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Abstract—Classically, error-correcting codes are studied with
respect to performance metrics such as minimum distance
(combinatorial) or probability of bit/block error over a given
stochastic channel. In this paper, a different metric is considered.
It is assumed that the block code is used to repeatedly encode
user data. The resulting stream is subject to adversarial noise of
given power, and the decoder is required to reproduce the data
with minimal possible bit-error rate. This setup may be viewed
as a combinatorial joint source-channel coding.

Two basic results are shown for the achievable noise-distortion
tradeoff: the optimal performance for decoders that are informed
of the noise power, and global bounds for decoders operating in
complete oblivion (with respect to noise level). General results
are applied to the Hamming [7, 4, 3] code, for which it is
demonstrated (among other things) that no oblivious decoder
exist that attains optimality for all noise levels simultaneously.

I. INTRODUCTION

Suppose a very large chunk of data is encoded via a fixed
error-correcting block code, whose block length is significantly
smaller than the total data volume. The data in turn is affected
by a noise of high level, thus not permitting correcting errors
perfectly. What is the best achievable tradeoff between the
noise level and the (post-decoding) bit-error rate?

Such situation may arise, for example, in the forensic
analysis of a severely damaged optical, magnetic or flash drive.
We note that there are two different scenarios depending on
whether the noise level δ ∈ [0, 1] (the fraction of bits flipped)
is known to the decoder or not. The second case presents
an additional challenge as apriori it is not clear whether a
given error-correcting code admits a universal decoder that
is simultaneosly optimal for all noise levels (in the sense of
minimizing the bit-error rate).

In this paper we characterize tradeoffs for both cases. The
general theory is applied to the example of the Hamming
[7, 4, 3] code uncovering the following basic effects:

1) Known converse bound (r∗∗0 in [1]) is not tight.
2) No single decoder is (even asymptotically) optimal for

all δ. In particular, there does not exist a decoder
achieving r∗∗0 at all points.

3) For the (practical case of) small δ, the optimal decoder
is not the minimum distance one.
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We emphasize that the last observation suggests that conven-
tional decoders of block codes should not be used in the cases
of significant defect densities.

We proceed to discussing the basic framework and some
known results.

A. General Setting of Joint-Source Channel Coding
The aforementioned problem may be alternatively formal-

ized as a combinatorial (or adversarial) joint-source channel
coding (JSCC) as proposed in [1]. The gist of it for the binary
source and symmetric channel (BSSC) can be summarized by
the following

Definition 1: Consider a pair of maps f : Fk2 → Fn2
(encoder) and g : Fn2 → Fk2 (decoder). The distortion-noise
tradeoff is the non-decreasing right-continuous function

D(f, g, δ)
4
= max
x∈Fk

2

max
e:|e|≤δn

1

k
|x+ g(f(x) + e)| δ ∈ [0, 1]

where | · | denotes the Hamming weight. The tradeoff for the
optimal decoder is denoted as

D(f, δ)
4
= min

g
D(f, g, δ) δ ∈ [0, 1]

A pair (f, g) is called a (k, n,D, δ)-JSCC if D(f, g, δ) ≤ D.
Note that the definition D(f, δ) characterizes the smallest

distortion attainable for a given encoder, provided the decoder
knows δ and can adapt to it. Shortly, we will also address the
case when δ is unknown to the decoder (see the concept of
asymptotic decoding curve below).

In this paper we focus on a particular special case of
encoders obtained via repetition of a single “small code”,
cf. [1]. Formally, fix an arbitrary encoder given by the mapping
f : Fu2 → Fv2 (a small code). If there are at most t errors
in the block of length v, t ∈ [0, v] the performance of the
optimal decoder (knowing t) is given by the non-decreasing
right-continuous function

r0(t)
4
= max

y∈Fv
2

rad(f−1Bv(y, t)), (1)

where
Bn(x, α)

4
= {x′ ∈ Fn2 : |x′ − x| ≤ α}

is a Hamming ball of (possibly non-integral) radius α and

rad(S) = min
x∈Fn

2

max
y∈S
|y − x|

is the radius of the smallest Hamming ball enclosing the set
S. Consider also an arbitrary decoder g : Fv2 → Fu2 and its
performance curve:

rg(t)
4
= max
|e|≤t

max
x∈Fu

2

|g(f(x) + e) + x|. (2)
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Clearly
rg(t) ≥ r0(t)

From a given code f we may construct a longer code f⊕L

by repetition to obtain an Fk2 → Fn2 code as follows, where
Lu = k, Lv = n:

f⊕L(x1, . . . , xL)
4
= (f(x1), . . . , f(xL)) .

This yields a sequence of codes with bandwidth expansion
factor ρ = n

k = v
u . We want to find out the achieved distortion

D(δ) as a function of the maximum crossover portion δ of the
adversarial channel.

Theorem 1 ( [1]): The asymptotic distortion achievable by
the repetition construction satisfies

lim inf
L→∞

D(f⊕L, δ) ≥ 1

u
r∗∗0 (δv) . (3)

A block-by-block decoder g achieves

lim
L→∞

D(f⊕L, g⊕L, δ) =
1

u
r∗∗g (δv) , (4)

where r∗∗0 and r∗∗g are upper concave envelopes of r0 and rg
respectively.

Below we extend and refine these prior results. Namely, in
Section II we show how to compute the limit in (3) exactly
(correcting a previous version in [2]). In Section III we present
upper and lower bounds for the case of δ not known at the
decoder. Finally, in Section IV we demonstrate our findings
on the example of the (repetition of the) Hamming [7, 4, 3]
code.

II. DECODER KNOWS δ

A. Optimal performance curve: correction to [2]

Asymptotic performance of a repetition construction is
given by:

Theorem 2: Fix a small code f : Fu2 → Fv2 and consider
the repetition construction. The limit

D(f⊕∞, δ)
4
= lim
L→∞

D(f⊕L, δ) (5)

exists and is a non-negative concave continuous function of
δ ∈ [0, 1] given by

D(f⊕∞, δ) =
1

u
max
PY

min
PŜ|Y

max
PS|Y,Ŝ :(∗)

E [|S − Ŝ|] , (6)

where PY ranges over all distributions on Fv2 , PŜ|Y ranges
over all Markov kernels Fv2 → Fu2 and PS|Y,Ŝ ranges over
Markov kernels Fv2 × Fu2 → Fu2 satisfying

(∗) E [|f(S)− Y |] ≤ δv

with expectations computed over

PS,Y,Ŝ(s, y, ŝ) = PY (y)PŜ|Y (ŝ|y)PS|Y,Ŝ(s|y, ŝ)

Proof: The key step is the formula for the optimal
decoder [1, Section IV.D]:

D(f⊕L, δ) =
1

uL
max
y∈FvL

2

rad
(
(f⊕L)−1BvL(y, δvL)

)
(7)

Note that once existence of the limit is proven, concavity
follows immediately. Indeed for any L1 +L2 = L, integers si
and yi ∈ FvLi

2 with i = 1, 2 we have

BvL(y1 ⊕ y2, s1 + s2) ⊃ BvL1(y1, s1)⊕BvL2(y2, s2) .

Applying (f⊕L)−1 and taking rad we get from additivity of
the radius [3, Section II]:

D(f⊕(L1+L2),
s1 + s2

L1 + L2
) ≥ L1

L1 + L2
D(f⊕L1 ,

s1

L1
)

+
L2

L1 + L2
D(f⊕L2 ,

s2

L2
) .

Since si are arbitrary by taking the limit L→∞ of both sides,
concavity of D(f⊕∞, δ) follows. Concavity in turn implies
continuity.

We complete the proof by showing existence of the limit
and formula (6). To that end, first we expanding the definition
of radius in (7). Second, we represent vectors in FvL2 as Fv2-
valued vectors of length L, and similarly for FuL2 . Then, the
expression entirely equivalent to (7) is the following:

D(f⊕L, δ) =
1

u
max
PY

min
PŜ|Y

max
PS|Y,Ŝ :(∗)

E [|S − Ŝ|] , (8)

with optimizations satisfying the same constraints as in (6)
with the following additions:

1) PY (b) ∈ 1
LZ for every b ∈ Fv2

2) PŜ|Y (a|b) ∈ 1
LPY (b)Z for every a ∈ Fu2

3) PS|Y,Ŝ(a′|b, a) ∈ 1
LPY (b)PŜ|Y (a|b)Z for every a′ ∈ Fu2

Note that since expectations appearing in constraint (∗) and (6)
are continuous functions of PY , PŜ|Y and PS|Y,Ŝ we may ad-
ditionally impose constraint PŜY (a, b) ≥ 1√

L
. This guarantees

that in the integrality constraint 3 the denominator is a large
integer for each (a, b). Consequently, arbitrary kernel PS|Y,Ŝ
can be approximated with precision of order 1√

L
by kernels

satisfying constraint 3. Hence, in the limit as L → ∞ the
inner maximization in (8) can be performed without verifying
integrality condition 3. Similar argument applies to PŜ|Y and
PY . Overall, this is a standard exercise in approximating joint
distributions by L-types, see [4, Chapter 1].

III. DECODER DOES NOT KNOW δ

A. Asymptotic decoder curves
Definition 2: A non-decreasing right-continuous function

r : [0, v]→ [0, u] is called an asymptotic decoder curve (a.d.c.)
for a given small code f : Fu2 → Fv2 if there exists a sequence
of integers, Lj , of decoders gj : FvLj

2 → FuLj

2 such that

D

(
f⊕Lj , gj ,

t

v

)
→ 1

u
r(t) (9)

for all t ∈ [0, v] points of continuity of r. An a.d.c. r is called
minimal if for any other a.d.c. r′ there is an s ∈ [0, v] such
that r(s) < r′(s).

Note that the LHS of (9) is a sequence of non-decreasing,
right-continuous functions. Thus by Helly’s theorem [5, Chap-
ter 7] given any sequence of decoders gj : FLjv

2 → FLju
2 there

always exists at least one limiting a.d.c. The set of all a.d.c.’s
describe a totality of performance curves achievable (for large



L) by decoders oblivious to the actual value of adversarial
noise δ. Recall that (Theorem 2) the optimal performance for
the decoder that can adapt to δ is given by D(f⊕∞, δ). It turns
out (unsurprisingly) that D(f⊕∞, δ) is just a lower bound of
all of the a.d.c.’s:

Proposition 3: For every t ∈ [0, v] we have

D

(
f⊕∞,

t

v

)
=

1

u
min r(t−) , (10)

where minimum is over the set of all a.d.c.’s.
Proof: For convenience, denote

r∗(t)
4
= u ·D

(
f⊕∞,

t

v

)
.

Consider arbitrary a.d.c. r and a sequence

rj(t)
4
= D

(
f⊕Lj , gj ,

t

v

)
→ 1

u
r(t) .

Then, by the general properties of convergence of distributions
we have (for each t):

r(t−) ≤ lim inf
j→∞

rj(t−) ≤ lim sup
j→∞

rj(t) ≤ r(t) .

But by (5) we have

lim inf
j→∞

rj(t) ≥ r∗(t) .

and therefore

r(t) ≥ r∗(t) ∀t ∈ [0, v] (11)

Since r∗ is continuous in t (Theorem 2) we can strengthen (11)
to

r(t−) ≥ r∗(t) (12)

and therefore
r∗(t) ≤ inf

r– a.d.c.
r(t−) (13)

Next, consider a sequence of decoders gL, L → ∞ which
attain r∗(t0) for some fixed t0. Denote

rL(t)
4
= u ·D

(
f⊕L, gL,

t

v

)
then we have

rL(t0)→ r∗(t0) . (14)

By Helly’s theorem there exists a subsequence Lj and some
non-decreasing right-continuous function r : [0, v] → [0, u]
such that rLj

(t) → r(t) for every point of continuity of t.
Thus r is an a.d.c. with gLj as a limiting sequence of decoders.
Again by convergence of distributions we have

r(t0−) ≤ lim inf
j→∞

rLj (t0−)

Then from rLj (t0−) ≤ rLj (t0), (12) and (14) we obtain

r∗(t) ≤ r(t0−) ≤ r∗(t)

implying that r(t0−) = r∗(t) and thus the bound in (13) is
tight.

Examples of a.d.c.’s can be obtained via the following result:
Proposition 4: Given k ≥ 1 decoders g1, . . . , gk : Fv2 →

Fu2 , their envelopes r∗∗g1 , . . . , r
∗∗
gk

and positive weights λj such

that
∑k
j=1 λj = 1, the following is a continuous concave

a.d.c.:

r(t) = max

k∑
j=1

λjr
∗∗
gj (τj) , (15)

where maximum is over all τj ∈ [0, v] such that
∑k
j=1 λjτj ≤

t.
Proof: The idea is to use each decoder gj for λj-portion

of blocks. Let us denote such a decoder by

gL
4
=

k⊕
j=1

g
⊕λjL
j .

The statement of the Proposition is then equivalent to: The
function of t ∈ [0, v] given by (15) is continuous and concave;
furthermore the following holds for all t ∈ [0, v]:

lim
L→∞

D

(
f⊕L, gL,

t

v

)
=

1

u
r(t) (16)

Consider any θt1+(1−θ)t2 = t for θ ∈ [0, 1]. Let {τ (1)
j }kj=1

and {τ (2)
j }kj=1 be the coefficients achieving r(t1) and r(t2)

in (15) respectively. Then by taking τj = θτ
(1)
j + (1− θ)τ (2)

j

and using the concavity of r∗∗g , we obtain the concavity of
r(t). Concavity then implies continuity immediately.

Next, we show

lim sup
L→∞

D

(
f⊕L, gL,

t

v

)
≤ 1

u
r(t) , (17)

Suppose the adversary flips τjλjL bits in the j-th block.
By (4), the decoder commits at most r∗∗g (τj)λjL bits of
error in the j-th block. In total, the number bits of error
is
∑k
j=1 r

∗∗
g (τj)λjL, with number of flipped bits by the

adversary
∑k
j=1 τjλjL ≤ (t/v)vL = tL. By optimizing τj ,

we obtain (17).
The proof concludes by demonstrating

lim inf
L→∞

D

(
f⊕L, gL,

t

v

)
≥ 1

u
r(t) (18)

Let {τj}kj=1 be those coefficients achieving (15), then for
each block j, there exists a source realization and adversary
noise vector ej with |ej | ≤ τjλjL such that the decoder
commits at least r∗∗g (τj)λjL bits of errors by (4). Take the
summation over the k blocks, there exists a source realization
and adversary noise vector e = e1|| . . . ||ek where |e| ≤ tL
such that the decoder commits at least

∑k
j=1 r

∗∗
g (τj)λjL bits

of error. So (18) holds.

B. Converse bounds on a.d.c.’s

Our goal now is to develop a tool for demonstrating that
an a.d.c. cannot be very small for all t. Our result is a certain
global (i.e. over a range of t’s) condition on r(t), as opposed
to pointwise lower bound of Proposition 3. We start with some
preliminary definitions and remarks.

Definition 3: Function x 7→ `(x) is called a feasible dis-
tance profile (FDP) if ∃x0 s.t. `(x) ≥ |x− x0| for all x.



The next proposition is our main tool to derive global
constraints on a.d.c.’s. It’s meaning is that functions rg cor-
responding to arbitrary decoder (see (2)) have rather special
structure, intertwined with the geometry of the Hamming
space:

Proposition 5: For any JSCC f : Fk2 → Fn2 and g : Fn2 →
Fk2 , and for any y ∈ Fn2 the map

x 7→ rg(|f(x)− y|)

– is an FDP.
Proof: Just take x0 = g(y) in the definition of the FDP.

Definition 4: For each x0 ∈ Fu2 , define:

ρy,x0(s) = max
x:|f(x)−y|≤s

|x− x0| .

Value of ρ is taken to be −∞ if the constraint set is empty.
Proposition 6: For any JSCC f : Fk2 → Fn2 and g : Fn2 →

Fk2 , and for any y ∈ Fn2 there exists x0 ∈ Fk2 such that

∀s ∈ [0, v] : rg(s) ≥ ρy,x0
(s) ,

where
ρy,x0

(s)
4
= max
x:|f(x)−y|≤s

|x− x0| (19)

(ρ = −∞ when the constraint set is empty).
Proof: Since rg(|f(x)−y|) is an FDP, by definition there

exists x0 such that

rg(|f(x)− y|) ≥ |x− x0| ∀x ∈ Fu2
Taking max over all x ∈ f−1Bn(y, s) we obtain the result.

Finally, we are ready to prove our main converse bound for
the a.d.c.’s:

Theorem 7: Fix code f : Fu2 → Fv2 . Then every asymptotic
decoder curve of f satisfies the following: for every y ∈ Fv2 ,
there exists a probability distribution Λ on Fu2 such that for
all

∀s ∈ [0, u] : r(s) ≥ ρy,Λ(s) ,

where

ρy,Λ(s)
4
= max
sx:

∑
x∈Fu2

Λ(x)sx≤s

∑
x∈Fu

2

Λ(x)ρy,x(sx)

and ρy,x(·) is defined in (19).
Proof: For every y, it suffices to prove that for each Lj

and associated decoder gj in (9), there exists a distribution Λj
on Fu2 such that:

uD(f⊕Lj , gj ,
s

v
) ≥ ρy,Λj

(s) (20)

for every s ∈ [0, 1]. Then by the compactness of the set of all
distributions on Fu2 , there exists a subsequence {Lni

} of {Lj}
such that limi→∞ Λni = Λ exists, hence limi→∞ ρy,Λni

(s)
also exists. Then by replacing j by ni and let i goes to infinity
in (20), we obtain r(s) ≥ ρy,Λ(s).

Now for fixed block length Lj , expand the LHS of (20) as:

1

Lj
max
x∈F

uLj
2

max
e:|e|≤sLj

|x+ gj(f
⊕Lj (x) + e)| (21)

Restrict x ∈ (f⊕Lj )−1B(yLj , sLj), (21) is lower bounded by:
1

Lj
max

x:|f⊕Lj (x)−yLj |≤sLj

|x+ gj(y
Lj )| (22)

Assume the decoder gj decodes yLj to (x̂1, . . . , x̂Lj ).
Then (22) can be further expressed as:

1

Lj
max

xi∈Fu
2 :
∑Lj

i=1 |f(xi)−y|≤sLj

Lj∑
i=1

|x̂i − xi| (23)

Now take

Λ(x̂) =
number of appearance of x̂ in gj(yLj )

Lj

By the definition of ρy,x(·) in (19), (23) can be expressed as:

max∑
x∈Fu2

Λ(x)sx≤s

∑
x̂∈Fu

2

Λ(x̂)ρy,x̂(sx)

which is just the definition of ρy,Λ(s).

C. Alternative interpretation of Theorem 7
For any y ∈ Fv2 and any function h : Fu2 → Fu2 , we define

a set Sy,h as

Sy,h = {(s, t)|s = |f(h(x))− y|, t = |x− h(x)|,∀x ∈ Fu2}

Proposition 8: If an asymptotic decoder curve r(·) passes
though the convex closure of Sy,h for any y and h, there exists
a distribution Λ on Fu2 such that for all s ∈ [0, 1]

r(s) ≥ ρy,Λ(s)

Conversely, if there exists y and distribution Λ such that
r(s) ≥ ρy,Λ(s) for all s, then r passes through Sy,h for some
h.

Proof: If there exists a distribution Λ on Fu2 such
that r(s) ≥ ρy,Λ(s) for all s and sx’s satisfying s =∑
x∈Fu

2
Λ(x)sx. we have:

r(
∑
x∈Fu

2

Λ(x)sx) ≥ ρy,Λ(
∑
x∈Fu

2

Λ(x)sx)

≥
∑
x∈Fu

2

Λ(x)ρx(sx) =
∑
x∈Fu

2

Λ(x) max
x0:|f(x0)−y|≤sx

|x− x0|

Take sx = |f(h(x))− y| and x0 = h(x), we obtain

r(
∑
x∈Fu

2

Λ(x)sx) ≥
∑
x∈Fu

2

Λ(x)|x− h(x)|

Then the node

(
∑
x∈Fu

2

Λ(x)|f(h(x))− y|,
∑
x∈Fu

2

Λ(x)|x− h(x)|)

is inside the region Sy,h. So r must pass through Sy,h.

Conversely, given y, if for any distribution Λ on Fu2 , there
exists s such that r(s) < ρy,Λ(s), that means there exists a
set of integers sx such that

r(
∑
x∈Fu

2

Λ(x)sx) <
∑
x∈Fu

2

Λ(x)ρy,x(sx)



TABLE I
INPUT-OUTPUT BER CURVES r0 , rg1 , rg2 AND THEIR ENVELOPES

s 0 1 2 3 4 5 6 7

r0(s) 0 0 2 3 3 3 4 4

r∗∗0 (s) 0 1 2 3 3 1
3

3 2
3

4 4

rg1 (s) 0 0 3 3 3 3 4 4

r∗∗g1 (s) 0 1.5 3 3 1
4

3 1
2

3 3
4

4 4

rg2 (s) 0 1 2 3 3 4 4 4

r∗∗g2 (s) 0 1 2 3 3 1
2

4 4 4

Since there exists some function h such that |f(h(x))−y| = sx
for any x. Then by 19, we have:

r(
∑
x∈Fu

2

Λ(x)|f(h(x)− y)|) <
∑
x∈Fu

2

Λ(x)|x− h(x)|

So r do not pass through Sy,h.

IV. EXAMPLE: HAMMING [7, 4, 3] CODE

In conclusion, we particularize our results to the usual
Hamming [7, 4, 3] code. Note that up until now, the only codes
which we considered were the [2m+ 1, 1, 2m+ 1] repetition
codes, cf. [1]. There, computation of D(f⊕∞, δ) was done
by finding a decoder with r∗∗g = r∗∗0 and Theorem 1. In this
section we show:

1) For Hamming [7, 4, 3] there does not exist decoder with
r∗∗g = r∗∗0 .

2) Evaluation of D(f⊕∞, δ) is nevertheless possible via
Theorem 2.

3) Results of Section III show that there does not exist
a decoder that is simultaneously optimal for all δ (i.e.
the minimum in (10) is attained by different a.d.c.’s
depending on the adversary noise).

A. Two decoders for Hamming [7, 4, 3]

For [7, 4, 3]- Hamming code f(~x) = ~xG where

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 (24)

The quantity r0 in (1) and its envelope are given in Table I.
Consider two decoders:
• The minimum distance decoder g1: firstly compute the

parity b = ~yH where

HT =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


And if b 6= 000, g1 corrects the error on the i-th bit where
the i-th row of H is just b.

• Alternative decoder g2: upon receiving the input ~y, take
~x as the first four bits of ~y. Then compute |~y − ~xG|H .
If the Hamming distance is 3, then it flips the last bit of
~x and output it. Otherwise, directly output ~x. Then if the

Fig. 1. Comparison of r∗∗0 , r∗∗g1 , r∗∗g2 . Note that according to (25) it is
asymptotically optimal to use g2 for δ ≤ 4

7
and g1 for δ ≥ 4

7
. Consequently,

the bound r∗∗0 (Theorem 1) is not tight for δ ∈ ( 3
7
, 6
7
).

first four bits of the codeword are all flipped, the decoder
will detect and correct the error, so rg2(4) = 3. While if
more than 4 bits are modified, g2 cannot detect the error.

The quantity rg in (2) for decoder g1 and g2, as well as
their envelopes, are given in Table I.

We notice that there exist some s such that r∗∗g (s) > r∗∗0 (s)
for both decoders g1 and g2. Actually it holds for every
deterministic decoder.

Proposition 9: For a [7, 4, 3] Hamming code (24), there is
no deterministic decoder g : F7

2 → F4
2 achieving r∗∗g (s) =

r∗∗0 (s) for all s ∈ [0, 7] simultaneously. Furthermore, asymp-
totic performance of the best decoder (with knowledge of δ)
is given by

D(f⊕∞, δ) =
1

4
min

(
r∗∗g1 (7δ), r∗∗g2 (7δ)

)
(25)

Proof: If we want r∗∗g (s) = r∗∗0 (s) for each possible s,
then for each 0 ≤ s ≤ 7

max
|e|≤s

max
x∈F4

2

|g(f(x) + e)− x| = rg(s) ≤ r∗∗g (s) = r∗∗0 (s)

⇐⇒ ∀|e| ≤ s,∀x ∈ F4
2, |g(f(x) + e)− x| ≤ r∗∗0 (s)

Let y = f(x) + e, this is equivalent to

∀y ∈ F7
2,∀x ∈ F4

2, |g(y)− x| ≤ r∗∗0 (|f(x)− y|)
We notice that for y = 0000011 (also some other strings, we
just take this for example), it is impossible to find such a g(y)
to satisfy this condition for all x.

Indeed, by inspecting Table II we notice that no matter what
g(y) is, there exists an x such that |g(y)−x| = 4. Notice that
there is only x = 1101 which allows |g(y) − x| = 4. So
g(y) could only be 0010. But then |g(y) − 1100| = 3 > 2.
Therefore, we can not find assignment g(y) to satisfy all the
conditions. So no decoder g can achieve r∗∗g (s) = r∗∗0 (s) for
all s.

Finally, (25) is just a numerical evaluation of Theorem 2.



Fig. 2. Comparison of three a.d.c.s: r∗∗g1 , r∗∗g2 and the decoder that uses g1
for 50% of blocks and g2 for the rest. All of them pass through region R of
Proposition 10.

B. Global constraint on a.d.c.’s of the Hamming code
Proposition 10: Any asymptotic decoder curve r for

[7, 4, 3] passes through region R, where R is the convex
closure of

{(2, 3), (2, 4), (5, 4)}

Remark: Note that performance of the optimal decoder (with
knowledge of δ) does not pass through R, see (25). Thus, the
D(f⊕∞, δ) is not an a.d.c. and hence no decoder (oblivious
to δ) can attain simultaneously all of its points.

Proof: Look at y = 0000011, we compute all the ρy,x0

curves for x0 ∈ Fu2 . It turns out that only ρy,0000 and ρy,0010

are minimal curves. Namely for any x 6∈ {0000, 0010}, there
exists x0 ∈ {0000, 0010} such that

ρy,x(s) ≥ ρy,x0
(s)

for all s. Consequently, for every Λ on Fu2 there exists Λ′

supported on {0000, 0010} such that

ρy,Λ(s) ≥ ρy,Λ′(s) ∀s .

By Theorem 7 each a.d.c. is lower bounded by an infimal
convolution of the two ”minimal” curves ρy,0000 and ρy,0010

shown in Table III.
For any distribution Λ on {0000, 0010}, consider s =

5Λ(0000) + 2Λ(0010), we have:

r(s) ≥ ρy,Λ
≥ Λ(0000)ρy,0000(5) + Λ(0010)ρy,0010(2)

= 4Λ(0000) + 3Λ(0010)

Since s ∈ [2, 5], this curve should pass trough the region R
no matter which distribution Λ is chosen.
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