
On dispersion of compound DMCs

Yury Polyanskiy

Abstract—Code for a compound discrete memoryless channel
(DMC) is required to have small probability of error regardless
of which channel in the collection perturbs the codewords.
Capacity of the compound DMC has been derived classically: it
equals the maximum (over input distributions) of the minimal
(over channels in the collection) mutual information. In this
paper the expression for the channel dispersion of the compound
DMC is derived under certain regularity assumptions on the
channel. Interestingly, dispersion is found to depend on a subtle
interaction between the channels encoded in the geometric
arrangement of the gradients of their mutual informations. It
is also shown that the third-order term need not be logarithmic
(unlike single-state DMCs). By a natural equivalence with
compound DMC, all results (dispersion and bounds) carry over
verbatim to a common message broadcast channel.

I. INTRODUCTION

An abstract compound channel is a triplet: measurable

spaces of inputs A and outputs B and a collection of con-

ditional probability measures PYs|X : A 7→ B indexed by

elements s ∈ S of a measurable space. Let M be a positive

integer and ǫ ∈ [0, 1). An (M, ǫ)noCSI code1 is a pair of

(possibly randomized) maps f : [M ] → A (the encoder) and

g : B → [M ] (the decoder), satisfying

P[g(Ys) 6= m|X = f(m)] ≤ ǫ ∀s ∈ S, ∀m ∈ [M ] (1)

An (M, ǫ)CSIR code is a pair of (possibly randomized) maps

f : [M ] → A (the encoder) and g : B×S → [M ] (the decoder

with access to channel state), satisfying

P[g(Ys, s) 6= m|X = f(m)] ≤ ǫ ∀s ∈ S, ∀m ∈ [M ] (2)

This paper focuses on the case where A and B are n-fold

Cartesian products of finite alphabets A and B, S is a finite

set and transformations PYs|X are n-fold i.i.d. products:

PYs|X(yn|xn)
△
=

n
∏

j=1

W (s)(yj |xj) ,

where W (s) : A → B are stochastic matrices, n is the

blocklength. An (M, ǫ) code for the n-fold product is denoted

as (n,M, ǫ) code. Finally, finite-blocklength fundamental

limits for both types of codes are defined to be

M∗
noCSI(n, ǫ)

△
= max{M : ∃(n,M, ǫ)noCSI -code} (3)

M∗
CSIR(n, ǫ)

△
= max{M : ∃(n,M, ǫ)CSIR-code} . (4)

The author is with the Department of Electrical Engineering and Computer
Science, MIT, Cambridge, MA, 02139 USA. e-mail: yp@mit.edu. This
material is based upon work supported by the National Science Foundation
CAREER award under grant agreement CCF-12-53205 and by the Center
for Science of Information (CSoI), an NSF Science and Technology Center,
under grant agreement CCF-0939370.

1Abbreviation “noCSI” stands for no channel state information, while
“CSIR” stands for channel state information at the receiver.

A classical result of Blackwell, Breiman and

Thomasian [1] states

logM∗
noCSI(n, ǫ) = nC + o(n) , n → ∞ (5)

logM∗
CSIR(n, ǫ) = nC + o(n) , n → ∞ , (6)

where

C = max
PX

min
s∈S

I(PX ,W (s)) . (7)

Wolfowitz [2] established a refinement of (5) and (6) showing

that

logM∗(n, ǫ) = nC +O(
√
n), n → ∞

This note refines this expression further, by providing the

exact coefficient in a
√
n-term. Results on O(

√
n) have

been classically established for discrete memoryless channels

(DMCs) by Dobrushin and Strassen [3], [4], and other chan-

nels more recently. Motivation for studying
√
n terms comes

from the problem of predicting finite blocklength behavior of

fundamental limits [5]. See [6] for a survey.

We find that the channel dispersion [5] of a compound

DMC is given by:

√
V = max

v:
∑

x∈A
vx=0

min
s

dIs(v)−
√

V (P ∗
X ,W (s)) , (8)

where minimum is over states s with I(P ∗
X ,W (s)) = C and

dIs is the differential of the mutual information:

dIs(v)
△
=
∑

x∈A
vxD(W (s)

x ||P ∗
Ys
) (9)

W (s)
x (y)

△
= W (s)(y|x) (10)

P ∗
Ys
(y)

△
=
∑

x∈A
W (s)(y|x)P ∗

X(x) (11)

(see Section III for more on notation). More precisely, we

prove the following:

Theorem 1: Consider a finite-state compound DMC. As-

sume

1) The capacity achieving input distribution P ∗
X (maxi-

mizer in (7)) is unique.

2) P ∗
X(x) > 0 for all x ∈ A.

3) V (P ∗
X ,W (s)) > 0 for all s ∈ S.

Then for any ǫ ∈ (0, 1
2 ) we have2

logM∗(n, ǫ) = nC −
√
nV Q−1(ǫ) + o(

√
n), n → ∞ (12)

for both the noCSI and CSIR codes.

2Q−1(ǫ) is the functional inverse of the Q-function: Q(x) =

(2π)−
1

2

∫
x

−∞
e−

t2

2 dt
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Remarks:

1) Somewhat counter-intuitively, the dispersion V is not

the maximal (worst) dispersion among channels s at-

taining I(P ∗
X ,W (s)) = C. Rather it depends on a sub-

tle interaction between channels’ mutual informations

and dispersions.

2) For two-state channel the expression for V simplifies:

√
V =

a2
a1 + a2

√

V1 +
a2

a1 + a2

√

V2 , (13)

where

a2s =
∑

x∈A
D(W (s)

x ‖P ∗
Ys
)2 − 1

|A|

(

∑

x∈A
D(W (s)

x ‖P ∗
Ys
)

)2

(14)

and provided a1 6= 0 or a2 6= 0. If both are zero then

V = max(V1, V2) . (15)

3) Unlike [5], in this paper we do not provide experimen-

tal validation for the tightness of approximation (12)

at realistic blocklengths. Thus results here are purely

asymptotic although we did attempt to provide bounds

that (we expect) to be quite competitive at finite block-

lengths.

4) Section IV constructs an example of the channel for

which the o(
√
n) term is θ(n

1

4 ) – this is in contrast

to all the known examples of expansions (12) (such as

DMCs, Gaussian channels, etc), for which the o(
√
n)

term is known to be O(log n).
5) It should be noted that for composite channels one

assumes a prior over states S and consequently defines

probability of error as averaged over the state s ∈ S
(as opposed to worst-case definitions (1) and (2)).

For such channels, the capacity becomes a function

of probability of error ǫ. For finite-state channels, the

dispersion term is similar to (12) with argument of Q−1

modified, see [7]. However, for the continuum of states

the dispersion term may disappear, a surprising effect

arising for example in (single- or multiple-antenna)

wireless channels, see [8].

6) Finally, we note that coding for a compound channel

(with CSIR) is equivalent to a problem of common

message broadcast channel. Thus, Theorem 1 and the

rest of this note applies equally well to this question

in multi-user information theory.

II. ABSTRACT ACHIEVABILITY BOUNDS

In this section we present two general achievability bounds

(noCSI and CSIR). Although the proof of Theorem 1 requires

only one of these and only a very special particularization of

it, we prefer to formulate general versions for two reasons:

1) The proof of Theorem 1 reduces noCSI case to CSIR

case by training. This is not possible for infinite al-

phabet/state cases, and hence a direct noCSI bound is

necessary.

2) For numerical evaluations, crude bounds sufficient to

establish (12) will need to be replaced with exact

computation of the theorems in this section.

Given a pair of distributions P and Q on common

measurable space W, a randomized test between those two

distributions is defined by a random transformation PZ|W :
W 7→ {0, 1} where 0 indicates that the test chooses Q.

Performance of the best possible hypothesis test (HT) is given

by

βα(P,Q)
△
= min

∫

PZ|W (1|w)Q(dw) , (16)

where the minimum is over all probability distributions PZ|W
satisfying

PZ|W :

∫

PZ|W (1|w)P (dw) ≥ α . (17)

The minimum in (16) is guaranteed to be achieved by

the Neyman-Pearson lemma. An abbreviated version of this

definition is:

βα(P,Q)
△
= inf

E:P [E]≥α
Q[E] .

With this convention we similarly define HT between collec-

tions of distributions as follows:

βα({Ps, s ∈ S}, {Qs, s ∈ S ′}) △
= inf

E:minS Ps[E]≥α
max
S′

Qs[E] .

Theorem 2 (noCSI codes): Fix a distribution QY on B,

τ ∈ (0, ǫ) and a subset F ⊆ A. There exists an (M, ǫ)noCSI

code with encoder f : [M ] → F and

M ≥ κ̃τ

β1−ǫ+τ

,

where

βα = sup
x∈F,s∈S

βα(PYs|X=x, QY ) (18)

κ̃τ = inf
E

QY [E] (19)

and infimum in the definition of κ is over all sets E with the

property

∀x ∈ F ∃s : PYs|X=x[E] ≥ τ . (20)

Proof: The proof is a natural extension of the original

κβ bound [5, Theorem 25] and is omitted.

Theorem 3 (CSIR codes): Fix distributions QYs
, s ∈ S on

B, τ ∈ (0, ǫ) and a subset F ⊆ A. There exists an (M, ǫ)CSIR

code with encoder f : [M ] → F and

M ≥ κτ

β1−ǫ+τ

, (21)

where

βα = sup
x∈F,s∈S

βα(PYs|X=x, QYs
) (22)

κτ = inf
E

sup
s∈S

QYs
[E] (23)

and infimum in the definition of κ is over all sets E with the

property (20).



Proof: Again we assume familiarity with the (Feinstein-

type) argument in the proof of [5, Theorem 25]. Suppose

codewords c1, . . . , cM have already been selected. To each

codeword c there is a collection of sets {Ec,s, s ∈ S}
satisfying for each s ∈ S

PYs|X=c[Ec,s] ≥ 1− ǫ+ τ , (24)

QYs
[Ec,s] ≤ β1−ǫ+τ . (25)

The decoder g inspects channel state s, the channel output

Ys and declares the message estimate as follows:

g(s, y)
△
= min{j : y ∈ Ecj ,s} .

Suppose that probability of error criterion (2) is satisfied with

this decoder and codebook {c1, . . . , cM}, but that we can not

grow the codebook without violating (2). This means

∀x∃s : PYs|X=x



Ex,c \
M
⋃

j=1

Ecj ,s



 < 1− ǫ .

Applying the union bound and (24) with c = x we find out

∀x∃s : PYs|X=x





M
⋃

j=1

Ecj ,s



 ≥ τ .

Thus by the definition of κτ we must have

sup
s

QYs





M
⋃

j=1

Ecj ,s



 ≥ κτ (26)

But from (25)

QYs
≤ Mβ1−ǫ+τ . (27)

Clearly, (26) and (27) imply (21).

In applications computation of κτ either requires certain

symmetrization tricks, cf. [5, Appendix D], or the following

method (applicable to finite-state channels only). Suppose

that QYs
in Theorem 3 have the following property:

QYs
[E] =

∫

A

PYs|X=x[E]PX(dx) , (28)

for some distribution PX . In words: QYs
is the distribution

induced by the channel PYs|X under input PX . Then for any

set satisfying (20) we have:
∑

s∈S
PYs|X=x[E] ≥ τ1F(x)

Averaging this over PX we obtain
∑

s∈S
QYs

[E] ≥ τPX [F] ,

thus implying that

max
s∈S

QYs
[E] ≥ τPX [F]

|S| .

Since the set E was arbitrary we have shown that under

assumption (28) the κτ in Theorem 3 is lower-bounded as

κτ ≥ τPX [F]

|S| . (29)

Same argument shows that for κ̃τ defined in (19), the

lower bound (29) holds when QY = 1
|S|
∑

s∈S QYs
and

distributions QYs
defined in (28).

III. PROOF

A. Notation

We recall the notation and relevant results from [5]. Let

W be a stochastic matrix, P distribution on A.

• conditional output distribution Wx(y)
△
= W (y|x)

• output distribution PW PW (y) =
∑

x∈A P (x)W (y|x) .
• mutual information

I(P,W ) =
∑

x∈A

∑

y∈B
P (x)W (y|x) log W (y|x)

PW (y)
. (30)

• divergence variance

V (P‖Q) =
∑

x∈A
P (x)

[

log
P (x)

Q(x)

]2

−D(P ||Q)2 . (31)

• conditional information variance

V (P,W ) =
∑

x∈A
P (x)V (Wx‖PW ) (32)

• Asymptotic estimate of βα: Let U be a subset of distri-

butions on A with the property that infP∈U V (P,W ) >
0. Then there exists a constant K such that for every

xn ∈ An with type P in U we have

log βα(
∏

Wxj
, (PW )n) =

− nI(P,W ) −
√

nV (P,W )Q−1(α) +
1

2
logn±K .

(33)

(see [9, Lemma 14]). For all xn we have

log βα(
∏

Wxj
, (PW )n) ≥ −nI(P,W )−

√

nK

α
+logα

(34)

(see [9, Lemma 15]).

• Functions P 7→ I(P,W ) and P 7→ V (P,W ) are smooth

on the interior of the simplex of distributions on A3

• Differential of the mutual information at a point P in

the interior:

dP I(v)
△
=
∑

x∈A
vxD(Wx||PW )

• Linear-quadratic property of mutual information: For

each P and direction v the function

t 7→ I(P + tv,W ) (35)

is constant if and only if dP I(v) = 0 and v ∈ kerW .

If dP I(v) 6= 0 then function (35) is upper-bounded by

t 7→ −t · dP I(v)
3Here and everywhere below, we consider the simplex {P :∑
x∈A P (x) = 1, P (x) ≥ 0} as a manifold with boundary. Consequently,

when computing differentials and gradients we should remember that
P (x) = Px are not independent coordinate functions because

∑
x
dPx =

0.



everywhere in the domain of the definition. If dP I(v) =
0 but v 6∈ kerW then the function (35) is upper-bounded

by

t 7→ −t2
∑

y∈B

(

∑

x∈A
vxW (y|x)

)2

(36)

everywhere in the domain of the definition. In the latter

case, the function (35) is also lower-bounded by

t 7→ −Kt2
∑

y∈B

(

∑

x∈A
vxW (y|x)

)2

(37)

in some neighborhood of zero with K =
2(min{PW (y) : PW (y) > 0})−1. These statements

follow from the formula for the Hessian of I , see [5,

(504)].

B. Maximization lemma

Lemma 4: Let U be a compact convex neighborhood of

zero in R
d, with R-valued functions fs, gs, s ∈ S defined on

U . Assume

1) S is finite

2) fs are concave and continuous on U , and differentiable

at 0
3) gs are continuous and bounded on U

4) function fmin(x)
△
= mins fs(x) possesses unique max-

imum at 0.

Then as δ → 0

max
x∈U

min
s∈S

fs(x) + δgs(x) = fmin(0) + δG+ o(δ), (38)

where G is a solution to a piecewise-linear program:

G = max
x∈Rd

min
s

(x,∇fs(0)) + gs(0) (39)

minimum taken over s satisfying fs(0) = fmin(0). Further-

more,

min
s

gs(0) ≤ G ≤ max
s

gs(0) . (40)

Proof: Without loss of generality, assume fmin(0) = 0.

Also by boundedness of gs, for sufficiently small δ we may

restrict the minimization over s in (38) to states s achieving

fs(0) = 0. Therefore, we may further assume that fs(0) = 0
for all s.

Denote for convenience Ls = ∇fs(0) and notice that by

uniqueness of the maximum of fmin we have

max
x∈Rd

min
s∈S

(Ls, x) = 0 .

Therefore, the value G defined by (39) is finite and sat-

isfies (40). Next, we show that for sufficiently small δ
maximum in (38) can be restricted to any compact ball

B ⊂ U surrounding 0. Indeed, by continuity of fmin and

compactness of U we have

sup
x∈U\B

fmin(x) < −ǫ1

for some ǫ1 > 0. Thus, if c is constant lower-bounding all

gs on U we have

sup
x∈U\B

min
s

fs(x) + δgs(x) ≤ sup
x∈U\B

fmin(x) + δc < − ǫ1
2
,

for all sufficiently small δ. Therefore, in solving (38) any

choice of x ∈ U \B is worse than x = 0 for all sufficiently

small δ.

Fix arbitrary ǫ > 0 and select compact ball B ⊂ U so that

it includes 0 and

gs(x) ≤ gs(0) + ǫ ∀x ∈ B . (41)

We have then the following chain of estimates:

max
x∈U

min
s∈S

fs(x) + δgs(x) = max
x∈B

min
s∈S

fs(x) + δgs(x) (42)

≤ max
x∈B

min
s∈S

fs(x) + δgs(0) + δǫ (43)

≤ max
x∈B

min
s∈S

(Ls, x) + δgs(0) + δǫ (44)

≤ max
x∈Rd

min
s∈S

(Ls, x) + δgs(0) + δǫ (45)

= δG+ δǫ (46)

where (42) holds for sufficiently small δ by the previous

argument, (43) is by (41), (44) is by concavity of fs, (45) by

extending the domain of maximization and (46) by noticing

that solution of (39) scales linearly with scaling of gs(0) by

δ. Finally, by arbitrariness of ǫ > 0 we have shown

max
x∈U

min
s∈S

fs(x) + δgs(x) ≤ δG+ o(δ) . (47)

For the lower bound, let x∗ be a solution in (38).

lim inf
δ→0

1

δ
max
x∈U

min
s

fs(x) + δgs(x)

≥ lim inf
δ→0

min
s

1

δ
fs(δx

∗) + gs(δx
∗) (48)

= min
s

lim inf
δ→0

(

1

δ
fs(δx

∗) + gs(δx
∗)

)

(49)

= min
s

(Ls, x
∗) + gs(0) (50)

= G , (51)

where (48) follows since δx∗ ∈ U for sufficiently small

δ, (49) is by continuity of the minimum of finitely many

arguments, (50) is by differentiability of fs and continuity of

gs at 0, and (51) is by the definition of x∗.

C. Converse part

For the converse part of Theorem 1 we observe that any

(n,M, ǫ)CSIR code contains an (n,M ′, ǫ)CSIR-subcode of

constant composition P and size

logM ′ ≥ logM −O(log n) .

Therefore, it is sufficient to show

logM ′ ≤ nC −
√
nV Q−1(ǫ) + o(

√
n) . (52)



The subcode has maximal probability of error upper-

bounded by ǫ on every constituent DMC W (s). By the meta-

converse method, see [5, Theorem 30], we have

logM ′ ≤ inf
QY n

sup
xn∈Tn

P

− logβ1−ǫ(
∏

W (s)
xj

, QY n) , ∀s ∈ S
(53)

where T n
P is the n-type of composition P . We will further

relax the bound by selecting QY n = (PW (s))n.

Let U denote the compact neighborhood of P ∗
X

on the simplex of distributions on A such that

infP∈U,s∈S V (P,W (s)) > 0. If P 6∈ U then by uniqueness

assumption on P ∗
X we have

min
s

I(P,W (s)) < C − ǫ1

for some ǫ1 > 0 which only depends on U . Thus there exists

some state s such that I(P,W (s)) < C − ǫ1. Consequently,

from (34) we get

sup
xn∈Tn

P

− log β1−ǫ(
∏

W (s)
xj

, (PW (s))n) ≤ nC−nǫ1+
√
nK ′

(54)

for some K ′ > 0. Then (53) and (54) evidently imply (52).

If P ∈ U then by (33) we have

− logβ1−ǫ(
∏

W (s)
xj

, (PW (s))n) ≤

nI(P,W (s))−
√

nV (P,W (s))Q−1(ǫ) +
1

2
logn+K

(55)

From (53) and the above we get (by minimizing over s)

logM ′ ≤ 1

2
logn+K

+min
s

nI(P,W (s))−
√

nV (P,W (s))Q−1(ǫ) . (56)

Taking maximum over P ∈ U of the second term and

applying Lemma 4 with δ = Q−1(ǫ)√
n

we get (52).

D. Achievability part

We aim to invoke Theorem 3. However, since the claim

in Theorem 1 is made for noCSI and CSIR codes, we first

notice that for some c > 0

M∗
CSIR(n, ǫ) ≤ M∗

noCSI(n+ c|A| logn, ǫ+ 1√
n
) (57)

Indeed, as a first step the encoder for noCSI channel may

send c logn repetitions of each symbol x ∈ A. The cor-

responding first c|A| log n channel outputs are used by the

decoder to compute empirical estimate of the stochastic

matrix ˆW (s). By Chernoff bound the probability that any

row of this estimate deviates by more than δ > 0 from

the true W (s) is at most e−O(logn). Hence by choosing c
sufficiently large and δ sufficiently small we may ensure that

the empirical estimate ˆW (s) is closer to the true W (s) than to

any other one with probability at least 1− 1√
n

. The rest of the

communication proceeds using the optimal (n,M, ǫ)CSIR

code, whose decoder is fed the estimate of state ŝ. (The

possible mistake in determining state estimate contributes 1√
n

to the right-hand side of (57).)

Thus, for the purpose of establishing a lower bound in (12)

there is no difference between considering CSIR and noCSI

scenarios. We proceed to lower-bounding logM∗
CSIR then.

Fix (large) blocklength n and a distribution P on A in

a small neighborhood of P ∗. Let P ′ be the closest n-type

approximating P , then ‖P − P ′‖ ≤ O( 1
n
), where ‖P − P ′‖

is Euclidean distance (induced by the canonical embedding

of the simplex into R
|A|). Therefore replacing P with P ′ in

expressions like

nI(P,W (s))−
√

nV (P,W (s))Q−1(ǫ)

incurs an O(1) difference. We therefore may simplify the

reasoning below by pretending that P is an n-type, ignoring

the need to replace P with P ′ in certain places.

We set parameters for Theorem 3 as follows:

• A = An, B = Bn, PYs|X = (W (s))n

• QYs
= (PW (s))n

• F = T n
P – the collection of all strings xn ∈ An of

composition P .

• τ = 1√
n

Then by permutation symmetry and (33) we have simultane-

ously for all xn ∈ F and all s ∈ S:

log βα(PYs|X=xn , QYs
) =

− nI(P,W (s))−
√

nV (P,W (s))Q−1(α) +O(log n) ,

(58)

where O(log n) is uniform in P in a small neighborhood

around P ∗. Consequently, for the β1−ǫ+τ in (22) we have

log β1−ǫ+τ = −nR(n, P ) +O(log n) (59)

where

R(n, P ) = min
s

I(P,W (s))−
√

V (P,W (s))

n
Q−1(ǫ)

Since

PX [F] ≥ (1 + n)1−|A|

the bound (29) implies

log κτ = O(log n)

uniformly in P .

Thus from Theorem 3 we conclude: For every P in a

neighborhood of P ∗ there exists an (n,M, ǫ)CSIR code with

logM ≥ nR(n, P ) +O(log n)

with O(log n) uniform in P . Maximizing R(n, P ) over P

and applying Lemma 4 (with δ = Q−1(ǫ)√
n

) we conclude

logM∗
CSIR(n, ǫ) ≥ nC −

√
nV Q−1(ǫ) + o(

√
n)



IV. ON THE o(
√
n) TERM

For DMCs it is known that when ǫ < 1/2

logM∗(n, ǫ) = nC −
√
nV Q−1(ǫ) +O(log n)

see [4], [5]. For many channels, it has also been established

that the O(log n) term is in fact equal to 1
2 logn + O(1),

see [3], [5], [9]–[11]. It is natural to ask therefore, whether

the estimate on the remainder term in Theorem 1 can be

improved to O(log n). The answer is negative:

Proposition 5: Let W 1 and W 2 be a pair of stochastic ma-

trices defining a compound DMC satisfying all assumptions

of Theorem 1 and also:

1) I(P ∗,W 1) = I(P ∗,W 2) = C
2) P ∗ achieves global maximum of I(P,W 1).
3) There exists v ∈ R

|A| such that t 7→ I(P + tv,W 1) is

constant.

4)
∑

x∈A vxV (W 1
x‖P ∗W 1) < 0

5)
∑

x∈A vxD(W 2
x‖P ∗W 2) = 0 (i.e. v ⊥ ∇P I(P,W

2))
6)
∑

x∈A vxW
2
x (y) 6= 0 for at least one y ∈ B (i.e. v 6∈

kerW 2))

7) V1 > V2 where Vs
△
= V (P ∗,W (s)) for s = 1, 2.

Then for any ǫ ∈ (0, 12 ) there exists K > 0 s.t.

logM∗(n, ǫ) ≥ nC −
√
nV Q−1(ǫ) +Kn

1

4 + o(n
1

4 ) (60)

Proof: It is instructive to understand what the assump-

tions imply. First, channel 1’s dispersion V1 determines the

dispersion of the compound channel (see (13) and assumption

2). However, P ∗, although optimal from the W 1-capacity

point of view, is not optimal from the W 1-dispersion point

of view. Thus by deviating very slightly from P ∗ we may

improve slightly the dispersion of the W 1 channel, while not

affecting too significantly mutual information I(P,W 2).
We proceed to formal proof. By assumption 2 gradient of

I(P,W 1) is zero at P ∗ and we get from either (13) or (15)

that

V = V1 .

Next, choose a sequence of distributions

Pn = P ∗ +
c

n
1

4

v

with c > 0 to be specified shortly. For the first channel mutual

information I(Pn,W
1) = C and hence we get:

nI(Pn,W
1)−

√

nV (Pn,W 1)Q−1(ǫ)

= nC −
√
nV Q−1(ǫ) +K1cn

1

4 + o(n
1

4 ) (61)

with K1 > 0 due to assumption 4. For the second channel,

due to assumptions 5-6 and (37) for all sufficiently large n
we must have

I(Pn,W
2) ≥ C − K2c

2

√
n

for some K2 > 0. Therefore, we get

nI(Pn,W
2)−

√

nV (Pn,W 2)Q−1(ǫ)

≥ nC −K2c
2
√
n−

√

nV2Q
−1(ǫ)−K3cn

1

4 + o(n
1

4 ) ,
(62)

for some K3 > 0. Then since V2 < V1 we can always select

c small enough so that the minimum of (61) and (62) exceeds

nC −
√
nV Q−1(ǫ) +Kn

1

4 + o(n
1

4 ) ,

for some K > 0. The rest of the proof proceeds by applying

the κβ bound exactly as in Section III-D.

Here is an example ensuring assumptions of the Proposi-

tion are satisfiable. Let

W 1 =









0 1
2

1
4

1
4

1
2 0 1

4
1
4

e 1
2 − e g 1

2 − g
1
2 − e e 1

2 − g g









and let P1 be the first row, P4 the last row of W 1 and P ∗
Y

– the uniform distribution on {1, 2, 3, 4}. Then, select e, g ∈
(0, 12 ) so that

H(P1) =
3

2
bit (63)

V (P1‖P ∗
Y ) < V (P4‖P ∗

Y ) , (64)

where H(·) is the entropy. Existence of such assignment is

easily verified numerically. For the second channel let

W 2 =









0 1
2

1
4

1
4

1
4 0 1

2
1
4

1
4

1
4 0 1

2
1
2

1
4

1
4 0









It is easy to see that W 2 is an additive-noise channel

(addition over Z/4Z) with capacity 1/2 bit. The uniform

input distribution also attains the capacity of W 1: indeed all

conditional entropies for W 1 are equal (this is due to (63))

and thus maximizing I(P,W 1) is equivalent to maximizing

the output entropy H(PW 1). The latter maximum is evi-

dently attained at H(P ∗
Y ) = 2 bit. Therefore the compound

capacity is

C =
1

2
bit

achieved at P ∗ – uniform. Assumptions 1, 2 are verified

then. Assumption 5 holds for every v since P ∗ is a global

maximum of I(P,W 2) and thus the gradient at P ∗ is zero.

Assumption 6 holds because kerW 2 = {0} (e.g. compute

the determinant). Assumption 7 holds due to (64) and

V1 =
1

2
V (P1‖P ∗

Y ) +
1

2
V (P4‖P ∗

Y ) (65)

V2 = V (P1‖P ∗
Y ) (66)

For the assumption 3 take

v =
(

1 1 −1 −1
)

and note that vW 1 = 0. For the assumption 4 simply

recall (64).

Finally, it is not hard to show that the estimate of n
1

4 in (60)

is order-optimal. Indeed, from (36) the mutual information

I(P,W 2) satisfies:

I(P,W 2) ≤ C −K1‖P − P ∗‖2



in a neighborhood of P . At the same time V (P,W (s)) is

Lipschitz:

V (P,W (s)) ≤ Vs +K2‖P − P ∗‖ , s = 1, 2. (67)

Thus, by inspecting (56) we can see that in order to not

violate the
√
n-term estimate of Theorem 1 an optimizing P

must satisfy

‖P − P ∗‖2 ≤ K3√
n

Implying that ‖P − P ∗‖ . n− 1

4 . Applying (67) and Taylor

expansion to (56) we conclude that the o(
√
n) term is upper-

bounded by K4n
1

4 + o(n
1

4 ) for some K4 > 0.
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