaches to encoding the synthesis
problem into a series of constraints. We have some evidence
that more optimized encodings can make the symbolic ap-
proach more competitive, although there are still many prob-
lems for which the enumerative approach is more effective.
Specifically, we have transcribed all the hacker’s delight and
integer benchmarks into the input language of the Sketch
synthesis system [24]. Sketch completed all but 11 of the hd
benchmarks, and it was able to synthesize array-search
up to size 7. This experiment is not an entirely fair comparison
because, although Sketch uses a specialized constraint solver
and carefully tuned encodings, the symbolic solver presented
in this paper uses a direct encoding of the problem into
sequences of constraints and uses Z3, a widely used off-
the-shelf SMT solver which is not as aggressively tuned for
synthesis problems. Despite these limitations, the symbolic
solver was able to solve many of the benchmarks, providing a
lower bound on what can be achieved with a straightforward
use of off-the-shelf technology.

Moreover, the enumerative solver was able to solve more
hd problems than even the more optimized symbolic solver.
The problems where the enumerative solver succeeded but
Sketch failed were the d5 versions of problems 11, 12, 14
and 15, which suggests that the enumerative solver was better
at pruning unnecessary instructions from the grammar. On
the other hand, the more optimized symbolic solver did have
a significant advantage in the array-search benchmarks
which the enumerative solver could only solve up to size 4.

V. CONCLUSIONS

Aimed at formulating the core computational problem
common to many recent tools for program synthesis in a
canonical and logical manner, we have formalized the problem
of syntax-guided synthesis. Our prototype implementation of
the three approaches to solve this problem is the first attempt
to compare and contrast existing algorithms on a common set
of benchmarks. We are already working on the next steps in
this project. These consist of (1) finalizing the input syntax
(SYNTH-LIB) based on the input format of SMT-LIB2, with
an accompanying publicly available parser, (2) building a
more extensive and diverse repository of benchmarks, and
(3) organizing a competition for SyGuS-solvers. We welcome
feedback and help from the community on all of these steps.
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