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Abstract

Full waveform inversion with frequency sweeping cannot start from zero frequency because
of the lack of low-frequency data, requiring a good starting model. We study a different iterative
scheme where the notion of proximity of two traces is not the usual least-squares distance, but
instead involves registration as in image processing. In order to create transported data, we
introduce a nonconvex optimization problem and solve it in a multiscale fashion from low to high
frequencies. This process requires defining low-frequency augmented signals in order to seed the
frequency sweep at zero frequency. Successful registrations of noisy data, and application of the
new method to model velocity estimation are demonstrated. In a crosshole seismic inversion
example (transmission setting), we show that the new method decreases the model velocity error
while conventional least-squares inversion converges to a spurious model.

Introduction

Full waveform inversion (FWI) is traditionally based on minimizing a least-squares (LS) misfit
criterion [?], but this choice generates spurious local minima or valleys that owe to the oscillatory
nature of the data. This problem that high-frequency data depend in a very nonlinear way on
the low-wavenumber components of the model velocity is called cycle-skipping. Frequency domain
FWI addresses the resulting lack of convexity by performing the inversion in a stagewise fashion
from low to high frequencies. However, the lack of low-frequency data in exploration seismology
often hinders this frequency sweep/continuation approach. To restore the ability of high-frequency
data to invert the smooth model velocity, we propose to replace the usual notion of data residual
(d — u, with d the observed trace and u the predicted trace) by a more faithful, transport-based
measure of proximity between two traces.

In order to generate transported data to better guide the optimization iterations, we propose
to fit a parametrized warping between d and u by solving a nonconvex optimization similar to
image registration. Matching (registration) between observed data and predicted data or between
time-lapse images has been used in many different applications under different names: phase-
shift [?], traveltime delay based on correlation [?], and alignment of seismic traces using dynamic
programming for trace processing and interpretation [?]. The mappings we consider in this paper are
piecewise polynomial, and seem to be a novel tool for model velocity estimation. We demonstrate
on simple numerical experiments in the transmission setting that our method can avoid the cycle-
skipping phenomenon, extending the basin of attraction of least-squares minimization.
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Method

FWI normally uses the least-squares misfit

Jm] = ;Z/ s (e, 1) — dy (g, )2l (1)
where m(z) denotes a velocity model, us = F[m], and d, are predicted and observed data at a shot
s and at a receiver x,., respectively. For notational simplicity, the subscripts s and r are omitted,
whenever it does not cause confusion. The forward operator F[m] relates a velocity model m to
data us(x,,t) through the acoustic wave equation, mo?u,/0t? = Aus + fs(x,t), where fs(z,t) is a
source term. The adjoint-state method generates the gradient of J[m] via the imaging condition

L = /qs(azjt)(?Zus/@tQ(a:,t)dt, (2)
om

where the adjoint field g5 solves the adjoint wave equation with the data residual ds — us in the
right-hand side.

It is well known that J[m] is non-convex, particularly when the data are oscillatory. More
specifically, when the time difference between corresponding arrivals in us and dg is larger than
a half wavelength, the steepest descent direction of the data misfit may result in increasing those
time differences, consequently increasing the model error. In order to guide the optimization in
the direction of the correct model update, we propose to change the residual ds — us in the adjoint
wave equation by replacing ds by a version of us transported toward ds. We denote these virtual,
transported data by ds and refer to them as fractionally warped data. Their construction is in
the next section. The rationale behind ds is that its arrivals can now be less than a quarter of a
wavelength apart from those in us. The substitution of dg by ds is illustrated in Figure 1. We refer
to our method as registration-guided least-squares (RGLS) method.

Seismogram registration

In the sequel we will assume that the traces d(t) and u(t) are comparable waveforms, ideally with
the same number of wave arrivals. We propose to find piecewise polynomials p(¢) and A(t) so as
to have a good match of the warped prediction with the observed data, d(t) ~ A(t)u(p(t)), then
define fractionally warped data as

d(t) = A)u((1 — a)t + ap(t)), (3)

for some small 0 < o < 1. The warping p(t), the amplitude A(t), and the value of o are chosen so
that fractionally warped data d(t) have a similar shape as the prediction u(¢) but phase shifts less
than a quarter of a wave period apart with respect to the predicted data u(t). We use piecewise
cubic Hermite polynomials for p(t) and A(t).

In order to find A(t) and p(t) we propose to solve the following least-squares minimization
problem for each trace, using frequency sweeps:

Toar(p,4) = 5 [1D0) = AQUG() e+ 5 [ lo(e) — o, @

where D(t) and U(t) are what we call low-frequency augmented (LFA) signals for d(t) and w(t),
respectively. This minimization problem can be viewed as a form of seismogram registration. Due
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Figure 1: Replacement of observed data with fractionally warped data, which are a mapped (trans-
ported slightly) version of the given predicted data towards the observed data.

to the oscillatory nature of the predicted and observed data, Jyarp(p, A) is non-convex and its
minimization would suffer from the same cycle-skipping phenomenon as in least-squares FWI. To
remedy this problem, we solve the registration problem in a multiscale fashion from zero to higher
frequencies. The reason for considering D(t) and U (¢) rather than d(t) and u(t) is that the original
traces do not contain frequency components around zero Hz, hence would not allow to properly
seed the frequency continuation procedure. LFA signals are generated to overcome the lack of low
frequencies in the original traces. We propose three nonlinear transformations to get LFA signals,
U(t), from the band-limited signal u(t): (1) U = u(t) + |u(t) + iH[u(t)]]; (2) Us = u?(t); and (3)
Uy = |u(t)], where H[u(t)] is the Hilbert transform of w(¢). Among the three proposed LFA signals,
we found that Uy, is the most appropriate in terms of frequency content, convergence of frequency
sweeping, and registration errors. In the sequel, we only report numerical experiments involving
Up. An example of matching noisy traces by registration is shown in Figure 2.

Waveform Inversion

The scalar acoustic wave equation is discretized with a 4" order accuracy finite difference scheme in
space. For the time discretization, the explicit 2 order leapfrog scheme is used. Perfectly matched
layers (PML) surround the computational domain. The methods of updating the model velocity
were explained earlier. The step size for the update is fixed for both RGLS and conventional
LS optimization. For RGLS optimization, 100-130 iterations suffice to significantly reduce the
model rms error in the example shown below. For the conventional LS method, model root-mean-
square (rms) errors increases, and we stop the iterations after 100-130 steps as well. Seismogram
registration is performed every iteration since the predicted data u(t) change as the velocity model
is updated. In the following example, the reference (true) velocity model for observed data is
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Figure 2: Matching noisy synthetic traces. Synthetic data are generated using the Marmousi velocity
model and the other trace is created by applying a known mapping p(t) to it. The black arrows in
the top figure connect corresponding peaks. The LFA signal Uy is used for frequency sweeping.

Virue (T, 2) = 52004900 exp (—|(z, 2) — (1250, 1250)|2/10°) with a peak 6100 m/s at the center. This
model has a high-velocity zone located at the center. The initial model is constant at vini(x, z) =
5100 m/s, i.e., without any a priori knowledge about the true model. Moreover, the initial model is
chosen to create large discrepancies in traveltime between the predicted and the observed data. The
grid size is 501 by 501 with a distance of 5 m between grid points along both directions. A Ricker
wavelet with center frequency 50 Hz is used as an acoustic source. We now compare convergence
of the LS and RGLS methods. Figure 3 shows the contour plots of velocity models in a crosshole
inversion test (sources on the left edge, receivers on the right edge). The RGLS method converges
to a velocity model with a qualitatively similar feature to the true model. Conventional LS method
converges to a wrong model with a reduced velocity around 4000 m/s. The converged model is
expected to not exactly replicate the true model, since the data are largely incomplete. In the case
of full aperture data, RGLS recovers the model faithfully in a pointwise sense (not shown). The
failure of LS minimization can be understood heuristically by noticing that the prediction u has
been slowed down in the new model, hence has a lower I3 norm than in the original model, while
its support is disjoint from that of d. The enlarged basin of attraction can be appreciated from
convergence plots over the iterations of both methods. In Figure 4, we plot data misfit vs. iteration
for both LS and RGLS, and rms values of mp —my, where myp is the true velocity model and my, is
the k" step velocity model. We point out that data misfit in the convergence plot is calculated with
the given observed data as in conventional LS misfit. Our proposed RGLS decreases the model rms
error, regardless of the data misfit changes. LS decreases the data misfit but increases the model
error at all iteration steps.
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Figure 3: This is a color figure.
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The model obtained from LS optimization has 4500 m/s over most parts of the domain.
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Contour plots of velocity models: (left) reference/true model,
(center) converged model from RGLS optimization, (right) converged model from LS optimization.
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Figure 4: Convergence plot of the model rms error mp — my, (left) and data misfit J (right)

Conclusions

We present a new method (RGLS) to overcome the cycle-skipping problem in FWI. The successful
application of the method to a transmission seismic inversion problem is demonstrated, where
conventional least-squares method converges to a wrong model. The proposed method substitutes
a transported version of predicted data for the observed data in the conventional least-squares
residual. In order to generate such transported data, mappings in the form of piecewise polynomials
are found through a non-convex optimization formulation. The limitation of the RGLS method is
that the predicted and observed data waveforms need to be sufficiently comparable.

Acknowledgements

The authors are grateful to the authors of Madagascar; and to TOTAL S.A. for support.



