
Euler: A System for Numerical Optimization of
Programs

Swarat Chaudhuri1 and Armando Solar-Lezama2

1 Rice University
2 MIT

Abstract. We give a tutorial introduction to Euler, a system for solv-
ing difficult optimization problems involving programs.

1 Introduction

Euler is a system for solving unconstrained optimization problems of the fol-
lowing form:

Let P be a function written in a standard C-like language. Identify an
input x to P such that the output P (x) of P is minimized with respect
to an appropriate distance measure on the space of outputs of P .

Many problems in software engineering are naturally framed as optimization
questions like the above. While it may appear at first glance that a standard
optimization package could solve such problems, this is often not so. For one,
“white-box” optimization approaches like linear programming are ruled out here
because the objective functions that they permit are too restricted. As for “black-
box” numerical techniques like gradient descent or simplex search, they are ap-
plicable in principle, but often not in practice. The reason is that these methods
work well only in relatively smooth search spaces; in contrast, branches and loops
can cause even simple programs to have highly irregular, ill-conditioned behav-
ior [1] (see Sec. 4 for an example). These challenges are arguably why numerical
optimization has found so few uses in the world of program engineering.

The central thesis of the line of work leading to Euler is that program ap-
proximation techniques from program analysis can work together with blackbox
optimization toolkits, and make it possible to solve problems where programs
are the targets of optimization. Thus, programs do not have to be black boxes,
but neither do they have to fall into the constricted space of what is normally
taken to be white-box optimization. Specifically, the algorithmic core of Euler
is smooth interpretation [1, 2], a scheme for approximating a program by a series
of smooth mathematical functions. Rather than the original program, it is these
smooth approximations that are used as the targets of numerical optimization.
As we show in Sec. 4, the result is often vastly improved quality of results.

In this paper, we present a tutorial introduction to Euler. In Sec. 2, we
describe, using a running example, how to use the system. In Sec. 3, we sketch
the internals of the tool. Finally, Sec. 4 analyzes the results of the tool on the
running example.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78056129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

double parallel () {
Error = 0.0;
for(t = 0; t < T; t += dT) {

if (stage==STRAIGHT) { // < −− Drive in reverse
if (t > ??) stage= INTURN; } // Parameter t1

if (stage==INTURN) { // <−− Turn the wheels towards the curb
car .ang = car.ang − ??; // Parameter A1

if (t > ??) stage= OUTTURN; } // Parameter t2
if (stage==OUTTURN) { // <−− Turn the wheels away from the curb
car .ang = car.ang + ??; } // Parameter A2

simulate_car(car); }
Error = check_destination(car); // <−− Compute the error as the difference

// between the desired and actual
return Error ; // positions of the car
}

Fig. 1. Sketch of a parallel parking controller

2 Using Euler

2.1 Programming Euler: Parallel parking

Euler can be downloaded from http://www.cs.rice.edu/~swarat/Euler. Now
we show to use the system to solve a program synthesis problem that reduces to
numerical optimization.

The goal here is to design a controller for parallel-parking a car. The pro-
grammer knows what such a controller should do at a high level: it should start
by driving the car in reverse, then at time t1, it should start turning the wheels
towards the curb (let us say at an angular velocity A1) and keep moving in
reverse. At a subsequent time t2, it should start turning the wheels away from
the curb (at velocity A2) until the car reaches the intended position. However,
the programmer does not know the optimal values of t1, t2, A1, and A2, and the
system must synthesize these values. More precisely, let us define an objective
function that determines the quality of a parallel parking attempt in terms of
the error between the final position of the car and its intended position. The
system’s goal is to minimize this function.

To solve this problem using Euler, we write a parameterized program—a
sketch—that reflects the programmer’s partial knowledge of parallel parking.3
This core of this program is the function parallel shown in Fig. 1. For space
reasons, we omit the rest of the program—however, the complete sketch is part
of the Euler distribution.

It is easy to see that parallel encodes our partial knowledge of parallel
parking. The terms ?? in the code are “holes” that correspond, in order, to the
parameters t1, A1, t2, and A2, and Euler will find appropriate values for them.

3 The input language of Euler is essentially the same as in the Sketch programming
synthesis system [4].

Note that we can view parallel as a function parallel(t1, A1, t2, A2). This is
the function that Euler is to minimize.

Occasionally, a programmer may have some insights about the range of op-
timal values for a program parameter. These may be communicated using holes
of the form ??(p,q), where (p,q) is a real interval. If such an annotation is
offered, Euler will begin its search for the parameter from the region (p, q).
Note, however, that Euler performs unconstrained optimization, and it is not
guaranteed that the value finally found for the parameter will lie in this region.

2.2 Running Euler

Let us we have built Euler and set up the appropriate library paths (specifically,
Euler requires Gsl—the GNU Scientific Library), and that our sketch of the
parallel parking controller has been saved in a file parallelPark.sk. To perform
our optimization task, we compile the file using Euler by issuing the command
“$ euler parallelPark.sk". This produces an executable parallelPark.out.
Upon running this executable ("$./parallelPark.out”), we obtain an output
of the following form:

Parameter #1: -37.0916; Parameter #2: 19.4048;
Parameter #3: -41.1728; Parameter #4: 1.11344;
Optimal function value: 10.6003

That is, the optimal value for t1 is -37.0916, that for A1 is 19.4048, and so on.
As mentioned earlier, Euler uses a combination of smooth interpretation

and a blackbox optimization method. In the present version of Euler, the lat-
ter is fixed to be the Nelder-Mead simplex method [3], a derivative-free nonlinear
optimization technique. However, we also allow the programmer to run, with-
out support from smoothing, every optimization method implemented by Gsl.
For example, to run the Nelder-Mead method without smoothing, the user is-
sues the command “$./parallelPark.out -method neldermead". For other
command-line flags supported by the tool, run "$./parallelPark.out -help”.

3 System internals

Now we briefly examine the internals of Euler. First, we recall the core ideas
of smooth interpretation [1, 2].

The central idea of smooth interpretation is to transform a program via
Gaussian smoothing, a signal processing technique for attenuating noise and
discontinuities in real-world signals. A blackbox optimization method is now
applied to this “smoothed” program. Consider a program whose denotational
semantics is a function P : Rk → R: on input x ∈ Rk, the program terminates
and produces the output P (x). Also, let us consider Gaussian functions Nx,β

with mean x ∈ Rk and a fixed standard deviation β > 0. Smooth interpretation
aims to compute a function P equaling the convolution of Pβ and Nx,β : P β(x) =∫
y∈Rk P (y) Nx,β(y) dy.

For example, consider the program “z := 0; if (x1 > 0 ∧ x2 > 0) then z :=
z − 2” where z is the output and x1 and x2 are inputs. The (discontinuous)
semantic function of the program is graphed in Fig. 2-(a). Applying Gaussian
convolution to this function gives us a smooth function as in Fig. 2-(b).

As computing the exact convo-

(a) (b)

x1 x1

x2 x2

z z

Fig. 2. (a) A discontinuous program (b)
Gaussian smoothing

lution of an arbitrary program is un-
decidable, any algorithm for program
smoothing must introduce additional
approximations. In prior work, we
gave such an algorithm [1]—this is
what Euler implements.

We skip the details of this al-
gorithm here. However, it is worth
noting that function P β is parame-
terized by the standard deviation β
of Nx,β . Intuitively, β controls the
extent of smoothing: higher values of β lead to greater smoothing and easier
numerical search, and lower values imply closer correspondence between P and
P β , and therefore, greater accuracy of results. Finding a “good” value of β thus
involves a tradeoff. Euler negotiates this tradeoff by starting with a moder-
ately high value of β, optimizing the resultant smooth function, then iteratively
reducing β and refining the search results.

!"#$"%&'"($)

*+',#"-)

*"(%./)

!"#$%&'

01*2)3#"4)

()*#+''

%,-./*#+'

0.1-/231,4''

53%"#46'78!9:'
(;#%)$35*#'

01567)3#"4)

,(%(##"#04)8)

9)

:)
*'557/;(%(##"#))

0<=);4)8)

)))9)

:)

'(+>)04)8)9):)

β0, β1, β2, . . .

!x0
, !x1

, !x2
, . .

.

Fig. 3. Control flow in Euler

The high-level control flow in the tool is as in Fig. 3. Given an input file
(say parallelPark.sk), the Euler compiler produces an executable called
parallelPark.out. In the latter, the function parallel(x) has been replaced by
a smooth function smoothParallel(β,x). When we execute parallelPark.out,
β is set to an initial value β0, and the optimization backend (Gsl) is invoked on
the function smoothParallel(β = β0,x). The optimization method repeatedly
queries smoothParallel, starting with a random initial input x0 and perturb-
ing it iteratively in subsequent queries, and finally returns a minimum to the
top-level loop. At this point, β is set to a new value and the same process is
repeated. We continue the outer loop until it converges or there is a timeout.

4 Results

Now we present the results obtained by running Euler on our parallel parking
example. These results are compared with the results of running the Nelder-Mead
method (Nm), without smoothing, on the problem.

As any local optimization

Fig. 4. Percentages of runs that lead to spe-
cific ranges of parallel(xmin) (lower ranges
are better).

algorithm starts its search from
a random point x0, the minima
xmin computed by Euler and
Nm are random as well. How-
ever, the difference between the
two approaches becomes appar-
ent when we consider the dis-
tribution of parallel(xmin) in
the two methods. In Fig. 4, we
show the results of Euler and
Nm on 100 runs from initial
points generated by a uniform
random sampling of the region
−10 < t1, A1, t2, A2 < 10. The
values of parallel(xmin) on all

these runs have been clustered into several intervals, and the number of runs
leading to outputs in each interval plotted as a histogram.

As we see, a much larger percentage of runs

Fig. 5. Landscape of numeri-
cal search for parallel parking
algorithm

in Euler lead to lower (i.e., better) values of
parallel(xmin). The difference appears starker
when we consider the number of runs that led
to the best-case behavior for the two methods.
The best output value computed by both meth-
ods was 10.6003; however, 68 of the 100 runs of
Euler resulted in this value, whereas Nm had
26 runs within the range 10.0-15.0.

Let us now see what these different values
of parallel(xmin) actually mean. We show in
Fig. 6-(a) the trajectory of a car on an input
x for which the value parallel(x) equals 40.0
(the most frequent output value, rounded to the
first decimal, identified by Nm). The initial and
final positions of the car are marked; the two
black rectangles represent other cars; the arrows indicate the directions that the
car faces at different points in its trajectory. Clearly, this parking job would earn
any driving student a failing grade.

On the other hand, Fig. 6-(b) shows the trajectory of a car parked using on
an input for which the output is 10.6, the most frequent output value found by
Euler. Clearly, this is an excellent parking job.

The reason why Nm fails becomes apparent when we examine the search
space that it must navigate here. In Fig. 5, we plot the function parallel(x) for
different values of t2 and A1 (t1 and A2 are fixed at optimal values). Note that
the search space is rife with numerous discontinuities, plateaus, and local min-
ima. In such extremely irregular search spaces, numerical methods are known
not to work—smoothing works by making the space more regular. Unsurpris-
ingly, similar phenomena were observed when we compared Euler with other
optimization techniques implemented in Gsl.

These observations are not specific to parallel parking—similar effects are
seen on other parameter synthesis benchmarks [1] that involve controllers with
discontinuous switching (several of these benchmarks are part of the Euler dis-
tribution). More generally, the reason why parallel is so ill-behaved is funda-
mental: even simple programs may contain discontinuous if-then-else statements,
which can be piled on top of each other through composition and loops, caus-
ing exponentially many discontinuous regions. Smooth interpretation is only the
first attempt from the software community to overcome these challenges; more
approaches to the problem will surely emerge. Meanwhile, readers are welcome
to try out Euler and advise us on how to improve it.

!"#$%&'&(")%*+,&(+'%!"#$%-'")%*+,&(+'%

!.#/%

!"#$%&'&(")%*+,&(+'%

!"#$%-'")%*+,&(+'%

!.#/%

(a)

(b)

Fig. 6. (a) Parallel parking as done by Nm; (b) Parallel parking as done by Euler

References
1. S. Chaudhuri and A. Solar-Lezama. Smooth interpretation. In PLDI, pages 279–291,

2010.
2. S. Chaudhuri and A. Solar-Lezama. Smoothing a program soundly and robustly. In

CAV, pages 277–292, 2011.
3. J.A. Nelder and R. Mead. A simplex method for function minimization. The

computer journal, 7(4):308, 1965.
4. A. Solar-Lezama, R. Rabbah, R. Bodík, and K. Ebcioğlu. Programming by sketching

for bit-streaming programs. In PLDI, pages 281–294. ACM, 2005.

