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ABSTRACT

We present Code Phage (CP), a system for automatically
transferring correct code from donor applications into re-
cipient applications to successfully eliminate errors in the
recipient. Experimental results using six donor applica-
tions to eliminate nine errors in six recipient applications
highlight the ability of CP to transfer code across applica-
tions to eliminate otherwise fatal integer and buffer over-
flow errors. Because CP works with binary donors with no
need for source code or symbolic information, it supports
a wide range of use cases. To the best of our knowledge,
CP is the first system to eliminate software errors via the
successful transfer of correct code across applications.

1 INTRODUCTION

Over the last decade, the software development commu-
nity, both open-source and proprietary, has implemented
multiple systems with similar functionality (for example,
systems that process standard image and video files). In
effect, the software development community is now en-
gaged in a spontaneous N-version programming exercise.
But despite the effort invested in these projects, errors and
security vulnerabilities still remain a significant concern.
Many of these errors are caused by an uncommon case
that the developers of one (or more) of the systems did not
anticipate. A key motivation for our research is the empiri-
cal observation that different systems often have different
errors — an input that will trigger an error in one system
can often be processed successfully by another system.

1.1 The Code Phage (CP) Code Transfer Sys-
tem

We present CP, a system that automatically eliminates
errors in recipient software systems by finding correct
logic in donor systems, then transferring that logic from the
donor into the recipient to enable the recipient to correctly
process inputs that would otherwise trigger fatal errors.
The result is a software hybrid that productively combines
beneficial logic from multiple systems:

• Error Discovery: CP works with a seed input that
does not trigger the error and a related input that

does trigger the error. CP currently uses the DIODE
integer overflow discovery tool, which starts with a
seed input, then uses instrumented executions of the
recipient program to find related inputs that trigger
integer overflow errors at critical memory allocation
sites.

• Donor Selection: CP next uses instrumented exe-
cutions of other systems that can process the same
inputs to find a donor that processes both the seed and
error-triggering inputs successfully. The hypothesis
is that the donor contains a check, missing in the re-
cipient, that enables it to process the error-triggering
input correctly. The goal is to transfer that check from
the donor into the recipient (thereby eliminating the
error in the recipient).

• Candidate Check Discovery: To identify the check
that enables the donor to survive the error-triggering
input, CP analyzes the executed conditional branches
in the donor program to find branches that 1) are
affected by input values involved in the overflow and
2) take different directions for the seed and error-
triggering inputs. The hypothesis is that if the check
eliminates the error, the seed input will pass the check
but the error-triggering input will fail the check (and
therefore change the branch direction).

• Patch Transfer: CP next transfers the check from
the donor into the recipient. There are two primary
(and related) challenges: expressing the check in the
name space of the recipient and finding an appropriate
location to insert the check.
CP first uses an instrumented execution of the donor
on the error-triggering input to express the branch
condition as a symbolic expression over the input
bytes that determine the value of the branch condition
— in effect, excising the check from the donor to obtain
a system-independent representation of the check.
CP then uses an instrumented execution of the re-
cipient on the seed input to find candidate insertion
points at which all of the input bytes in the branch
condition are available in recipient program expres-
sions. At these points, CP can generate a patch that
expresses the condition as a function of these recipi-
ent expressions. This translation, in effect, implants
the excised check into the recipient. CP tries each



candidate insertion point in turn until it finds one that
validates.

• Patch Validation: CP first uses regression testing
to verify that the patch preserves correct behavior
on the regression suite. It then checks that the patch
enables the patched recipient to correctly process the
error-triggering input.
CP next uses DIODE to verify that the check actually
eliminates the error. Specifically, CP processes the
symbolic check condition, the symbolic expression
for the size of the allocated memory block, and other
existing checks in the recipient that are relevant to the
error to verify that there is no input that 1) satisfies
the checks but also 2) generates an overflow in the
computation of the size of the allocated block.
If the patch validation fails, CP continues on to
try other candidate insertion points, other candidate
checks, and other donors.

The current CP implementation generates source-level
recipient patches (given appropriate binary patching ca-
pability, it would also be straightforward to generate bi-
nary patches). But the donor analysis operates directly on
stripped binaries with no need for source code or symbolic
information of any kind. CP can therefore, for example,
use closed-source proprietary binaries to obtain patches for
open-source systems. It can also leverage binary donors in
any other way that makes sense in a given situation.

1.2 Experimental Results

We evaluate CP on nine errors in six recipient applications
(CWebP 0.31 [2], Dillo 2.1 [3], swfplay 0.55 [12], Display
6.5.2-8 [7], JasPer 1.9 [8] and gif2tiff 4.0.3 [9]). The donor
applications are FEH-2.9.3 [4], mtpaint 3.4 [10], ViewNoir
1.4 [13], , gnash 0.8.11 [5], OpenJpeg 1.5.2 [11] and Dis-
play 6.5.2-9 [7]. For all of the 12 possible donor/recipient
pairs (the donor and recipient must process inputs in the
same format), CP was able to successfully generate a patch
that eliminated the error.

To fully appreciate the significance of these results, con-
sider that the donor and recipient applications were devel-
oped in independent development efforts with no shared
source code base relevant to the error. This is not a sit-
uation in which CP is simply propagating patches from
one version of a shared code base to a previous version
— the patched code is instead excised from an indepen-
dently developed alien donor and successfully implanted
into the recipient. CP’s ability to obtain an application-
independent representation of the check (by expressing
the check as a function of the input bytes) is critical to the
success of the transfer.

We also note that the recipient and donor applications do
not need to implement the same functionality. Many of the
errors occur in the code that parses the input, constructs the
internal data structures that hold the input, and reads the
input into those data structures. Even when the applications
have different goals and functionality, the fact that they
both read the same input files is often enough to enable a
successful transfer.

1.3 Enabled Use Scenarios
A core technique in CP is the ability to extract function-
ality expressed in machine code, obtain an application-
independent representation of that functionality, then trans-
fer the functionality into a source-code patch expressed in
the name space of the recipient application. In this techni-
cal report we focus on using this core technique to transfer
patches for security vulnerabilities into otherwise vulnera-
ble applications. But there are, of course, many other ways
to deploy this core technique to solve a variety of software
engineering problems.

1.3.1 Multi-Application, Multi-Lingual Copy and
Paste

Developers often copy code from one application, paste
the code into another application under development, and
manually adjust the code for the new context. This ad-
justment typically includes adapting the code to use the
variable names from the new context and and modifying
the accessed data structures. Both of these are time con-
suming, error prone development tasks. If the applications
are written in different languages the task is complicated
even further by the need to translate the code from the
donor language into the recipient language.

CP’s code transfer techniques make it possible to auto-
matically transfer copy and paste code between applica-
tions. Because CP works with binary donors, the applica-
tions can be written in different languages. The developer
would simply highlight or otherwise identify code in the
donor, then CP would automatically extract the code for
insertion at a specified point in the recipient. This sce-
nario anticipates source code access to the donor, with
the extraction taking place from the compiled binary after
extraction.

1.3.2 Interactive Functionality Identification and
Extraction

In some cases a developer may wish to transfer function-
ality from a donor application even though the developer
does not have source code available (because, for exam-
ple, the source code was lost or the application is a closed-
source application). Because CP works with binary donors,
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all it needs is some identification of the desired function-
ality. While techniques such as identifying functions or
procedures to extract may be helpful for some developers,
it would be good to have an approach that does not rely on
any understanding of the specific implementation details
of the binary.

It would be possible to interactively guide CP’s basic
functionality extraction technique. Specifically, the devel-
oper could execute the donor application in a harness that
would enable the developer to press a start button, exer-
cise the desired functionality, then press a stop button. CP
could then extract the exercised functionality and place it
at an identified point in the donor (or even just produce a
readable application-independent form suitable for later
insertion). This technique could enable developers to very
quickly extract and reuse functionality present in other
applications (including applications written in a different
language than the recipient application.

1.3.3 Binary Understanding

We note that there are many situations in which developers
need to better understand binaries. It would be possible
to apply the functionality extraction capabilities of CP
to help developers understand the implementation and
behavior of a given binary. The identification of the desired
functionality could be interactive, guided by developer
identification of the specific part of the binary to extract,
or any other means of guiding CP to the desired part of the
binary.

1.3.4 Binary Recipient

In this technical report we focus on the generation of source
code patches. It is, of course, possible for CP to generate
binary patches (given an appropriate binary patching sys-
tem such as DynamoRIO [15]). Such a capability could
be especially useful for applications whose source code
is not available, either because the source code is lost or
because the application is a closed-source application (for
example).

1.4 Contributions
This paper makes the following contributions:

• Basic Concept: CP automatically eliminates soft-
ware errors by identifying and transferring correct
logic from donor systems into incorrect recipient sys-
tems. In this way CP can automatically harness the
combined knowledge and labor invested across mul-
tiple systems to improve each system.
To the best of our knowledge, CP is the first system
to demonstrate that it is possible to automatically

transfer logic between software systems to eliminate
errors.

• Logic Identification Technique: CP identifies the
correct donor logic to transfer into the recipient by
analyzing two instrumented executions of the donor:
one on the seed input and one on the error-triggering
input (which the donor, but not the recipient, can
successfully process). A comparison of the paths
that these two inputs take through the donor enables
CP to isolate a single check (present in the donor
but missing in the recipient) that enables systems to
correctly process inputs that would otherwise trigger
(usually fatal) errors.

• Transfer Technique: CP excises the check from
the donor by expressing the check in a system-
independent way as a function of the input bytes that
determine the value of the check. It implants the check
into the recipient by analyzing an instrumented execu-
tion of the recipient to discover program expressions
that contain the required input values. Specifically,
it uses the availability of these expressions to iden-
tify an appropriate check insertion point and translate
the check into the name space of the recipient at that
point. It then validates the transfer using regression
testing and directed input space exploration to verify
that there is no input that 1) satisfies the check and
relevant enforced DIODE branch conditions but also
2) triggers the error.

• Experimental Results: We present experimental re-
sults that characterize the ability of CP to eliminate
seven otherwise fatal errors in four recipient applica-
tions by transferring correct logic from three donor
applications. For all of the 10 possible donor/recipi-
ent pairs, CP was able to obtain a successful validated
transfer that eliminated the error.

The remainder of the paper is structured as follows.
Section 2 presents an example that illustrates how CP
eliminates an error in CWebp (with FEH as the donor).
Section 3 discusses the CP design and implementation. We
present experimental results in Section 4, related work in
Section 5, and conclude in Section 6.

2 EXAMPLE

We next present an example that illustrates how CP au-
tomatically patches an integer overflow error in CWebP,
Google’s conversion program for the WepP image format.

Figure 1 presents (simplified) CWebP source code that
contains an integer overflow error. CWebP uses the lib-
jpeg library to read JPG images before converting them
to the CWebP format. It uses the ReadJPEG function to
parse the JPG files. There is a potential overflow at line
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9 where CWebP calculates the size of the allocated im-
age as stride * height, where stride is: width *
output_components * sizeof(rgb).

On a 32-bit machine, inputs with large width and height
fields can cause the image buffer size calculation at line 9
to overflow. In this case CWebP allocates an image buffer
that is smaller than required and eventually writes beyond
the end of the allocated buffer.
Error Discovery: Starting with a seed input that CWebP
processes correctly, CP uses the DIODE integer overflow
discovery tool to obtain a related input that triggers the
integer overflow error. DIODE first executes CWebP on
the seed input. At each executed memory allocation site,
the DIODE instrumentation records a symbolic expression
for the size of the allocated memory. The variables in this
symbolic expression are the values of the JPG input fields.
The symbolic expressions therefore capture the complete
computation that CWebP performs on the input fields to
obtain the sizes of the allocated memory blocks.

DIODE next leverages branch conditions and the
recorded symbolic expressions to efficiently search the
input space to find an input that triggers an integer over-
flow at one (or more) of the memory allocation sites.
In the error-triggering input in our example, the JPG
/start_frame/content/height field is 62848
and the /start_frame/content/width field is
23200.
Donor Selection: CP next searches a database of appli-
cations that process JPG files to find candidate donor ap-
plications that successfully process both the seed and the
error-triggering inputs. In this example CP finds the FEH
image viewer application. CP will attempt to find a check
in FEH that eliminates the integer overflow, then transfer
that check from FEH into CWebP to eliminate the overflow
in CWebP.
Candidate Check Discovery: CP next runs an instru-
mented version of the FEH donor application on the seed
and error-triggering inputs. At each conditional branch
that is influenced by the relevant input field values (in
this case the/start_frame/content/height and
/start_frame/content/width fields), it records
the direction taken at the branch and a symbolic expression
for the value of the branch condition (the free variables in
these expressions are the values of input fields).

CP operates under the hypothesis that one of the FEH
branch conditions implements a check designed to detect
inputs that trigger the overflow. Under this hypothesis,
the seed input and error-triggering inputs take different
directions at this branch (because the seed input would
satisfy the branch condition and the error-triggering input
would not). CP therefore considers the condition at each

1 int ReadJPEG(...) {
2 ...
3 dth = dinfo.output_width;
4 height = dinfo.output_height;
5 stride = dinfo.output_width *
6 dinfo.output_components *
7 sizeof(*rgb);
8 /* the overflow error */
9 rgb = (uint8_t*)malloc(stride * height);

10 if (rgb == NULL) {
11 goto End;
12 }
13 ...
14 }

Figure 1: (Simplified) CWebP Overflow Error

1 # define IMAGE_DIMENSIONS_OK(w, h) \
2 ( ((w) > 0) && ((h) > 0) && \
3 ((unsigned long long)(w) * \
4 (unsigned long long)(h) <= (1ULL << 29) - 1) )
5

6 char load(...) {
7 int w, h;
8 struct jpeg_decompress_struct cinfo;
9 struct ImLib_JPEG_error_mgr jerr;

10 FILE *f;
11 ...
12 if (...) {
13 ...
14 im->w = w = cinfo.output_width;
15 im->h = h = cinfo.output_height;
16 /* Candidate check condition */
17 if ((cinfo.rec_outbuf_height > 16) ||
18 (cinfo.output_components <= 0) ||
19 !IMAGE_DIMENSIONS_OK(w, h))
20 {
21 // Clean up and quit
22 ...
23 return 0;
24 }
25 }
26 }

Figure 2: (Simplified) FEH Overflow Check

branch at which the seed and error-triggering inputs take
different directions to be a candidate check condition.

In our example, CP discovers a candidate check con-
dition in the imlib library that FEH uses to load and
process JPG files. Figure 2 presents the (simplified) source
code for this condition.1 TheIMAGE_DIMENSIONS_OK
macro (line 19), performs an overflow check on the compu-
tation of output_width * output_height. This
check enables FEH to detect and correctly process the
error-triggering input without overflow.

CP next excises the candidate check condition from the
donor by expressing the condition as a function of the
input bytes that determine the value of the condition. This
excision uses an instrumented execution of the donor that
dynamically tracks the flow of input bytes through program
to record the bytes that appear in theoutput_width and

1 Because CP operates on binaries, information about the source code
for the donor patch is, in general, not available. So that we can present
the FEH source code for the check in our example, we used the symbolic
debugging information in FEH to manually locate the source code for the
check.
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((unsigned long long)(w) ((unsigned long long)(h) 

*
<=

(1ULL << 29) - 1) 

Add(Width(BvOr(Constant(0x0),Width(Shl(Widt
h(BvAnd(Variable("/start_frame/content/

height"),Constant(0xff)),
 Constant(32)),Constant(0x8)), Constant(32))),
Constant(32)),Width(BvOr(Constant(0x0),Width

(UShr(Width(BvAnd(Variable("/start_frame/
content/height"),Constant(0xff00)),

 Constant(32)),Constant(0x8)), Constant(32))), 
Constant(32)))

Add(Width(BvOr(Constant(0x0),Width(Shl(Widt
h(BvAnd(Variable("/start_frame/content/

width"),Constant(0xff)),
 Constant(32)),Constant(0x8)), Constant(32))),
Constant(32)),Width(BvOr(Constant(0x0),Width

(UShr(Width(BvAnd(Variable("/start_frame/
content/width"),Constant(0xff00)),

 Constant(32)),Constant(0x8)), Constant(32))), 
Constant(32))), Constant(32))),

Add(BvOr(Constant(0x00),Shl(Width(BvAnd(Va
riable('/start_frame/content/

width'),Constant(0xFF)),Constant(32)),Constan
t(8))),

BvOr(Constant(0x00),Width(UShr(BvAnd(Varia
ble('/start_frame/content/

width'),Constant(0xFF00)),Constant(8)),Consta
nt(32))))", 32

Add(BvOr(Constant(0x00),Shl(Width(BvAnd(Va
riable('/start_frame/content/

height'),Constant(0xFF)),Constant(32)),Consta
nt(8))),

BvOr(Constant(0x00),Width(UShr(BvAnd(Varia
ble('/start_frame/content/

height'),Constant(0xFF00)),Constant(8)),Const
ant(32))))", 32,

cinfo->image_height cinfo->image_width

cinfo->image_height cinfo_image_width

*
<=

536870911

if ((((unsigned long) ((cinfo->image_height) * 
((unsigned long) (cinfo->image_width)))) <= 536870911))•

# define IMAGE_DIMENSIONS_OK(w, h)  \
((unsigned long long)(w) * (unsigned long long)(h) <= (1ULL << 29) - 1) )

DONOR

RECIPIENT

Figure 3: Patch Transfer

output_height variables. In our example the excised
condition is as follows:

ULessEqual(Width(Mul(Width(BvOr(Width(Shl(Width(SRemainder
(BvOr(BvOr(Constant(0x00),Width(Sub(Add(Constant(8),
Shl(Add(BvOr(Constant(0x00),Shl(BvAnd(Variable(’/start_frame/content/height’),
Constant(0xFF)),Constant(8))),BvOr(Constant(0x00),
UShr(BvAnd(Variable(’/start_frame/content/height’),Constant(0xFF00)),
Constant(8)))),Constant(3))),Constant(1)),Constant(64))),
Shl(Width(SShr(Sub(Add(Constant(8),Shl(Add(BvOr(Constant(0x00),
Shl(Width(BvAnd(Variable(’/start_frame/content/height’),
Constant(0xFF)),Constant(32)),Constant(8))),BvOr(Constant(0x00),
UShr(BvAnd(Variable(’/start_frame/content/height’),Constant(0xFF00)),
Constant(8)))),Constant(3))),Constant(1)),Constant(31)),Constant(64)),
Constant(32))),Constant(8)),Constant(64)),Constant(32)),Constant(64)),
SDiv(BvOr(BvOr(Constant(0x00),Width(Sub(Add(Constant(8),
Shl(Add(BvOr(Constant(0x00),
Shl(BvAnd(Variable(’/start_frame/content/height’),
Constant(0xFF)),Constant(8))),BvOr(Constant(0x00),
UShr(BvAnd(Variable(’/start_frame/content/height’),Constant(0xFF00)),
Constant(8)))),Constant(3))),Constant(1)),Constant(64))),
Shl(Width(SShr(Sub(Add(Constant(8),
Shl(Add(BvOr(Constant(0x00),
Shl(BvAnd(Variable(’/start_frame/content/height’),
Constant(0xFF)),Constant(8))),BvOr(Constant(0x00),
UShr(BvAnd(Variable(’/start_frame/content/height’),Constant(0xFF00)),
Constant(8)))),Constant(3))),Constant(1)),Constant(31)),Constant(64)),
Constant(32))),Constant(8))),Constant(64)),
Width(BvOr(Width(Shl(Width(SRemainder(BvOr(BvOr(Constant(0x00),
Width(Sub(Add(Constant(8),Shl(Add(BvOr(Constant(0x00),
Shl(BvAnd(Variable(’/start_frame/content/width’),Constant(0xFF)),
Constant(8))),BvOr(Constant(0x00),
UShr(BvAnd(Variable(’/start_frame/content/width’),
Constant(0xFF00)),Constant(8)))),Constant(3))),Constant(1)),Constant(64))),
Shl(Width(SShr(Sub(Add(Constant(8),Shl(Add(BvOr(Constant(0x00),
Shl(BvAnd(Variable(’/start_frame/content/width’),Constant(0xFF)),
Constant(8))),BvOr(Constant(0x00),
UShr(BvAnd(Variable(’/start_frame/content/width’),Constant(0xFF00)),
Constant(8)))),Constant(3))),Constant(1)),Constant(31)),Constant(64)),
Constant(32))), Constant(8)),Constant(64)),Constant(32)),Constant(64)),
SDiv(BvOr(BvOr(Constant(0x00), Width(Sub(Add(Constant(8),Shl(Add(BvOr(Constant(0x00),
Shl(BvAnd(Variable(’/start_frame/content/width’),Constant(0xFF)),Constant(8))),
BvOr(Constant(0x00),UShr(BvAnd(Variable(’/start_frame/content/width’),
Constant(0xFF00)),Constant(8)))),Constant(3))),Constant(1)),
Constant(64))),Shl(Width(SShr(Sub(Add(Constant(8),
Shl(Add(BvOr(Constant(0x00),Shl(BvAnd(Variable(’/start_frame/content/width’),
Constant(0xFF)),Constant(8))),BvOr(Constant(0x00),
UShr(BvAnd(Variable(’/start_frame/content/width’),
Constant(0xFF00)),Constant(8)))),Constant(3))),Constant(1)),
Constant(31)),Constant(64)),Constant(32))),Constant(8))),
Constant(64))),Constant(64)),Constant(536870911))

There are two primary reasons for the complexity of this
excised condition. First, it correctly captures how FEH
manipulates the input fields to convert from big-endian
(in the input file) to little-endian (in the FEH application)
representation. Second, FEH also casts the 16-bit input
fields to long integers before it performs the overflow check.
The excised condition correctly captures the shifts and
masks that are performed as part of this conversion.

Patch Transfer: CP next attempts to transfer the candi-
date check condition from the donor FEH application to
the recipient CWebP application, then use the transferred
condition to insert a check into CWebP that eliminates the
integer overflow error. Two key challenges are translating
the condition into the name space of the CWebP application
(i.e., expressing the condition in terms of the variables of
the CWebP application) and finding a successful insertion
point for the generated check.

CP runs CWebP (the recipient) on the seed input. Af-
ter every assignment that reads a program expression that
contains one of the input fields in the candidate check con-
dition, the CP instrumentation computes the input field
values that are available in CWebP program expressions at
that point. If all of the input field values in the condition
are available at a given point, CP can express the candidate
check condition in terms of the available CWebP expres-
sions (Figure 3 illustrates the translation). Each such point
is a candidate insertion point.

CP iterates over the candidate insertion points (sorted by
the CWebP execution order). At each point CP generates a
candidate patch and attempts to validate the patch to deter-
mine if it 1) eliminates the error and 2) does not introduce a
new error. The iteration continues until the patch validates.

For CWebP, CP identifies 16 candidate insertion
points. The first point occurs in jdmarker.c:267,
which is part of the jpeg-6b library. At this
point CP (using the cinfo− >image_height and
cinfo−>image_width expressions available in the
CWepP source code at that point) generates the following
patch:
if (!((((unsigned long) ((cinfo->image_height) *

((unsigned long) (cinfo->image_width))))
<= 536870911))) {

exit(-1);
}

Note that CP was able to successfully convert the com-
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plex application-independent excised condition into this
simple form — CP was able to detect that CWebP, even
though developed independently, performs the same en-
dianess conversion, shifts, and masks on the input values
as FEH. CP therefore realizes that the input values are
available in the same format in both the CWebP and FEH
internal data structures, enabling CP to generate a sim-
ple patch that accesses the CWebP data structures directly
with no complex format conversion. The generated patch
checks the candidate check condition and, if the condition
is true, exits the application. The rationale is to exit the
application before the integer overflow (and any ensuing
error or vulnerabilities) can occur.

Figure 4, lines 14-18, shows where CP inserts the gener-
ated patch into CWebP. A quick inspection of the surround-
ing code, which also performs a number of input checks,
indicates that CP selected an appropriate patch insertion
point.

1 LOCAL(boolean)
2 get_sof (j_decompress_ptr cinfo, ...) {
3 ...
4 // Existing sanity checks
5 if (cinfo->image_height <= 0 ||
6 cinfo->image_width <= 0 ||
7 cinfo->num_components <= 0)
8 ERREXIT(cinfo, JERR_EMPTY_IMAGE);
9

10 if (length != (cinfo->num_components * 3))
11 ERREXIT(cinfo, JERR_BAD_LENGTH);
12 ...
13 /* CP transfered patch */
14 if (!((((unsigned long) ((cinfo->image_height) *
15 ((unsigned long) (cinfo->image_width))))
16 <= 536870911))) {
17 exit(-1);
18 }
19 ...
20 return TRUE;
21 }

Figure 4: Transfered Patch In CWebP (from FEH)

Patch Validation: Finally, CP rebuilds CWebP, which
now includes the generated patch, and subjects the patch to
a number of tests. First, it ensures the compilation process
finished correctly. Second, it executes the patched version
of CWebP on the error-triggering input and checks that
the input no longer triggers the error (CP runs CWebP
under Valgrind memcheck to detect any errors that do
not manifest in crashes). Third, it runs a regression test
that compares the output of the patched application to the
output of the original application, on a pre-selected set of
inputs that the application is known to process correctly.
Fourth, CP runs the patched version of the application
through the DIODE error discovery tool to ensure that no
more error-triggering inputs can be generated. The end
result, in this example, is a version of CWebP that contains
a check that eliminates the integer overflow error in the
original version.

3 DESIGN AND IMPLEMENTATION

We next discuss how CP deals with the many technical
issues it must overcome to successfully generate source-
level patches for discovered errors. CP consists of approx-
imately 10,000 lines of C (most of this code implements
the taint and symbolic expression tracking) and 4,000 lines
of Python (code for rewriting donor expressions into ex-
pressions that can be inserted into the recipient, code that
generates patches from the bitvector representation, code
that interfaces with Z3, and the code that manages the
database of relevant experimental results).

Figure 5 presents an overview of the CP components.
First, we describe our techniques for error discovery. Sec-
ond, we describe our methodology for selecting donors.
Third, we describe our techniques for selecting candidate
checks from donor applications. Fourth, we describe our
patch transfer algorithms. Finally, we discuss our tech-
niques for patch validation.

3.1 Error Discovery
CP uses DIODE [1], a tool that we have previously devel-
oped, to automatically generate inputs that trigger integer
overflows at memory allocation sites. DIODE is designed
to identify relevant checks that inputs must satisfy to trigger
overflows at target memory allocation sites, then generate
inputs that satisfy these checks to successfully trigger the
overflow.

Starting with a seed input that causes one or more target
memory allocation sites to execute, DIODE performs the
following steps:

• Target Allocation Site Identification: Using a fine-
grained dynamic taint analysis on the application run-
ning on the seed input, DIODE identifies all memory
allocation sites that are influenced by values from the
seed input. These sites are the target sites.

• Target Constraint Extraction: Based on instru-
mented executions of the application, DIODE ex-
tracts a symbolic target expression that characterizes
how the application computes the target value (the
size of the allocated memory block) at each target
memory allocation site from input values. The input
bytes that influence this expression are the relevant
input bytes. Using the target expression, DIODE
generates a target constraint that characterizes all in-
puts that would cause the computation of the target
value to overflow (as long as the input also causes the
application to compute the target value).

• Branch Constraint Extraction: Again based on in-
strumented executions of the application, DIODE
extracts the sequence of conditional branch instruc-
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Figure 5: High-level overview of CP’s components

tions that the application executes to generate the path
to the target memory allocation site.
To ensure that DIODE productively considers only
relevant conditional branches, DIODE discards 1)
all conditional branches whose condition is not influ-
enced by relevant input bytes and 2) all conditional
branches that implement loop back edges.
For each remaining conditional branch, DIODE gen-
erates a branch constraint that characterizes all input
values that cause the execution to take the same path
at that branch as the seed input. DIODE will use these
branch constraints to generate candidate test inputs
that force the application to follow the same path as
the seed input at selected conditional branches.

• Target Constraint Solution: DIODE invokes the Z3
SMT solver [19] to obtain input values that satisfy the
target constraint. If the application follows a path that
evaluates the target expression at the target memory
allocation site, DIODE has successfully generated
an input that triggers the overflow. If the application
performs no checks on the generated values, this step
typically delivers an input that triggers the overflow.

• Goal-Directed Conditional Branch Enforcement:
If the previous step failed to deliver an input that trig-
gers an overflow, DIODE compares the path that the
seed input followed with the path that the generated
input followed. These two paths must differ (oth-
erwise the generated input would have triggered an
overflow).
DIODE then finds the first (in the execution order) rel-
evant conditional branch where the two paths diverge
(i.e., where the generated input takes a different path
than the seed input). We call this conditional branch
the first flipped branch.
DIODE adds the branch constraint from the first
flipped branch to the constraint that it passes to the
solver, forcing the solver to generate a new input that
takes the same path as the seed input at the first flipped
branch. DIODE then runs the application on this new
generated input to see if it triggers the overflow.
DIODE continues this goal-directed branch enforce-

ment algorithm, incrementally adding the branch con-
straints from first flipped branches, until either 1) it
generates an input that triggers the overflow or 2) it
generates an unsatisfiable constraint.

3.2 Donor Selection
For each input file format, CP works with a set of appli-
cations that process that format. Note that the donor and
recipient applications do not have to implement identical
functionality — many of the errors that CP eliminates oc-
cur in the initial input processing phase. Given seed and
error-triggering inputs, CP considers applications that can
successfully process both inputs as potential donors.

3.3 Candidate Check Discovery
To extract candidate checks from donor applications, CP
contains a fine-grained dynamic taint analysis built on
top of the Valgrind [33] binary analysis framework. Our
analysis takes as input a specified taint source, such as a
filename or a network connection, and marks all data read
from the taint source as tainted. Each input byte is assigned
a unique label and is tracked by the execution monitor as it
propagates through the application until it reaches a poten-
tial sink in the target application (e.g., branch conditions
and memory allocation sites). To track the data-flow de-
pendencies from source to sink, our analysis instruments
arithmetic instructions (e.g., ADD, SUB), data movement
instructions (e.g., MOV, PUSH) and logic instructions (e.g.,
AND, XOR). Our analysis also supports additional instru-
mentation to reconstruct the full symbolic expression of
the value at a sink, which represents how the application
computes the value from input bytes.

Identify Candidate Check: CP runs the dynamic taint
analysis on the donor application twice, once with a seed
input and once with the bug-triggering input that DIODE
generates from the seed input. For each execution, CP
extracts the conditional branch statements in the execution
path that relevant input bytes influence. For each such
branch statement, CP records which branch direction the
execution takes. CP then compares the two execution paths
to find the flipped conditional branch statements that cause
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the two executions diverge.
CP empirically transfers the condition of the first flipped

branch statement into the recipient application. We call the
condition of the first flipped branch statement the candidate
check. If the generated patch does not pass the validation
(see Section 3.5), CP will transfer the second flipped branch
statement to generate a new patch, etc.,.

Generate Target Symbolic Condition: Next, CP re-
runs the application with additional instrumentation that
enables CP to reconstruct the full target symbolic condition
for the candidate check, which characterizes how the donor
application computes the condition of the candidate check
from the input byte values. Conceptually, CP generates
a symbolic record of all calculations that the application
performs. Obviously, attempting to record all calculations
would produce an unmanageable volume of information.
CP reduces the volume of recorded information with the
following optimizations:

• Relevant Input Bytes: CP only records calculations
that involve the relevant input bytes. Specifically, CP
maintains an expression tree of relevant calculations
that only tracks calculations that operate on tainted
data (i.e., relevant input bytes). This optimization
drastically reduces the amount of recorded informa-
tion.

• Simplify Expressions: CP further reduces the
amount of recorded information by simplifying
recorded expressions at runtime. Specifically, CP
identifies and simplifies resize, move and arithmetic
operations. For example, CP can convert the follow-
ing sequence of VEX IR instructions:

t15 = Add32(t10, 0x1:I32)
t16 = Add32(t15,0x1:I32)
t17 = Add32(t16,0x1:I32)

that would result in:
Add32(Add32(Add32(t10, 0x1), 0x1),0x1)

into:

Add32(t10, 0x3)

To convert relevant input bytes to symbolic represen-
tations of the input format, CP uses the Hachoir [6] tool
to convert byte ranges into input fields (e.g., in the PNG
format, bytes 0-3 represent /header/height). If Hachoir
does not support a particular input format or is otherwise
unable to perform this conversion, CP also supports a raw
mode in which all input bytes are represented as offsets.

3.4 Patch Transfer
Next, CP determines if the symbolic representation of the
candidate check can eliminate the error from the recipient.
In other words, CP verifies that the target constraint so-
lution and relevant branches generated by DIODE, along

with the constraints introduced by the candidate check, can
no longer be used to generate an input that can cause an
integer overflow.

To transfer the candidate check to an insertion point in
the recipient application, CP rewrites the target symbolic
condition with active variables at the insertion point. There-
fore, CP first needs to track how a recipient application
computes the values of program variables that are derived
from input bytes.

Specifically, CP performs its dynamic taint analysis on
the recipient application with the bug-triggering input. For
each variable assignment statement that involves relevant
input bytes, the analysis records the symbolic expression of
the assigned value, which characterizes how the recipient
application computes the value from the input bytes.

If all of the required input bytes are available in program
expressions after the assignment, CP currently considers
the program point after each variable assignment statement
that involves relevant input bytes to be a candidate check
insertion point. For each such insertion point, CP identifies
active program variables at the insertion point that CP
can use to construct the patch. CP then invokes a rewrite
algorithm to synthesize the patch.

Figure 6 presents CP’s expression rewrite algorithm.
The algorithm takes as input a symbolic expression E and
a set of variables Vars as inputs and rewrites the expres-
sion E using variables in Vars. The key insight behind the
rewrite algorithm is that the synthesized condition in the
recipient application should be semantically equivalent to
the candidate check in the donor application at least on the
error-triggering input. Therefore the symbolic representa-
tion of the synthesized patch condition should match the
target symbolic condition CP obtains using the dynamic
analysis on the donor application.

Constant expressions (lines 12-14) are directly used and
do not require a rewrite pass. Next, the algorithm attempts
to find a single variable to represent the whole expression
(lines 15-21). If unsuccessful, the algorithm decomposes
the expression and attempts to rewrite each subexpression
recursively (lines 22-27 for expressions with unary opera-
tions, lines 28-36 for expressions with binary operations).

Note that at line 16, the algorithm queries the SMT
solver to determine whether two symbolic expressions are
equivalent. The CP implementation has two optimizations
to reduce the number of invocations to the solver. First, if
two symbolic expressions depend on different sets of input
bytes, CP does not need to invoke the solver because these
two expressions cannot be equivalent. Second, CP caches
all queries to the SMT solver so that it can retrieve results
from the cache for future duplicate queries.

For each insertion point in the recipient that the rewrite
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1 Parameters:
2 E: A symbolic expression
3 Vars: A set of active variables
4 For each V in Vars, V.var is the variable
5 name; V.exp is the symbolic expression that
6 corresponds to the value of the variable.
7 Return:
8 Rewriten expression of E or
9 false if failed

10

11 Rewrite(E, Vars) {
12 if (E is constant)
13 return E
14 end if
15 for V in Vars
16 if (SolverEquiv(E,V.exp))
17 Ret.opcode ← VAR
18 Ret.op1 ← V.var
19 return Ret;
20 end if
21 end for
22 if (E.opcode is unary operation)
23 Ret.opcode ← E.opcode
24 Ret.op1 ← Rewrite(E.op1,Vars)
25 if (Ret.op1 != false)
26 return Ret
27 end if
28 else if (E.opcode is binary operation)
29 Ret.opcode ← E.opcode
30 Ret.op1 ← Rewrite(E.op1,Vars)
31 Ret.op2 ← Rewrite(E.op2,Vars)
32 if (Ret.op1 6= false and
33 Ret.op2 6= false)
34 return Ret
35 end if
36 end if
37 return false
38 }

Figure 6: CP Rewrite algorithm

algorithm successfully constructs the new condition, CP
generates a candidate patch as an if statement inserted
at the insertion point. In the current implementation, CP
transforms the constructed bitvector condition into a C
expression as the if condition (appropriately generating the
casts, shifts, and masks required to preserve the semantics
of the transferred check). If the condition is satisfied, the
patch exits the application with an exit(-1).

3.5 Patch Validation

CP first recompiles the patched recipient application. It
then executes the patched application on the bug-triggering
input to verify that the patch successfully eliminates the
error for that input. CP also runs the patched build on a set
of regression suite inputs to validate that the patch does not
break the core functionality of the application. CP finally
runs DIODE on the patched recipient application with the
seed input. This validates that after the recipient applica-
tion is patched, DIODE is not able to find another input that
triggers the same error. In other words, CP validates that
there is no input that satisfies the patch condition and the
relevant branch conditions that DIODE generates while
also triggering an overflow at the target allocation site.

4 EXPERIMENTAL RESULTS

We evaluate CP on seven integer overflow errors that
DIODE previously detected in four applications: CWebP
0.31 [2], Dillo 2.1 [3], swfplay 0.55 [12], and Display
6.5.2-8 [7]. Two of these errors were listed in the CVE
database; one was first discovered by BuzzFuzz [21]; the
other four were, to the best of our knowledge, first discov-
ered by DIODE. The errors are triggered by JPG image files
(CWebP), PNG image files (Dillo), SWF video files (swf-
play), and TIFF image files (Display). For JPG and PNG
files our set of donor applications includes FEH-2.9.3 [4]
and mtpaint 3.4 [10]. For TIFF files our donor application
is ViewNoir 1.4 [13]. For SWF our donor application is
gnash 0.8.11 [5].

We also evaluate CP on two buffer overflow errors for
applications: JasPer 1.9 [8] and gif2tiff 4.0.3 [9]. Both
buffer overflow errors were listed in the CVE database.
The error are triggered by JPEG2K images (JasPer) and gif
(gif2tiff). For JPEG2K images we used OpenJPEG [11] as
the donor and for gif images we used Display 6.5.2-9 [7].

For each error we started with seed and corresponding
error-triggering inputs previously identified by DIODE.
We then deployed CP in an attempt to generate validated
patches to eliminate each of the errors. Figure 7 summa-
rizes the results of these experiments. There is a row in the
table for each combination of error and donor application.
The first column (Application) identifies the application.
The second column (Target) identifies the source code file
and line where the error occurs. The third column (Error)
presents either the CVE identifier (if the error was previ-
ously known) or new (if the error was first discovered by
DIODE). The fourth column identifies the input file format.
The fifth column identifies the donor application. The sixth
column indicates (with a check mark) if CP was able to
generate a validated patch for that recipient/donor pair (CP
succeeded for all pairs). The seventh column presents the
amount of time CP required to generate and validate the
patch.

The eighth column presents the number of candidate
checks that CP found in the donor. To improve the effi-
ciency of the search, our current CP implementation uses
the DIODE target overflow constraint from the allocation
site, the conditions on the branches the DIODE enforced,
and the patch condition to check if any input can simultane-
ously satisfy all of these conditions. If so, there may be an
input that can satisfy the check and still cause an overflow.
In this case CP immediately filters the candidate check
and moves on to the next check. For all of our benchmark
errors, the first candidate check that passes this DIODE
test eventually validates.

The ninth column presents the number of insertion
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# Candidate # Insertion
Application Target Error Format Donor App Patch Generation Time Checks Points

CWebP 0.3.1 jpegdec.c:248 New jpeg feh-2.9.3 X 13m 7 214
CWebP 0.3.1 jpegdec.c:248 New jpeg mtpaint-3.40 X 7m 16 214

Dillo 2.1 png.c@203 CVE-2009-2294 png mtpaint-3.40 X 10m 2 167
Dillo 2.1 png.c@203 CVE-2009-2294 png feh-2.9.3 X 13m 5 167
Dillo 2.1 fltkimagebuf.cc@39 New png mtpaint-3.40 X 10m 2 167
Dillo 2.1 fltkimagebuf.cc@39 New png feh-2.9.3 X 13m 5 167

Display 6.5.2 xwindow.c@5619 CVE-2009-1882 tiff viewnior-1.4 X 1h 4328 148
Display 6.5.2 cache.c@803 New tiff viewnior-1.4 X 1h 24 148

SwfPlay 0.5.5 jpeg_rgb_decoder.c@253 New swf gnash X 45m 45 120
SwfPlay 0.5.5 jpeg.c@192 BuzzFuzz [21] swf gnash X 14m 27 222

JasPer 1.9 jpg_dec.c:492 CVE-2012-335 JPEG2K OpenJpeg 1.5.2 X 4m 19 162
gif2tiff 4.0.3 gif2tiff.c:355 CVE-2013-4231 gif Display 6.5.2-9 X 5m 1 44

Figure 7: CP Experimental Results
points that CP found in the recipient. For all of our bench-
mark errors, the first insertion point validates as expected.

4.1 Dillo
Dillo is a lightweight graphical web browser. Dillo 2.1 is
vulnerable to an integer overflow when decoding the PNG
file format. Dillo computes the size as a 32-bit product
of width, height, and pixel depth. An overflow check is
present, but the overflow check is itself vulnerable to an
overflow. When the buffer size calculation overflows, the
allocation at png.c line 203 returns a buffer that is too
small to hold the decompressed image (CVE-2009-2294).
Both FEH and mtpaint are successful donors for this error.
The transferred check appears in FEH as a subexpression
generated as part of the following macro invocation:2

if(!IMAGE\_DIMENSIONS\_OK(w32, h32))

After the transfer, the check appears in Dillo
(libpng-1.2.50/pngrutil.c:497) as:

if (!((((unsigned int) (((unsigned int) (((unsigned int)
((unsigned int)
((width) * 0))) + ((unsigned int) ((unsigned int)
((unsigned int) ((height) *0)))))) + ((unsigned int)
((unsigned int) ((unsigned int) (((unsigned long
long) ((height) * ((unsigned long long) (width))))
>> 32)))))) <= 0)))

{exit(-1);}

In this patch the repeated casts to unsigned int and unsigned
long long are required to correctly reflect the varying bi-
nary representations at which the FEH binary performs the
check. The patch eliminates the error by checking that the
width and height values will never generate an overflow.
CP inserted the patch at libpng-1.2.50/pngrutil.c:497.

The mtpaint patch uses the following check:

if ((pwidth > MAX\_WIDTH) ||
(pheight > MAX\_HEIGHT))

where MAX_WIDTH is equal to 16384. This check generates
the following patch:

2 Because CP operates on binaries, information about the source code
for the donor patch is, in general, not available. To present the source
code for the checks in this section, we used the symbolic debugging
information in the binary (when available) to locate this source code.

if (!(((i) <= 16384))) {exit(-1);}

which CP inserts into libpng-1.2.50/pngrutil.c:65. Two
things are of interest. First, the patch checks only the width
field, but this check is enough to eliminate the overflow.
Second, the check constrains the width to be small enough
(no greater than 16384) so that Dillo may reject some valid
input files. But this is consistent with the behavior of the
mtpaint donor, which will also reject these same input files.

We note that Dillo 2.1 has an additional overflow vul-
nerability after the initial allocation. The same function
initializes a cache for the image starting at png.c line 212,
which leads to an allocation inside the FLTK library at
fltkimgbuf.cc line 62 which computes a buffer size as a
product of improperly checked variables. If the calculation
of the buffer size overflows, the write of the image into
the cache will overrun the allocated space. Because the
buffer size computation involves the same width and height

values, the previous patches also eliminate this error.

4.2 Display
ImageMagick Display is an image viewing and formatting
utility released as part of the ImageMagick suite. Display
6.5.2 is vulnerable to an integer overflow for TIFF files.
Display computes the length in bytes needed for a pixel
buffer as a product of several values from the input file
such as width, height, and bytes per pixel. With no over-
flow checking at all in this version, this length calculation
easily overflows its 32-bit size, resulting in an incorrect
size passed to malloc at xwindow.c line 5619 (CVE-2009-
1882).

CP successfully created a patch for this error using
viewnior as the donor application. The transfered check
appears in viewnoir as:

bytes = height * rowstride;
if (bytes / rowstride != height)

This check was translated into the following patch for
Display (cache.c:2056) as:

if (!(((image->rows) == ((unsigned int) (((unsigned
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long long) ((unsigned long long) (((unsigned long long)
(((unsigned int) (((unsigned int) ((unsigned int) (0 |
((unsigned long long) ((image->rows) * ((unsigned long
long) ((unsigned int) ((unsigned int) ((image->columns)
<< 2))))))))) | ((unsigned int) ((unsigned int)
((unsigned int) (((unsigned long long) ((unsigned long
long) (((unsigned int) ((image->rows) * ((unsigned int)
((unsigned int) ((unsigned int) ((image->columns) <<
2)))))) >> 31))) << 32))))))
% ((unsigned long long) ((unsigned int) ((unsigned
int) ((image->columns) << 2)))))) << 32))) | ((unsigned
int) ((unsigned int) (((unsigned int) (((unsigned int)
((unsigned int) (0 | ((unsigned long long)
((image->rows) * ((unsigned long long) ((unsigned int)
((unsigned int) ((image->columns) << 2))))))))) |
((unsigned int) ((unsigned int) ((unsigned int)
(((unsigned long long) ((unsigned long long)
(((unsigned int) ((image->rows) * ((unsigned int)
((unsigned int) ((unsigned int) ((image->columns) <<
2)))))) >> 31))) << 32)))))) / ((unsigned int)
((unsigned int) ((unsigned int) ((image->columns) <<
2)))))))))))) {exit(-1);}

The multiple casts, shifts, and mask operations are re-
quired to correctly reflect the different integer represen-
tations at which the viewnoir binary performs the check.
This patch eliminates the error by performing an overflow
check on height, width, and the number of columns (used to
compute rowstride)

Display also contains overflow errors when creating a
resized version of the image for display within the GUI
window (starting at display.c line 4393), and when creating
a cache buffer for the image during TIFF decompression
(a request for pixel space at tiff.c line 1044 eventually
results in an allocation at cache.c line 3717). When the
computation of any of these buffer sizes overflows, the
allocated memory blocks are too small, causing Display to
write beyond the end of the block.
CP generated a patch for this error, again using viewnior
as the donor. The transfered check appears in viewnoir as:

rowstride = width * 4;
if (rowstride / 4 != width)

CP transfers this check into Display as
(tif_dirread.c:400):

if (!((((unsigned int) ((*(value)) | ((unsigned int)
((unsigned int) ((unsigned int) (((unsigned int)
((unsigned int) (((unsigned int) ((unsigned int) ((m) &
65280))) >> 8))) << 8)))))) == ((unsigned int)
(((unsigned long long) ((unsigned long long)
(((unsigned long long) (((unsigned int) (((unsigned
int) ((unsigned int) (0 | ((unsigned long long)
(((unsigned int) ((*(value)) | ((unsigned int)
((unsigned int) ((unsigned int) (((unsigned int)
((unsigned int) (((unsigned int) ((unsigned int) ((m) &
65280))) >> 8))) << 8)))))) * ((unsigned long long)
((unsigned int) (( unsigned int) (((unsigned int)
((*(value)) | ((unsigned int) ((unsigned int)
((unsigned int) (((unsigned int) ((unsigned int)
(((unsigned int) ((unsigned int) ((m) & 65280))) >>
8))) << 8)))))) << 2))))))))) | ((unsigned int)
((unsigned int) ((unsigned int) (((unsigned long long)
((uns igned long long) (((unsigned int) (((unsigned
int) ((*(value)) | ((unsigned int) ((unsigned int)
((unsigned int) (((unsigned int) ((unsigned int)

(((unsigned int) ((unsigned int) ((m) & 65280))) >>
8))) << 8)))))) * ((unsigned int) ((unsigned int)
((unsigned int) (((unsigned int) ((*(value)) |
((unsigned int) ((unsigned int) ((unsigned int)
(((unsigned int) ((unsigned int) (((unsigned int)
((unsigned int) ((m) & 65280))) >> 8))) << 8)))))) <<
2)))))) >> 31))) << 32)))))) % ((unsigned long long)
((unsigned int) ((unsigned int) (((unsigned int)
((*(value)) | ((unsigned int) ((unsigned int)
((unsigned int) (((unsigned int) ((unsigned int)
(((unsigned int) ((unsigned int) ((m) & 65280))) >>
8))) << 8)))))) << 2)))))) << 32))) | ((unsigned int)
((unsigned int) (((unsigned int) (((unsigned int)
((unsigned int) (0 | ((unsigned long long) (((unsigned
int) ((*(value)) | ((unsigned int) ((unsigned int)
((unsigned int) (((unsigned int) ((unsigned int)
(((unsigned int) ((unsigned int) ((m) & 65280))) >>
8))) << 8)))))) * ((unsigned long long) ((unsigned int)
((unsigned int) (((unsigned int) ((*(value)) |
((unsigned int) ((unsigned int) (( unsigned int)
(((unsigned int) ((unsigned int) (((unsigned int)
((unsigned int) ((m) & 65280))) >> 8))) << 8)))))) <<
2))))))))) | ((unsigned int) ((unsigned int) ((unsigned
int) (((unsigned long long) ((unsigned long long)
(((unsigned int) (((unsigned int) ((*(value)) |
((unsigned int) ((unsigned int) ((unsigned int)
(((unsigned int) ((unsigned int) (((unsigned int)
((unsigned int) ((m) & 65280))) >> 8))) << 8)))))) *
((unsigned int) ((unsigned int) ((unsigned int)
(((unsigned int) ((*(value)) | ((unsigned int)
((unsigned int) ((unsigned int) (((unsigned int) ((uns
igned int) (((unsigned int) ((unsigned int) ((m) &
65280))) >> 8))) << 8)))))) << 2)))))) >> 31))) <<
32)))))) / ((unsigned int) ((unsigned int) ((unsigned
int) (((unsigned int) ((*(value)) | ((unsigned int)
((unsigned int) ((unsigned int) (((unsigned int)
((unsigned int) (((unsigned int) ((unsigned int) ((m)
& 65280))) >> 8))) << 8)))))) << 2))))))))))))
{exit(-1);}

This patch successfully protects against the integer over-
flow error with the added overflow check on width * 4.
Once again, the patch reflects the conversion of the ana-
lyzed viewnoir VEX binary operations into C source code.

4.3 Swfplay
Swfplay is an Adobe Flash player that is released as part
of the open source Swfdec library. Swfplay 0.5.5 is vulner-
able to an integer overflow for SWF files when decoding
embedded JPEG data. When initially allocating buffers
for the individual YUVA components of the image, swf-
play computes the buffer size for each component buffer
as the 32-bit product of width, height, and various sam-
pling factors without sufficient overflow checking (jpeg.c
line 192). If the computation overflows, then the decom-
pression procedure will write beyond the allocated space.
Even if the computations of individual component buffer
sizes do not overflow, there is a potential overflow when
merging the individual YUVA components of the image
into a single RGBA buffer. Swfplay computes the size of
the combined buffer as a 32-bit product of width, height
and 4 without performing any overflow checking. This
computation is used twice in close succession: once for
the allocation of a temporary buffer (jpeg_rgb_decoder.c
line 253), and then for the allocation of the image buffer
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(jpeg_rgb_decoder.c line 257). When this computation
overflows, the merge procedure will write beyond the al-
located space and ultimately result in a SIGSEGV on an
invalid write. CP generated a patch for this error, again
using Gnash as the donor. Because symbolic information
that would allow us to locate the Gnash source code for
this patch is not available, we present only the patch in the
swfplay recipient:

if (!(((image->height) <= 65500))) {exit(-1);}

This patch protects the application by limiting height to
a 16 bit value, which when used in the product of width,
height, and a small constant, cannot generate an overflow
on 32 bit machines.

For the error at (jpeg_rgb_decoder.c line 253), CP gen-
erates the following patch at jpeg_bits.c line 60:

if (!((((unsigned int) (((unsigned long long)
((unsigned long long) (((unsigned long long) ((unsigned
long long) (((unsigned int) (((unsigned int) ((unsigned
int) (0 | ((unsigned long long) ((unsigned long long)
(8 * ((unsigned int) ((unsigned int) (((unsigned int)
((unsigned int) (0 | (*(b->ptr))))) & 15))))))))) |
((unsigned int) ((unsigned int) ((unsigned int)
(((unsigned long long) ((unsigned long long)
(((unsigned int) ((unsigned int) (8 * ((unsigned int)
((unsigned int) (((unsigned int) ((unsigned int) (0 |
(*(b->ptr))))) & 15)))))) >> 31))) << 32)))))) % 8)))
<< 32))) | ((unsigned int) ((unsigned int) ((unsigned
int) (((unsigned int) (((unsigned int) ((unsigned int)
(0 | ((unsigned long long) ((unsigned long long) (8 *
((unsigned int) ((unsigned int) (((unsigned int)
((unsigned int) (0 | (*(b->ptr))))) & 15))))))))) |
((unsigned int) ((unsigned int) ((unsigned int)
(((unsigned long long) ((unsigned long long)
(((unsigned int) ((unsigned int) (8 * ((unsigned int)
((unsigned int) (((unsigned int) ((unsigned int) (0 |
(*(b->ptr))))) & 15)))))) >> 31))) << 32)))))) /
8)))))) == ((unsigned int) ((unsigned int) (((unsigned
int) ((unsigned int) (0 | (*(b->ptr))))) & 15))))))
{exit(-1);}

4.4 gif2tiff
gif2tiff is a utility in the libtiff-4.0.3 library which converts
gif images to the tif format. gif2tiff is vulnerable to a
buffer overflow attack when processing gif images. gif2tiff
iterates over the size of the law code size, which under the
gif specification should be limited to a size of 12. Without
a check to constrain the code size to 12, the loop over the
code size in gif2tif.c:355 can be forced to overwrite over
a set of statically allocated buffers.

CP successfully created a patch for this error using
ImageMagick-6.5.2-9 as the donor. The transfered check
appears in ImageMagick-6.5.2-9 as:

#define MaximumLZWBits 12
if (data\_size > MaximumLZWBits) {

ThrowBinaryException(CorruptImageError,
"CorruptImage",
image.filename);

}

This check was translated into the following patch for
gif2tiff (gif2tiff.c:357) as:
if (!(((unsigned char) (((unsigned int) datasize) <=
((unsigned int) 12))))) {exit(-1);}

The check correctly enforces the gif specification that
the code size should have a maximum size of 12 and pro-
tects gif2tiff from the buffer overflow vulnerability.

4.5 Jasper
JasPer is an open-source image viewing and image process-
ing utility. It is specifically known for its implementation
of the JPEG-2000 standard. JasPer is vulnerable to an
off-by-one vulnerability when processing the JPEG-2000
images. JPEG-2000 images may be composed of several
tiles. Tiles are identified in the input format using a num-
ber. JasPer includes code to check that the number of tiles
present in the image correspond to the number specified in
the input format but that code is vulnerable to a off-by-one
bug at (jpc_dec.c:492); it uses a > check instead of a >=

check.
CP created a patch for this error using OpenJPEG 1.5.2

as the donor application. The transfered check appears in
OpenJPEG (j2k.c:1394 ) as:
if ((tileno < 0) || (tileno >= (cp->tw * cp->th))) {

opj_event_msg(j2k->cinfo, EVT_ERROR,
"JPWL: bad tile number (%d out of a maximum of %d)",
tileno, (cp->tw * cp->th));

return;
}

This check was translated into the following patch for
JasPer (jpc_dec.c:492) as:

if (!(!(dec->numtiles <= sot->tileno))) {exit(-1);}

This patch successfully protects against the off-by-one
error with the proper check dec->numtiles <= sot->tileno

that includes a less than equal rather than a less than check.

5 RELATED WORK

We discuss related work in program repair (static and
dynamic), N-version programming, and horizontal gene
transfer.
Static Program Repair: GenProg [41, 27] is an auto-
matic program repair tool that uses a genetic algorithm
to synthesize program patches. GenProg first copies an
existing code snippet from another location in the program,
then randomly applies a set of mutation rules based on
the genetic algorithm in an attempt to find a patch that
generates correct results on a set of sample inputs. CP, in
constrast, eliminates errors by transferring correct code
across multiple applications (including stripped binary
donor applications).

PAR [24] is a program repair tool that applies a set of
ten predefined repair templates that the authors manually

12



summarized from legacy human-written patches. These
templates correspond to the structures of common human
patches (e.g, inserting null checker, adding a method call,
inserting a bound check, etc.). PAR uses a search algorithm
to fill in details in the templates (e.g., the variable to be
checked, the method to be called.)

In contrast, CP transfers correct checks across appli-
cations. Instead of random mutations, CP uses dynamic
analysis techniques to obtain an application-independent
representation of the check, then implant the check into
the recipient at an appropriate insertion point where the
required values are available in program expressions.

Khmelevsky et al. [23] present a source-to-source repair
tool for missing return value checks after system library
calls (e.g., fopen()). The tool scans through the source
code for these library calls. For each of these calls, if the
source code misses the corresponding check after the call,
the tool will automatically add one.

Logozzo and Ball [28] have proposed a program repair
technique that provides the guarantee of verified program
repair in the form that the repaired program has more good
executions and less bad executions than the original pro-
gram. However, it relies on developer-supplied contracts
(i.e., preconditions, postconditions, and object invariants)
for scalability, which makes the technique less practical.
In contrast, CP is fully automatic — it does not require
any human annotations to transfer patches from the donor
application to the recipient application.

SJava [20] is a Java type system that exploits common it-
erative structures in applications. When a developer writes
program in SJava, the compiler can prove that the effects
of any error will be flushed from the system state after a
fixed number of iterations.
Runtime Program Repair: Failure-Oblivious Comput-
ing [36] enables an application to survive common memory
error. It recompiles the application to discard out of bounds
writes, manufacture values for out of bounds reads, and
enable the application to continue along their normal exe-
cution path. RCV [31] enables an application to recover
from divide-by-zero and null-dereference errors on the fly.
When such an error occurs, RCV attaches the application,
applies fix strategy that typically ignores the offending
instruction, forces the application to continue along the
normal execution path, contains the error repair effect, and
detaches from the application once the repair succeeds.
SRS [32] enables server applications to survive memory
corruption errors. When such an error occurs, it enters a
crash suppression mode to skip any instructions that may
access corrupted values. It backs to normal mode once the
server moves to the next request.

Jolt [16] and Bolt [25] enable applications to survive in-

finite loop errors. When such an error occurs, they control
the execution of the application to jump out of the loop or
the enclosing function to escape the error.

ClearView [34] first learns a set of invariants from train-
ing runs. When a learned invariant is violated during the
runtime execution, it generates repairs that enforce the
violated invariant via binary instrumentation.

Rx [35] and ARMOR [17] are runtime recovery sys-
tems based on periodic checkpoints. When an error occurs,
Rx [35] reverts back to a previous checkpoint and makes
system-level changes (e.g, thread scheduling, memory allo-
cations, etc.) to search for executions that do not trigger the
error. ARMOR [17] reverts back to a previous checkpoint
and finds semantically equivalent workarounds for the
failed component based on user-provided specifications.

Error Virtualization [37, 38, 40, 39] is a general error
recovery technique that retrofits exception-handing capa-
bilities to legacy software. Failures that would otherwise
cause a program to crash are turned into transactions that
use a program’s existing error handling routines to survive
from unanticipated faults.

Input rectification [29] empirically learns input con-
straints from benign training inputs and then enforces
learned constraints on incoming inputs to nullify potential
errors. SIFT [30] can generate sound input filter constraints
for integer overflow errors at critical program points (i.e.,
memory allocation and block copy sites)

All of the above techniques aim to repair the application
at runtime to recover from or nullify the error. In contrast,
CP is designed to transfer correct code from donors to
recipients to directly eliminate the error. The final patched
application then executes with no dynamic instrumentation
overhead.
N-Version Programming: N-version programming [18]
aims to improve software reliability by independently de-
veloping multiple implementations of the same specifi-
cation. All implementations execute and the results are
compared to detect faulty versions. The expense of N-
version programming and a perception that the multiple
implementations may suffer from common errors and spec-
ification misinterpretations has limited the popularity of
this approach [26].

Rather than running multiple versions and comparing
the results, CP transfers correct logic to obtain a single
improved hybrid system. In comparison with traditional
N-version programming, CP therefore has a simpler execu-
tion model (run a single hybrid system instead of multiple
systems) and can leverage applications with overlapping
but not identical functionality. Also unlike traditional
N-version programming, CP is designed to work with
applications that are produced by multiple global, sponta-
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neous, and uncoordinated development efforts performed
by different organizations. Our results indicate that these
development efforts can deliver enough diversity to enable
CP to find and transfer correct error checks.
Horizontal Gene Transfer: Horizontal gene transfer
is the transfer of genetic material between individual
cells [14]. Examples include plasmid transfer (which plays
a major role in acquired antibiotic resistance [14]) and
virally-mediated gene therapy [22]. There are strong analo-
gies between CP’s logic transfer mechanism and horizontal
gene transfer — in both cases functionality is transferred
from a donor to a recipient, with significant potential bene-
fits to the recipient. The fact that horizontal gene transfer
is recognized as significant factor in the evolution of many
forms of life hints at the potential that multi-application
code transfer may offer for software systems.

6 CONCLUSION

In recent years the increasing scope and volume of soft-
ware development efforts has produced a broad range of
systems with similar or overlapping goals. Together, these
systems capture the knowledge and labor of many develop-
ers. But each individual system largely reflects the effort
of a single team and, like essentially all software systems,
still contains errors.

We present a new and, to the best of our knowledge,
the first, technique for automatically transferring logic
between systems to eliminate errors. The system that im-
plements this technique, CP, makes it possible to automati-
cally harness the combined efforts of multiple potentially
independent development efforts to improve them all re-
gardless of the relationships that may or may not exist
across development organizations. In the long run we hope
this research will inspire other techniques that identify and
combine the best aspects of multiple systems. The ideal
result will be significantly more reliable and functional
software systems that better serve the needs of our society.
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