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Summary 

Formation elastic properties near a borehole may be altered 
from their original state due to the stress concentration 
around the borehole. This could lead to a biased estimation 
of formation elastic properties measured from sonic 
logging data. To study the effect of stress concentration 
around a borehole on sonic logging, we first use an iterative 
approach, which combines a rock physics model and a 
finite-element method, to calculate the stress-dependent 
elastic properties of the rock around a borehole when it is 
subjected to an anisotropic stress loading. Then we use the 
anisotropic elastic model obtained from the first step and a 
finite-difference method to simulate the acoustic response 
in a borehole. Our numerical results are consistent with 
published laboratory measurements of the azimuthal 
velocity variations caused by borehole stress concentration. 
Both numerical and experimental results show that the 
variation of P-wave velocity versus azimuth has broad 
maxima and cusped minima, which is different from the 
presumed cosine behavior. This is caused by the preference 
of the wavefield to propagate through a higher velocity 
region. 

 
Introduction 

Borehole acoustic logging data provide an important way to 
interpret formation elasticity (Mao, 1987; Sinha and 
Kostek, 1995). Monopole and cross-dipole measurements 
are widely used for determining the formation P-wave 
velocity and S-wave anisotropy (Sinha and Kostek, 1995; 
Sinha and Kostek, 1996; Tang et al., 1999; Tang et al., 
2002; Winkler et al., 1998). Most unfractured reservoir 
rocks, such as sands, sandstones and carbonates, show very 
little intrinsic anisotropy in an unstressed state (Wang, 
2002). However, the stress-induced anisotropy, which is 
caused by the opening or closing of the compliant and 
crack-like parts of the pore space due to tectonic stresses, 
significantly affects the elasticity of rocks. Drilling a 
borehole in a formation strongly alters the local stress 
distribution. When the in situ stresses are anisotropic, 
drilling causes the closure or opening of cracks in the 
formation around a borehole and leads to an additional 
stress-induced anisotropy. Winkler (1996) experimentally 
measured the azimuthal P-wave velocity (VP) variation 
around a borehole that was subjected to a uniaxial stress 
loading and showed that the borehole stress concentration 
has a strong impact on the velocity measurements.  

Several approaches have been proposed to calculate the 
stress-related anisotropy around a borehole. The first 
approach (Sinha and Kostek, 1996; Winkler et al., 1998) 
uses the acoustoelastic model to calculate the stress-

induced azimuthal velocity changes around a borehole. The 
velocity variation with applied stresses is accounted for 
through the use of the third order elastic constants. The 
second approach (Tang and Cheng, 2004; Tang et al., 1999) 
uses an empirical stress-velocity coupling relation to 
estimate the variation of shear elastic constants (C44 and 
C55) as a function of stress. In this approach, the square of 
the shear wave velocities propagating along a borehole with 
different polarizations are assumed to be linearly 
proportional to the stresses applied normal to the borehole 
axis. However, these two approaches have no rock physics 
basis as they ignore the constitutive relationship between an 
anisotropic applied stress field and the stiffness tensor of a 
rock (Brown and Cheng, 2007). Brown and Cheng (2007) 
propose the third approach to calculate stress-induced 
anisotropy around a borehole embedded in an anisotropic 
medium. In their model, the stress-dependent stiffness 
tensor of anisotropic rocks is calculated using a general 
fabric tensor model (Oda, 1986; Oda et al., 1986). The 
intrinsic relation between stress and stiffness of a rock is 
accounted for through the use of a rock physics model, 
which is not included in the methods of Sinha and Kostek 
(1996) and Tang (1999). The approach of Brown and 
Cheng (2007) reflects the physics of stress-induced 
anisotropy. However, the general fabric tensor model 
requires prior knowledge of the crack geometries and 
distributions, which may not always be available in the 
field applications. Fang et al. (2012) modified the approach 
of Brown and Cheng (2007) and proposed to use the model 
of Mavko et al. (1995) to replace the general fabric tensor 
model. Instead of specifying the crack geometry and 
distribution, they use the data of VP and VS versus 
hydrostatic pressure to calculate the crack compliance of a 
rock and then use it to estimate the borehole stress-induced 
anisotropy.  

To understand the effect of borehole stress concentration on 
borehole sonic logging, a thorough analysis of the 
propagation of waves in a three dimensional borehole 
model needs to be conducted. The elasticity of the 
formation around a borehole is described by the stiffness 
tensor that is governed by the constitutive relation between 
the stress field applied around a borehole and the elasticity 
of a rock with micro-cracks embedded in the matrix. 
However, there is a lack of wave propagation simulation in 
all previous studies on this subject. To fill in this gap, we 
first use the method of Fang et al. (2012) to calculate the 
stiffness tensor of the formation around a borehole when it 
is subjected to a stress loading. Then we use a finite-
difference method to simulate the wave propagation in the 
borehole. 
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Model building 

We will compare our numerical simulations with the 
experiments of Winkler (1996), in which VP versus azimuth 
around a borehole in a Berea sandstone sample with and 
without applied uniaxial stress is measured. In his 
experiment, a block of Berea sandstone sample having 
dimensions of 15×15×13 cm and with a 2.86 cm diameter 
borehole parallel to the short dimension is placed in a water 
tank for conducting acoustic measurements. VP at each 
azimuth is measured along the borehole axis by using a 
directional transducer and two receivers. VP is calculated 
from the travel time delay of the refracted P-waves 
recorded at the two receivers, which are 7 and 10 cm, 
respectively, away from the transducer. The porosity of his 
Berea sandstone sample is 22%. VP variation with azimuth 
is very small before applying the stress, and its average 
value is about 2540 m/s at no stress state. In his 
experiment, the center frequency of the received acoustic 
signals is about 250 kHz.  

 
Figure1: Model geometry. Red and blue circles are source and 
receivers, respectively. Uniaxial stress is applied in the X direction. 

VP and VS of the rock sample versus hydrostatic pressure, 
which are the necessary input for the approach of Fang et 
al. (2012), were not measured by Winkler (1996). We use 
the data measured from another Berea sandstone sample, 
which has similar properties to the sample used in the 
experiment of Winkler (1996), to construct a model for 
wave propagation simulation. VP and VS of our rock sample 
are 2830 m/s and 1750 m/s, respectively, in an unstressed 
state. ρ is 2198 kg/m3. Porosity is 17.7%. We build a 20 cm 
borehole model by up scaling the experiment configuration 
of Winkler (1996) based on the ratio of wave length to 
borehole diameter, so that the numerical results are 
comparable to the laboratory measurements. There are two 
steps to calculate the elastic properties of the rock around a 
borehole. First, we take a core sample from our Berea 

sandstone sample and measure VP and VS at different 
hydrostatic pressures. These data are shown in Fang et al. 
(2012). Second, we use the data measured in the first step 
and the method of Fang et al. (2012) to calculate the 
stiffness tensor of the rock around a borehole when it is 
subjected to a given stress loading, which is a uniaxial 
stress applied normal to the borehole axis in the experiment 
of Winkler (1996).  

Figure 1 shows the geometry of our borehole model. The 
formation is Berea sandstone and the borehole is water 
saturated. A 20 cm Borehole is at the center of the model 
along the Z direction. A uniaxial stress is applied normal to 
the borehole in the X direction. The direction of applied 
uniaxial stress is defined as 00. A 4 cm diameter piston 
source (red circle), which mimics the 1/4 inch diameter 
directional transducer in the experiment of Winkler (1996), 
is used in the simulation. Source time function is a Ricker 
wavelet with a 30 kHz center frequency, which is 
comparable to the source frequency in the experiment of 
Winkler (1996) when it is scaled by the borehole diameter. 
For a given source direction, receivers, which are shown as 
the blue circles in Figure 1, are 5 cm away from the 
borehole axis along the source direction.  

 
Figure 2: Color hue of each box indicates the average value of the 
corresponding component (Cij) in the stiffness tensor of the 
formation around a borehole under 10 MPa stress loading.  
 

 
Figure 3: Variations of the nine dominant stiffness components on 
the X-Y plane for 10 MPa uniaxial stress applied in the X 
direction.  
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The elastic model obtained from the method of Fang et al. 
(2012) contains 21 independent elastic constants, which are 
functions of the applied stress and position. For 10 MPa 
stress loading, we calculate the average value of the 
stiffness tensor of the formation around the borehole and 
plot it in Figure 2. Color intensity of each box in Figure 2 
represents the average value of the corresponding 
component in the stiffness tensor. The nine components 
inside the dashed green lines of Figure 2 are about two 
orders of magnitude larger than the others. This indicates 
that only 9 elastic constants in the stiffness tensor are 
important and the rest can be neglected in the simulation. In 
the simulation below, we only use the 9 dominant 
components and assume the other components in the 
stiffness tensor are equal to zero. Figure 3 shows the 
variations of the 9 dominant elastic constants around the 
borehole on the X-Y plane for 10 MPa uniaxial stress. 
Properties of the model are invariant in the Z direction 
because of model symmetry. As seen in Figure 3, the rock 
around the borehole becomes inhomogeneous and 
anisotropic under a stress loading. Due to stress 
concentration at ±900, stiffness of the rock increases from 
the stress loading direction (00) to the direction normal to 
the loading stress (±900).  

 
Numerical simulations 

In our simulation, we use a staggered grid finite-difference 
method with fourth-order accuracy in space and second-
order accuracy in time (Cheng et al., 1995). The grid 
spacing is 0.125 cm (1/160 borehole diameter) and time 
sampling is 0.125 μs. Numerical grid dispersion (Moczo et 
al., 2000) at 30 kHz is smaller than 0.01% for both P- and 
S-waves in all directions. 

Figure 4 shows the data recorded at two receivers located at 
z=0.49 and 0.7 m (source at z=0 m), which correspond to 
the near and far receivers in the experiment of Winkler 
(1996), for sources at ten different orientations. At each 
source direction, we divide the distance between the two 
receivers by the delay of the refracted P-wave arrival times, 
which are indicated by the red circles in Figure 4, to get the 
P-wave velocity. Figure 5 shows the azimuthal variation of 
the normalized P-wave velocity obtained from the 
numerical simulations together with the data measured by 
Winkler (1996) for 10 MPa uniaxial stress. The numerical 
data (squares) and the measured data (circles) are 
normalized separately by the corresponding P-wave 
velocity of the rock sample at zero stress state. As shown in 
Figure 5, our numerical results can predict the laboratory 
measurements of Winkler (1996) very well. This indicates 
that the constitutive relation between the formation 
stiffness around a borehole and the applied stress field is 
accounted for correctly in the method of Fang et al. (2012). 
Figures 6a and 6b show the numerical results and the 
laboratory measurements of Winkler (1996), respectively, 

for 5, 10 and 15 MPa uniaxial stresses. For 5 and 15 MPa 
uniaxial stresses, Winkler (1996) does not show the 
original measured data but only the best fits. Winkler 
(1996) finds that the P-wave measured velocities have 
broad maxima and cusped minima and can be better fit by 
using an exponential function instead of a cosine function. 
Our numerical results shown in Figure 6a have very similar 
azimuthal variation as the measured data shown in Figure 
6b. The overall variation of our numerical results is a little 
bit smaller than that of the measured data, because the rock 
sample used in the experiment of Winkler (1996) is more 
compliant than our rock sample as the porosity of our 
sample is lower and the velocity before stress applied is 
higher. Another difference between the numerical results 
and the measured data presents at 00 and 1800, where the 
measured velocities for 10 and 15 MPa uniaxial stresses are 
smaller than that for 5 MPa uniaxial stress. This may be 
caused by the opening of micro cracks induced by tensile 
stresses, whose effect becomes significant at large loading 
stress while is negligible at small loading stress. Crack 
opening caused by tensile stress is neglected in the method 
of Fang et al. (2012), so the normalized velocities in the 
numerical results increase with the increase of loading 
stress at 00 and 1800.  

 
Figure 4: (a) and (b) Seismograms recorded at z=0.49 m and 0.7 m, 
respectively, when the model is subjected to 10 MPa stress 
loading. Red circles indicate the arrival times of the refracted P-
wave. 00 and 900 are along the X and Y axes directions, 
respectively.  

If the propagation of the refracted P-wave follows a straight 
wave path along the wellbore at the source excitation 
direction, then the P-wave velocity versus source direction 
should show a cosine function variation, which has been 
predicted by the theoretical calculation of Sinha and Kostek 
(1996) and Fang et al. (2012). The broad maxima and 
cusped minima shown in both the numerical and measured 
data in Figure 6 suggest that the propagation of the 
refracted P-wave does not follow a straight wave path 
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along the wellbore. A wave tends to propagate through a 
higher velocity zone and finds the fastest path to reach a 
receiver. Figure 7 shows the advance of the first break 
arrival time at each azimuth comparing to that at 00 for 5, 
10 and 15 MPa uniaxial stresses. At each azimuth, the 
arrival time advance at a given receiver depth is calculated 
by subtracting the travel time of the first arrived P-wave at 
that azimuth from that at 00, where the P-wave arrival time 
has maximum value as velocity is minimum. The time 
advance of the first arrived P-wave is zero when z is small, 
because the first recoded P-waves at near receivers are the 
direct P-wave, which propagates at water velocity. As 
shown in Figure 7, the arrival time advance increases with 
z until it reaches a maximum, which appears at about 
z=1.4, 1 and 0.8 m for 5, 10 and 15 MPa stress loading, 
respectively. At far receivers near z=2 m, the refracted P-
waves for sources at all azimuths arrive at almost the same 
time, because the refracted P-wave propagating through the 
highest velocity zone at ±900 is faster than that traveling 
along the wellbore following a straight wave path not at 
±900. The maximum of the arrival time advance is 
associated with the strength of the applied stress which 
determines the magnitude of the velocity variation around 
the borehole. This indicates that VP calculated using the 
time delay between two receivers depends on the selected 
positions of the two receivers.  

 
Figure 5: Azimuthal variation of the normalized VP for 10 MPa 
uniaxial stress. Squares and circles are VP obtained from the 
numerical simulation and the experiment of Winkler (1996), 
respectively. Applied stress is along 00 and 1800.  
 
Conclusions 

We have studied the azimuthal variation of P-wave velocity 
caused by borehole stress concentration using a finite-
difference method and the method of Fang et al. (2012). 
We have compared our numerical results with the 
laboratory measurements of Winkler (1996). The 
consistency of the azimuthal variation of the normalized VP 
between the numerical and the experimental data suggests 
that the constitutive relation between an applied stress field 
and stiffness of the rock around a borehole can be 
accounted for correctly in the approach of Fang et al. 
(2012). Due to the preference of the wave field to 

propagate through a higher velocity region, the variation 
curve of P-wave velocity versus azimuth shows broad 
maxima and cusped minima, which is observed in both the 
numerical simulations and the laboratory experiments. This 
suggests that a correct interpretation of the P-wave velocity 
measured from borehole sonic logging needs to consider 
the effect of borehole stress concentration which results in 
azimuthally varying stress-induced anisotropy in the 
formation around a borehole and deviation of the wave path 
of the refracted P-wave from a straight wave path along 
borehole axis direction.  

 
Figure 6: Azimuthal variation of the normalized VP for three 
different loading stresses. (a) shows the results obtained from the 
finite-difference simulations. (b) shows the best fits to the 
laboratory measured data (modified from Winkler (1996)).  
 

 
Figure 7: (a), (b) and (c) Advance of the first break arrival time 
between sources at 00 and other directions for 5, 10 and 15 MPa 
uniaxial stresses, respectively. Horizontal and vertical axes are 
source direction and receiver depth, respectively.  
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