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SUMMARY

We study the problem of the joint location of seismic events us-
ing an array of receivers. We show that locating multiple seis-
mic events simultaneously is advantageous compared to the
more traditional approaches of locating each event indepen-
dently. Joint location, by design, includes estimating an uncer-
tainty distribution on the absolute position of the events.From
this can be deduced the distribution on the relative position of
one event with respect to others. Many quantities of interest,
such as fault sizes, fracture spacing or orientation, can bedi-
rectly estimated from the joint distribution of seismic events.
Event relocation methods usually update only the target event,
while keeping the reference events fixed. Our joint approach
can be used to update the locations of all events simultane-
ously. The joint approach can also be used in a Bayesian sense
as prior information in locating a new event.

INTRODUCTION

Locating seismic events is an important problem both in global
seismology and in reservoir exploration. Applications of this
problem vary in scale from earthquake characterization to hy-
draulic fracture monitoring. Traditionally events are located
individually, for example, from variants of Geiger’s method
by ray-tracing them from receiver locations using their respec-
tive arrival time and polarization estimates. Important infor-
mation that couples data from different events and thus ties
them together is ignored (Richards et al., 2006; Hulsey et al.,
2009; Kummerow, 2010).

Event locations are usually understood in either absolute or
relative terms (Slunga et al., 1995). Absolute event locations
are defined globally with respect to a fixed coordinate system.
Relative location is the location of an event relative to other
events in the vicinity. Consider, in the context of hyrdofracture
monitoring, microseismic events from the same fracture. Ifwe
move the fracture by moving all events in it a constant distance
in a specified direction, then the absolute locations of those
events will change. However, the relative location of any given
event in this fracture with respect to all the rest will remain the
same. The primary advantage of relative location over absolute
location is that it is less sensitive to the uncertainties inthe
velocity model that lie between the cluster of sources and the
receiver array, since these uncertainties tend to reposition the
cluster as a whole, with a much smaller impact on the relative
locations within the cluster (Waldhauser and Ellsworth, 2000;
Zhang and Thurber, 2003; Poliannikov et al., 2011, 2013).

The joint location that we advocate in this paper is a way to re-
cover the absolute as well as relative positions of all recorded
events. Given recorded arrival-time data we will constructa

joint location estimator that is a multi-dimensional jointdis-
tribution of all recorded events. This distribution contains the
complete statistical description of the events including individ-
ual event locations as well as existing correlations between the
locations of different events. It may then be used in a Bayesian
sense as prior information in the location of a new event.

In most situations, event location is not the final goal but a step
towards a more complete description of geophysical features
such as fractures, faults, pressure fronts, etc. Physical quanti-
ties such as fracture spacing or fault orientation can be inferred
from the estimated event locations. Fracture spacing, for ex-
ample, can be thought of as the average distance between the
events in neighboring fractures. Fracture size is related to the
distance between events in the same fracture. Having the joint
location distribution, we can compute the entire statistical dis-
tribution or some statistics of any function of those events, like
the mean fracture spacing.

THEORY

Problem setup

ConsiderNs seismic events,s = {s1, . . . ,sNs} originating in-
side a domainD in the Earth model. We assume that the pos-
sibly heterogeneous seismic velocity,V , insideD is uncertain.
Mathematically we assume thatV belongs to some family of
admissible velocity modelsV . The probability distribution,
p(V ), determines the likelihood of any given velocity model.

Direct arrivals from all events are recorded at receiver loca-
tions r j, and arrival times,T̂ = {T̂α ,i, j}, are picked. Here
α ∈ {P,S, . . .} denotes the recorded phase,i ∈ {1, . . . ,Ns} the
event number, andj ∈ {1, . . . ,Nr} is the receiver number. In
addition to picking direct arrival times, we may also corre-
late arrivals from eventsi and i′, and pick correlation lags,
τ̂ = {τ̂α ,i,i′, j}.

We assume that the picked times and lags so obtained are noisy,
i.e.,

T̂α ,i, j = T̊i +Tα
(
si,r j |V

)
+N

(

0,σ2
α ,i, j

)

, (1)

τ̂α ,i,i′, j = T̊i′ − T̊i + τα
(
si,si′ ,r j |V

)
+N

(

0,ζ 2
α ,i,i′, j

)

, (2)

whereT̊i is the unknown origin time of the eventi, Tα
(
si,r j |V

)

is the predicted travel time in the velocity modelV ,

τα
(
si,si′ ,r j |V

)
= Tα

(
si′ ,r j |V

)
−Tα

(
si,r j |V

)
(3)

is the predicted lag between the direct arrivals from eventsi
andi′, andN (·, ·) is the normal distribution. We will assume
that the noise in picked arrival times and lags is uncorrelated.

The problem is to estimate all event locationss from the ob-
served data,̂T andτ̂.
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Joint location in a known velocity model

First suppose that the velocity model,V , is known. The data

likelihood function, p
(

T̂, τ̂ | s, T̊,V
)

, determines the proba-

bility of observingT̂, τ̂, given prescribed event locationss and
origin timesT̊. Under the assumptions stated in the previous
section, the likelihood function has the form:

p
(

T̂, τ̂ | s, T̊,V
)

∝ exp



−
1
2

∑

α ,i, j

(

T̂α ,i, j − T̊i −Tα
(
si,r j |V

)

σα ,i, j

)2




×exp



−
1
2

∑

α ,i<i′, j

(

τ̂α ,i,i′, j − τα
(
si,si′ ,r j |V

)
− T̊i′ + T̊i

ζα ,i,i′, j

)2


 . (4)

The posterior distribution of the event locations,s, and origin
times,T̊, given data is then obtained by Bayes’ rule:

p
(

s, T̊ | T̂, τ̂,V
)

=
p
(

T̂, τ̂ | s, T̊,V
)

p
(

s, T̊ |V
)

¨

p
(

T̂, τ̂ | s, T̊,V
)

p
(

s, T̊ |V
)

dT̊ds

∝
p
(

T̂, τ̂ | s, T̊,V
)

¨

p
(

T̂, τ̂ | s, T̊,V
)

dT̊ds
. (5)

Here we assume that all locations and origin times are equally
likely, i.e.,

p
(

s, T̊ |V
)

≡ const. (6)

If a prior distribution on reference event locations and origin
times is available from a previous application of joint localiza-
tion, the posterior can still be expressed in closed form if this
prior is expressed as a multi-normal distribution. We do not
present these expressions here.

If we are interested just in the event locations without the ori-
gin times, then we simply integrate the posterior distribution
given in Equation 5 over all origin times,T̊. We have

p
(
s | T̂, τ̂,V

)
=

ˆ

p
(

s, T̊ | T̂, τ̂,V
)

dT̊

=

I(s)
︷ ︸︸ ︷
ˆ

p
(

T̂, τ̂ | s, T̊,V
)

dT̊
ˆ ˆ

p
(

T̂, τ̂ | s, T̊,V
)

dT̊
︸ ︷︷ ︸

I(s)

ds
. (7)

The integral,I(s), appearing in the numerator and denominator
of the right hand side of Equation 7 can be computed analyti-
cally. Indeed,

I(s) =

ˆ

p
(

T̂, τ̂ | s, T̊,V
)

dT̊

∝
ˆ

exp

[

−
1
2

T̊∗AT̊+B∗T̊+C

]

dT̊

= exp

[
1
2

B∗A−1B+C

]

, (8)

where the matrixA is defined as follows:

Ai,i′ =
∑

α , j

1
σ2

α,i, j
i = i′

+
∑

α ,i′′<i, j

1
ζ 2

α,i′′ ,i, j

+
∑

α ,i<i′′, j

1
ζ 2

α,i,i′′, j

Ai,i′ =−2
∑

α , j

1
ζ 2

α,i,i′, j

i < i′

Ai,i′ = 0 i > i′ (9)

the vectorB is:

Bi =
∑

α , j

T̂α ,i, j −Tα
(
si,r j |V

)

σ2
α ,i, j

+
∑

α ,i′<i, j

τ̂α ,i′,i, j − τα
(
si′ ,si,r j |V

)

ζ 2
α ,i,i′, j

−
∑

α ,i<i′, j

τ̂α ,i,i′, j − τα
(
si,si′ ,r j |V

)

ζ 2
α ,i,i′, j

, (10)

and the scalarC is:

C = −
1
2

∑

α ,i, j

(T̂α ,i, j −Tα
(
si,r j |V

)
)2

σ2
α ,i, j

−
∑

α ,i<i′, j

(τ̂α ,i,i′, j − τα
(
si,si′ ,r j |V

)
)2

ζ 2
α ,i,i′, j

. (11)

Gaussian approximation of the joint distribution

While the posterior joint distribution of event locations can be
written exactly, it may be difficult to use in practice. The joint
distribution is a function of 3Ns variables that needs to be com-
puted numerically, which, in turn, requires the evaluationof
the integral in the denominator of Equation 7. While concep-
tually straightforward, this computation is numerically costly
whenNs becomes large. In order to simplify the computation
and representation of the distribution, we will approximate the
posterior distribution with a multi-variate normal distribution

p
(
s | T̂, τ̂,V

)
∼ N

(

s0
,Σs

)

. (12)

Following standard Gaussian analysis, the mean,s0, and the
covariance matrix,Σs, of the normal distribution are found as
follows. The mean,s0, is found by solving the maximization
problem

s0 = argmax
s

I(s), (13)

and a local estimate of the covariance abouts0 is given by

(

Σ−1
s

)

m,n
≈−

∂ 2 logI(s)
∂ sm∂ sn

∣
∣
∣
∣
s=s0

, (14)

wheresm andsn span all 3Ns coordinates of all event locations.

Joint location in uncertain velocity model

Equations 7 and 12 provide expressions for the posterior dis-
tribution given a known velocity model. When the velocity
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model is uncertain, i.e., it is sampled from a family of admissi-
ble velocity models,V , we can use the Total Probability The-
orem to write the velocity-independent form of the posterior:

p
(
s | T̂, τ̂

)
=

ˆ

V

p
(
s | T̂, τ̂,V

)
p(V )dV (15)

In order to compute the velocity-independent distributionnu-
merically, we generateL velocity modelsVl from V and com-
pute the conditional posterior distributions in parallel.Then

p
(
s | T̂, τ̂

)
≈

1
L

L∑

l=1

p
(
s | T̂, τ̂,Vl

)
. (16)

Quantities of interest

Estimated locations of seismic events are not the final goal of
seismic monitoring. Our interest is typically in geological fea-
tures that the estimated seismic event locations can help tore-
veal (Michaud et al., 2004; Huang et al., 2006; Bennett et al.,
2006). Assuming that most microseismic events originate in
fractures, clouds of microseismic events reveal the fracture
size, position, orientation, etc. Such quantities of interest can
be written as functions of the estimated event locations,f (s).
Becauses is a random vector,f (s) becomes a random variable.
We can use probability theory to compute the distribution of
f (s) or estimate its statistics.

The statistics can be written analytically, e.g.,

E f (s) =
ˆ

f (s)p(s)ds, (17)

or

Varf (s) =
ˆ

(
f (s)−E f (s)

)2p(s)ds. (18)

Alternatively, if the joint distribution ofs is approximated with
a multi-variate Gaussian vector, then the entire distribution of
f (s) can be computed numerically by sampling joint locations
and applying the functionf .

NUMERICAL EXAMPLE
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Figure 1: A numerical setup with two layers, two source
events, and ten surface receivers.

We illustrate the proposed methodology with a simple two-
dimensional numerical example. We consider a two-layer medium
(Figure 1). The velocity in the top layer, dubbed “near-surface”,
is uncertain and has Gaussian distribution:V1 ∼N

(
3000,302

)
m/s.

The velocity in the bottom layer,V2 ∼ 4000 m/s is assumed
known.

Ten receivers are placed at the surface at offsets ranging from
−1000 m to 1000 m. Two seismic events are located in the
bottom layer at(0,600) and(−300,1000) m. We assume that
direct travel times from both events are picked with errors that
are normal with zero mean and standard deviation 10−4 s. We
do not use additional correlation picks in this example in order
to show the gain that the joint location brings. Using correla-
tion picks would improve our results even further.
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Figure 2: The reconstructed events and their 95% error el-
lipses. Red dots denote the true event locations. Black dots
denote the estimated event locations

The four-dimensional joint distribution of the event locations
is approximated with a Gaussian according to Equations 13
and 14. Figure 2 shows the reconstructed event locations and
the 95% error ellipses. Notice that the error ellipses serveas
useful indicators of the error in the location of the individual
events. However, they do not contain any information about
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the correlation between those errors. The small value of the
standard deviation of the time picking errors,σ = 10−4 s, is
associated with depth uncertainties of less than 0.5 m. This
indicates that the bulk of the location uncertainty is due tothe
velocity uncertainty in the overburden.

x1 z1 x2 z2

x1 1.00 0.09 −0.61 0.08
z1 0.09 1.00 0.50 1.00
x2 −0.61 0.50 1.00 0.48
z2 0.08 1.00 0.48 1.00

Table 1: The correlation matrix of the joint distribution of the
two event locations, s1 = (x1,z1) and s2 = (x2,z2). Observe
the strong correlation between the depths of the two events.

Table 1 shows the correlation matrix of the joint vectors. Ob-
serve the high correlation between the depths of the two events.
This correlation is due to the fact that both events are ray-
traced through the same “near-surface”.

Estimating distance between events
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Joint

Figure 3: The distribution of the distance between the two
events as computed from the joint distribution (red) and the two
marginal distributions for each event (blue). Because of high
correlation between the location errors, the distance between
the two events is very stable. When each event is localized
separately, the correlation is lost, and the distance is recovered
with a large error.

Let us assume that the two events came from the same fracture
and view the distance between the two events as a simple proxy
for the fracture size. Given the joint distribution of the event
locations, we can compute the distribution of the distance be-
tween the two events. Toward that end, we generate a sample
from the joint distribution and compute the distance between
two points for each sample. Figure 3 shows the resulting dis-
tribution of the distance in red. We then emulate a classical
location approach by computing, from the joint distribution,
the marginal distributions fors1 ands2. From these two dis-
tributions, we individually samples1 and s2. The histogram
of the distances between these samples is displayed in blue in
Figure 3.

We can see that individual event locations, particularly depths,
have significant uncertainties (standard deviation is around 30 m).

However, the depths of the two events are highly correlated.
Consequently, the uncertainty of the distance between the jointly
located events is very small (standard deviation is around 2m).
By comparing these two histograms, we see that joint location
provides an order of magnitude improvement in the distance
measurement.

CONCLUSIONS

In this paper, we propose a framework for jointly locating seis-
mic events in the presence of velocity uncertainty and signal
noise. This problem is pervasive in global seismology and on
the reservoir scale, e.g., in hydrofracture monitoring. Joint lo-
cation better reveals geological features such as faults orfrac-
tures. In a simple numerical example we see a reduction of the
error in estimated fracture size by approximately one orderof
magnitude.
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