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SUMMARY

In many geophysical inverse problems, smoothness assump-
tions on the underlying geology are utilized to mitigate the
effects of poor resolution and noise in the data and to im-
prove the quality of the inferred model parameters. Within a
Bayesian inference framework, a priori assumptions about the
probabilistic structure of the model parameters impose such
a smoothness constraint or regularization. We consider the
particular problem of inverting seismic data for the subsurface
reflectivity of a 2-D medium, where we assume a known ve-
locity field. In particular, we consider a hierarchical Bayesian
generalization of the Kirchhoff-based least-squares migration
(LSM) problem. We present here a novel methodology for es-
timation of both the optimal image and regularization parame-
ters in a least-squares migration setting. To do so we utilize a
Bayesian statistical framework that treats both the regulariza-
tion parameters and image parameters as random variables to
be inferred from the data. Hence rather than fixing the regu-
larization parameters prior to inverting for the image, we al-
low the data to dictate where to regularize. In order to con-
struct our prior model of the subsurface and regularization pa-
rameters, we define an undirected graphical model (or Markov
random field) where vertices represent reflectivity values, and
edges between vertices model the degree of correlation (or
lack thereof) between the vertices. Estimating optimal val-
ues for the vertex parameters gives us an image of the subsur-
face reflectivity, while estimating optimal edge strengths gives
us information about the local “texture” of the image, which,
in turn, may tell us something about the underlying geology.
Subsequently incorporating this information in the final model
produces more clearly visible discontinuities in the final im-
age. The inference framework is verified on a 2-D synthetic
dataset, where the hierarchical Bayesian imaging results sig-
nificantly outperform standard LSM images.

INTRODUCTION

Seismic imaging (or migration) refers to the process of creat-
ing an image of the Earth’s subsurface reflectivity from seismic
data, consisting typically of a set of seismograms generated by
sources and recorded by receivers located at or near the sur-
face. We denote the seismic modeling process as d = Am,
where d is the seismic data, A is the forward modeling opera-
tor, and m is the subsurface reflectivity model (or seismic im-
age). Traditional migration methods for estimating the image
typically involve operating on the seismic data with the ad-
joint of the forward modeling operator (Claerbout, 1992) pos-
sibly along with a modifying function which attempts to cor-
rect for amplitude loss due to geometric spreading, transmis-
sion, absorption, etc. (Bleistein, 1984; Hanitzsch et al., 1994).

More recently, attempts have been made to solve the imaging
problem when cast as a least-squares inverse problem (Nemeth
et al., 1999; Duquet et al., 2000). This approach to imaging
is conventionally referred to as least-squares migration. As a
least-squares inverse problem, it is typical to impose a form
of regularization in the LSM cost function (that would typi-
cally penalize less smooth images). From the perspective of
Bayesian inference, the regularization defines a prior probabil-
ity distribution on the image parameters. Importantly however,
the Bayesian framework also provides a rigorous mathematical
framework for going beyond simply fixing a regularization on
the image parameters. Indeed, under a hierarchical Bayesian
setting, one can assign a prior probability distribution to the
regularization parameters, which can then be inferred from the
data or integrated out, resulting in potentially better inference
for the image parameters.

Early treatments of the seismic imaging problem as a least-
squares inverse problem can be found in LeBras and Clayton
(1988) and Lambare et al. (1992). Kirchhoff-based LSM uses a
ray-theory based forward modeling operator; its derivation and
application is discussed in Nemeth et al. (1999) and Duquet
et al. (2000). LSM has also been applied to a wave-equation-
based forward modeling operator, as shown by Kühl and Sac-
chi (2003). Clapp (2005) describes two methods for choosing
a regularization scheme in the LSM context where the image is
constrained to be smooth either along geological features pre-
determined by a seismic interpreter or along the ray-parameter
axis. Regarding the application of hierarchical Bayesian ap-
proaches to other geophysical inverse problems, Malinverno
and Briggs (2004) applied hierarchical and empirical Bayesian
methods to a 1-D traveltime tomography problem. Malinverno
(2002, 2000) also applied Bayesian model selection, imple-
mented via ‘reversible-jump’ Markov chain Monte Carlo (rj-
MCMC) (Green, 1995), to determine an appropriate model pa-
rameterization and dimension when inverting for 1-D density
and resistivity models from gravity gradient measurements and
DC resistivity sounding data, respectively. Buland and Omre
(2003) considered a hierarchical Bayesian approach to ampli-
tude versus offset (AVO) inversion for the velocity and density
model of a 2-D medium, where the seismic source wavelet is
also estimated from the data. In an example of an inverse prob-
lem on a continental scale, Bodin et al. (2012) applied trans-
dimensional Bayesian model selection to determine group ve-
locities for the Australian continent from Rayleigh wave group
delays (again implemented via rj-MCMC).

METHODOLOGY

Standard Kirchhoff-based LSM Framework
We restrict our attention to Kirchhoff-based least-squares mi-
gration, which attempts to invert the forward problem d = Am,
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where A is the Kirchhoff modeling operator. In particular,
least-squares migration seeks to find the image mLS that min-
imizes the `2-norm of the residual (the difference between the
observed data d and the modeled data d̂ = Am). Without reg-
ularization, the LSM image is given by

mLS = argmin
m
‖d−Am‖2

2. (1)

Regularization is often introduced by adding a term which pe-
nalizes differences between model parameters and an addi-
tional term which penalizes the magnitude of the image (pri-
marily to ensure well-posedness) to the LSM cost function.
This gives the regularized LSM image as

mLS = argmin
m
‖d−Am‖2

2 +λ

∑
(i, j)∈E

βi j(mi−m j)
2 + ε

∑
i

m2
i

(2)

= argmin
m
‖d−Am‖2

2 +mT (λD(β )+ εI)m, (3)

where βi j ∈ {0,1} indicates whether or not to penalize the dif-
ference between mi and m j, E is the set of all pairs of image
parameter indices where we could potentially penalize differ-
ences, λ assigns the weight given to penalizing these differ-
ences, and ε is a typically very small number that assigns the
weight given to penalizing the magnitude of the image. Equa-
tion 3 is simply Equation 2 rewritten in compact matrix-vector
notation, where D is a differencing operator defined by the vec-
tor β =

{
βi j : (i, j) ∈ E

}
. Taking the derivative of the right-

hand side of Equation 3 and setting it to zero yields the solution
to the regularized LSM problem:

mLS =
(

AT A+λD(β )+ εI
)−1

AT d. (4)

Note that the εI term ensures that AT A+λD(β )+ εI is pos-
itive definite, so that the regularized least-squares solution is
guaranteed to exist and be unique.

Bayesian Framework
Standard Bayesian Formulation
It is possible to retrieve the very same LSM result when formu-
lating the imaging problem in a Bayesian framework, where
the image m and the data d are modeled as random vectors. In
particular, we model m a priori as being Gaussian with zero
mean and some covariance matrix Λ (i.e. m ∼ N(0,Λ)). We
again model the seismic data as before with A our Kirchhoff
modeling operator and additionally add zero-mean Gaussian
noise n with some covariance matrix Σ to the data so that
d = Am+ n where n ∼ N(0,Σ). Thus the conditional distri-
bution for the data d given the model m will be Gaussian so
that d|m ∼ N(Am,Σ). Applying Bayes’ rule reveals that the
posterior distribution for the model m conditioned on the data
d is also Gaussian

m|d∼ N(µpost,Λpost) (5)

with posterior mean

E [m|d] = µpost =
(

AT
Σ
−1A+Λ

−1
)−1

AT
Σ
−1d (6)

and posterior covariance matrix

Λpost =
(

AT
Σ
−1A+Λ

−1
)−1

. (7)

The mean of the posterior distribution given in Equation 6 is
what is referred to as the Bayes Least Squares (BLS) estima-
tor of the image m from the data d, as it minimizes the mean
squared estimation error. To regularize as before, we set our in-
verse prior covariance matrix to our regularization matrix from
the standard LSM framework

Λ
−1 = λD(β )+ εI (8)

so that

m̂BLS(d) =
(

AT
Σ
−1A+λD(β )+ εI

)−1
AT

Σ
−1d. (9)

Hierarchical Bayesian Formulation
We now describe how we can expand the above formulation
to estimate the regularization parameters. In particular, we fo-
cus on the problem of estimating the vector of differencing
coefficients β from the data d, in addition to the image m.
The reason for estimating β in particular is that β captures our
prior belief about where we think the image should be smooth.
In probabilistic terms, β captures the prior conditional depen-
dence structure of the image m, such that βi j = 0 implies that,
prior to observing d, mi is conditionally independent of m j
when {mk : k 6= i, j} is given. Hence, β defines a Gaussian
Markov random field (MRF) on m prior to observing d; this is
depicted in Figure 1 for a simple nine pixel image.
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Figure 1: The Markov random field imposed on m by fixing β

prior to observing the data d, for a simple nine pixel image.

In order to estimate β from d, rather than fixing β , we make
β a random vector endowed with its own prior p(β ). This is
a reasonable approach since the regularization parameters β

give us prior information about our model m, and m gives us
information about our data d, hence we should be able to infer
something about β from d. This is depicted in the directed
graphical model of Figure 2, which also illustrates the Markov
chain structure between β , m, and d. To define our specific
probabilistic model for β , m, and d, we endow each βi j with
a uniform prior on the set {0,1} and let

{
βi j : (i, j) ∈ E

}
be a

set of mutually independent random variables. That is,

p
(
βi j
)
=

1
2

δ
(
βi j
)
+

1
2

δ
(
βi j−1

)
(10)

and
p(β ) =

∏
(i, j)∈E

p
(
βi j
)
. (11)
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Figure 2: The directed graphical model capturing the Markov
chain structure between β , m, and d. The node for d is shaded
to indicate that d is an observed quantity that the posterior dis-
tributions of β and m are conditioned upon.

Then, conditioning on a particular value for β , we define the
probabilistic model for m|β and d|m,β as before, so that

m |β ∼ N
(

0,(λD(β )+ εI)−1
)
, (12)

meaning

p(m|β ) ∝
exp
{
− 1

2 mT (λD(β )+ εI)m
}

|λD(β )+ εI|−1/2
, (13)

and
d |m,β = d |m∼ N (Am,Σ) , (14)

meaning

p(d|m,β ) = p(d|m) (15)

∝ exp
{
−1

2
(d−Am)T

Σ
−1 (d−Am)

}
. (16)

We again apply Bayes’ rule to obtain the joint posterior distri-
bution for m and β given the data d:

p(m,β |d) ∝ p(β ) p(m|β ) p(d|m,β ) (17)

∝ |λD(β )+ εI|1/2

exp
{
−1

2

(
(d−Am)T

Σ
−1 (d−Am)

+mT (λD(β )+ εI)m
)}

∏
(i, j)∈E

(
δ
(
βi j
)
+δ

(
βi j−1

))
.

(18)

We note that Equation 18 is very similar to the posterior dis-
tribution in the non-hierarchical Bayesian setting (where β is
fixed) with some important differences: firstly, Equation 18 is
now a function of both m and β , and secondly, outside the
exponential of Equation 18 is the determinant of the regular-
ization matrix. Computing this determinant is expensive, with
time complexity O

(
N3) (where N is the number of image pa-

rameters), and reflects the additional computational cost of the
hierarchical Bayesian approach. The product of delta functions
in Equation 18 simply restricts each βi j to being 0 or 1.

Having obtained the posterior distribution p(m,β |d), the task
of estimating the best image m remains. We again desire the
BLS estimate for m. What is strictly known as the hierarchical
Bayes solution would be the true BLS estimate of m, the mean
of m on its posterior distribution (marginalizing out β from the
joint posterior distribution p(m,β |d)). Hence, we have for the
hierarchical Bayes solution

m̂HB,BLS = E [m|d] =
∫

M
m
∫

B
p(m,β |d)dβ dm. (19)

One can think of this as searching for the single best image
m over all choices of regularization parameters β . Unfortu-
nately, the above expectation cannot be given in a closed-form
solution and must be computed numerically.

A somewhat different solution to estimating m is known as the
empirical Bayes solution, which first looks for the best choice
for the regularization parameters β best then, using that choice,
finds the best image m̂EB. If one takes the BLS estimate for β

then we would have

β best = β BLS = E [β |d] =
∫

B
β

∫
M

p(m,β |d)dmdβ (20)

where the inner integral can be evaluated analytically, but the
outer integral must still be evaluated numerically. We would
then obtain the empirical Bayes BLS solution by finding the
mean image m after conditioning on β = β BLS so that

m̂EB,BLS = E [m|d,β BLS] (21)

=
(

AT
Σ
−1A+λD(β BLS)+ εI

)−1
AT

Σ
−1d. (22)

Inference Algorithm: Gibbs Sampler
The integrals needed to evaluate the expected values in Equa-
tions 19 and 20 (where the integrals over β collapse to sum-
mations due to the delta functions) are generally not numer-
ically tractable when the dimensionality of m (and hence β )
are very high. One solution is to approximate the expected
values stochastically via sampling. Particularly, if we are able
to generate independent samples of a random variable, then we
can approximate the expected value of that random variable as
the mean of the generated samples. In order to generate sam-
ples from p(m,β |d), we implement a type of Markov chain
Monte Carlo (MCMC) sampler known as the Gibbs sampler.
The Gibbs sampler samples a random variable component-by-
component from each component’s full conditional distribu-
tion. Letting m−i = {m j : j 6= i} and similarly for β−i j, and
letting N = dim(m), the algorithm for the Gibbs sampler to
sample from the distribution p(m,β |d) is given below:

Initialize m(0),β (0)

for k = 1,2, . . . ,K do
for i = 1,2, . . . ,N do

Sample m(k)
i ∼ p

(
mi

∣∣∣m(k−1)
−i ,β (k−1),d

)
end for
for all (i, j) ∈ E do

Sample β
(k)
i j ∼ p

(
βi j

∣∣∣β (k−1)
−i j ,m(k),d

)
end for

end for

RESULTS

In order to validate our approach, we ran our inference algo-
rithm on synthetic data sets. We present two test cases: the first
arising from an image consisting of three dipping reflectors
separated by a weakly reflective fault and the second being a
small subsection of the Marmousi model. Synthetic data were
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created using the same Kirchhoff modeling operator A that is
used in the inference algorithms then adding zero-mean white
Gaussian noise (having a standard deviation equal to 10% of
the maximum amplitude of the data). A homogeneous back-
ground velocity model (of 4000 m/s) is used both to create
the synthetic data as well as to construct the modeling oper-
ator in the inference algorithm. Hence, these test cases are
what are known as inverse crime tests. The purpose of us-
ing the same forward modeling operator to create the synthetic
data as is used in the inference is to isolate the inversion prob-
lem from the modeling problem. The variance of the Gaus-
sian noise is also known by the inference algorithm. For both
test cases, the data are created from a single surface seismic
source (at the center) and 50 equally spaced surface seismic re-
ceivers (with spacing of 50 m). The source wavelet is a 20 Hz
Ricker wavelet; hence the dominant wavelength (in the 4000
m/s medium) is 200 m. The seismic traces are sampled at 1
ms, and the medium is sampled spatially at 50 m in both the
lateral and vertical directions. The entire medium has spatial
dimensions of 2500 m by 2500 m, hence Nx = Nz = 50 and the
number of image parameters is N = NxNz = 2500.

Figure 3 shows a comparison of the imaging results on the
synthetic seismic dataset simulated from the dipping reflectors
model and the subsection of the Marmousi model. The results
of our methodology are shown in Figures 3(e) and 3(k) (the
hierarchical Bayes solutions, where the regularization param-
eters are integrated out to estimate the image) and 3(f) and 3(l)
(the empirical Bayes solutions, where the regularization pa-
rameters are estimated from the data then used to estimate the
image). A few things are striking about these images. Both the
hierarchical and empirical Bayes methods outperform standard
LSM imaging, shown in Figures 3(c-d) and 3(i-j). We also
notice that the empirical Bayes images seem to do consider-
ably better than the hierarchical Bayes image. This is perhaps
due to the fact that hierarchical Bayes typically requires more
computation, yet we computed the empirical and hierarchical
Bayes images with the same number of Gibbs samples. Hence
the empirical Bayes result may be more accurate. Compar-
ing the empirical Bayes results to the non-Bayesian results,
we notice that we are able to produce a much sharper image
of the reflectors; particularly, terminating events tend to smear
across the fault in the non-Bayesian images, whereas this is
largely remedied in the empirical Bayes images. On the other
hand, some of the weaker reflectors in the Marmousi model
tend not to appear strongly in the Bayesian imaging results;
this is likely due to weak variations in the data being confused
for noise.

CONCLUSIONS AND FUTURE WORK

Our study shows that the Bayesian framework provides a flex-
ible methodology for estimating both the image and regular-
ization parameters in a least-squares migration setting. By es-
timating where to regularize, we are able to remove the effects
of noise while, by and large, preserving sharpness at the reflec-
tors in the image. We note that our current formulation only
detects where rather than how strongly to regularize, and as
such tends to work better when different reflectors have com-
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Figure 3: (a,g) The true image and (b,h) resulting (single-
source) synthetic seismic data with additive noise for the dip-
ping reflectors model and Marmousi subsection model, respec-
tively. Imaging results from (c,i) unregularized LSM, (d,j) reg-
ularized LSM using a uniform regularization scheme (i.e. each
βi j = 1), (e,k) hierarchical Bayesian imaging (E[m|d]), (f,l)
empirical Bayesian imaging (E[m|β BLS,d]). Below each im-
age is the correlation of the image with the true image.

parable strengths. We saw that variations in the data due to
weak reflectors may be confused for noise and hence weaker
reflectors may not appear as sharply. A natural path for fu-
ture work would be to generalize this framework to also detect
the regularization strength. To allow regularization strength
to vary spatially, we could instead allow βi j to be any non-
negative number rather than restricted to 0 or 1. Another issue
which remains to be addressed is the computational complex-
ity of our algorithm; we would like to be able to make this
methodology scalable to 3-D or large 2-D data sets. Hence an-
other avenue for future work is to improve the efficiency of the
algorithm.
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