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SUMMARY

We describe a methodology for quantitatively characterizing
the fractured nature of a hydrocarbon or geothermal reservoir
from surface seismic data under a Bayesian inference frame-
work. Fractures provide pathways for fluid flow in a reservoir,
and hence, knowledge about a reservoir’s fractured nature can
be used to enhance production of the reservoir. The fracture
properties of interest in this study (to be inferred) are fracture
orientation and excess compliance, where each of these prop-
erties are assumed to vary spatially over a 2D lateral grid which
is assumed to represent the top of a reservoir. The Bayesian
framework in which the inference problem is cast has the key
benefits of (1) utilization of a prior model that allows geologi-
cal information to be incorporated, (2) providing a straightfor-
ward means of incorporating all measurements (across the 2D
spatial grid) into the estimates at each grid point, (3) allowing
different types of measurements to be combined under a sin-
gle inference procedure, and (4) providing a measure of uncer-
tainty in the estimates. The observed data are taken from a 2D
array of surface seismic receivers responding to an array of sur-
face sources. Well understood features from the seismic traces
are extracted and treated as the observed data, namely the P-
wave reflection amplitude variation with acquisition azimuth
(amplitude versus azimuth, or AvAz, data) and fracture trans-
fer function (FTF) data. AvAz data are known to be more sen-
sitive to fracture properties when the fracture spacing is signif-
icantly smaller than the seismic wavelength, whereas fracture
transfer function data are more sensitive to fracture properties
when the fracture spacing is on the order of the seismic wave-
length. Combining these two measurements has the benefit of
allowing inferences to be made about fracture properties over
a larger range of fracture spacing than otherwise attainable.
Geophysical forward models for the measurements are used
to arrive at likelihood models for the data. The prior distribu-
tion for the hidden fracture variables is obtained by defining
a Markov random field (MRF) over the lateral 2D grid where
we wish to obtain fracture properties. The fracture variables
are then inferred by application of loopy belief propagation
(LBP) to yield approximations for the posterior marginal dis-
tributions of the fracture properties, as well as the maximum a
posteriori (MAP) and Bayes least squares (BLS) estimates of
these properties. Verification of the inference procedure is per-
formed on a synthetic dataset, where the estimates obtained are
shown to be at or near ground truth for a large range of fracture
spacings.

INTRODUCTION

Fractures are cracks in the earth’s crust through which fluid,
such as oil, natural gas, or brine, can flow. Knowledge about
the presence and properties of fractures in a reservoir can be
extremely valuable, as such information can be used to deter-

mine preferential pathways for fluid flow and optimize produc-
tion of the reservoir (Sayers, 2009; Ali and Jakobsen, 2011).
Since the presence of fractures in an elastic medium can al-
ter the compliance of the medium and fractures often have a
preferred alignment, fractures can cause the medium to ex-
hibit anisotropy (Schoenberg and Sayers, 1995), which refers
to changes in seismic wave propagation with direction. This
has been exploited to give different techniques for determin-
ing fracture properties from seismic data, such as reflection
amplitude versus offset and azimuth analysis (Sayers, 2009;
Rüger, 1998a; Sayers and Rickett, 1997; Lynn et al., 2010) and
shear wave birefringence (Gaiser and Dok, 2001). These meth-
ods, however, are only valid when the fracture spacing is small
in comparison to the seismic wavelength, so that the seismic
wave essentially averages over the fractures (Fang et al., 2012;
Willis et al., 2006). This equivalent anisotropic medium as-
sumption, however, breaks down when the spacing between
the fractures increases to being on the order of the seismic
wavelength. For the case of larger fracture spacings, Willis
et al. (2006) proposed a technique, referred to as the scattering
index method, to estimate the azimuthal orientation (or strike)
of a fracture system based on the scattered seismic energy.
Fang et al. (2012) described a series of modifications to this
technique to give a more robust methodology for determining
fracture orientation, which is referred to as the fracture transfer
function method.

In the way of statistical inference methods applied to geophysi-
cal problems, Eidsvik et al. (2004) gave a Bayesian framework
for determining rock facies and saturating fluid by integrating a
forward rock physics model with spatial statistics of rock prop-
erties. Specifically in the area of fracture characterization, Ali
and Jakobsen (2011) used a Bayesian inference framework to
infer fracture orientation and density from seismic velocity and
attenuation anisotropy data. Sil and Srinivasan (2009) applied
a similar Bayesian inference methodology to determine frac-
ture strikes from seismic and well data. All of the aforemen-
tioned statistical studies applied Markov chain Monte Carlo
(MCMC) techniques to solve the inference problem. Further-
more, the data models used in all of these studies follow from
the equivalent anisotropic medium assumption for small frac-
ture spacings.

DESCRIPTION OF THE PROBLEM

Consider a set of seismic measurements taken from a 2D array
of surface receivers over a layered medium responding to a set
of surface seismic sources. We assume that fractures may ex-
ist in a particular layer of the medium (e.g. the reservoir), and
we are interested in inferring from the seismic data whether or
not fractures are indeed present and, if so, the properties of the
fractures. A simple example of this setup, where the medium
consists of flat homogeneous layers, is displayed in Figure 1.
In particular, we would like to infer fracture orientation ϕ =
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[ϕi j] and the (base 10) log excess fracture compliance z =
[zi j] spatially over a 2D m-by-n lateral grid L = {1, . . . ,m}×
{1, . . . ,n}. Each grid point corresponds to a square of area `2,
so that the entire grid corresponds to a region of area mn`2.
Excess fracture compliance is defined as the overall additional
medium compliance due to the presence of fractures and is the
ratio of the compliance of the individual fractures to the frac-
ture spacing. We make the simplifying assumptions (1) that
the normal and tangential excess compliances are equal, hence
we need only infer a single log excess compliance value zi j for
each grid node, and (2) that the fractures are vertical, so that the
fracture orientation ϕi j is simply the azimuth (or strike) of the
fractures (with respect to North). An excess compliance value
of 0 at a particular grid point is taken to mean there are no frac-
tures at that grid point (rendering the value for azimuth arbi-
trary and meaningless). In order to compare zero and non-zero
compliance on a logarithmic scale, we treat an excess compli-
ance of zero as 10−13 Pa−1, which is geophysically reasonable
as this is an insignificantly small value for excess compliance
and results in a negligible effect on seismic wave propagation.
We assume that the dataset is rich enough so that for each grid
point in L, there are corresponding source-receiver pairs that
sample the point at multiple offsets and acquisition azimuths.
We further assume that the background velocity structure of
the medium is well understood.

Figure 1: A simple model of the problem setting. The for-
mation consists of five flat homogeneous layers with fractures
that may be present in the third layer and measurements ob-
tained from the 2D array of surface seismic receivers. Figure
modified from Willis et al. (2006).

In order to relate the fracture properties x= (z,ϕ) = [xi j] to the
seismic trace dataset, it is necessary to model seismic data as a
function of the fracture properties. Unfortunately, simulating
the entire seismic trace dataset requires a full elastic 3D for-
ward model of the seismic wavefield, the computational cost
of which is prohibitively high, so we instead resort to model-
ing well understood features of the seismic trace dataset and
treat these features as our observed data y. In particular, we
choose to model P-wave reflection amplitude as a function of
acquisition azimuth (at a fixed angle of incidence) and fracture
transfer function (FTF) data, as defined by Fang et al. (2012).
We refer to these observed data with variables yAvAz and yFTF,
respectively, and let y = (yAvAz,yFTF). Both yAvAz and yFTF

are defined over the grid L, in a manner such that to each grid
node of fracture properties xi j there is an associated data vector
yi j .

BAYESIAN INFERENCE FRAMEWORK

In order to arrive at an estimation of the fracture properties
from the seismic data, we employ a Bayesian inference frame-
work. The fracture properties and seismic data are treated as
random variables, and a stochastic model is used to give the
joint distribution of the fracture properties and seismic data
(x,y) = ((z,ϕ),y). In particular, we model the fracture prop-
erties as discrete random variables where the alphabet for each
of the variables is given by: 10zi j ∈Z =

{
10−9.0,10−9.1, . . . ,

10−12.0,10−13} (in units of Pa−1) and ϕi j ∈F = {0◦,20◦,
. . . , 160◦}, ∀(i, j) ∈ L. The choice of the alphabets for these
variables arises from the level of resolution we can reasonably
expect to achieve using seismic measurements. The posterior
distribution of the fracture properties given the data p(x|y) is
given by Bayes’ rule:

p(x|y) = p(x)p(y|x)∑
x′ p(x′)p(y|x′)

∝ p(x)p(y|x) (1)

where p(x) and p(y|x) are the prior distribution of the frac-
ture properties and the distribution of the seismic data given
the fracture properties, respectively. To estimate the fracture
properties, we desire the MAP estimate x̂MAP, the posterior
marginal distributions p(zi j|y), p(ϕi j|y) (∀(i, j) ∈ L), and the
BLS estimate x̂BLS of the fracture properties at each grid node
given the seismic data. The MAP estimate of the fracture prop-
erties is the overall configuration of the fracture properties that
maximizes the posterior distribution, that is

x̂MAP ∈ argmax
x

p(x|y). (2)

The posterior marginal distribution for the fracture properties
at a particular node is given by summation of the posterior dis-
tribution over all other variables.The BLS estimate of the frac-
ture properties minimizes the expected value of the squared es-
timation error and is given by the expected value of the fracture
properties given the data. So, for the log excess compliance at
node (i, j)

ẑi j,BLS = E
[
zi j|y = y

]
=
∑
zi j

zi j p(zi j|y). (3)

For any reasonably large number of grid nodes mn, the maxi-
mization and marginalization operations are intractable, hence
we must turn to approximate inference algorithms to perform
the estimation.

Prior Model
We arrive at a prior model for the fracture properties x by
defining the set of variables x as a Markov random field over
an undirected graphical model G = (V ,E ) on the 2D grid L
(Koller and Friedman, 2009). We associate with each grid
node of L a vertex in G so that V ≡ L. We define the edge
set E over the 2D grid L so that a particular node shares edges
with its four neighbors on the grid L. The graphical model for
x prior to observing the data is shown in Figure 2. Intuitively,
this means that given the fracture properties of the four nearest
neighbors of a particular node, knowledge of the fracture prop-
erties of the medium elsewhere on the grid will have no impact
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Figure 2: Undirected graphical model G over which x is
Markov, prior to observing the seismic data

on our belief about the properties at that node. Geologically,
we expect the properties of the medium at a particular point in
space to be similar to its surrounding properties. This suggests
a prior distribution that penalizes differences between a node
and its neighbors. In particular we define the prior distribution
for the fracture parameters to be

p(z) ∝ exp

− ∑
(i j,kl)∈E

βzi j,kl (zi j− zkl)
2

 (4)

and

p(ϕ) ∝ exp

− ∑
(i j,kl)∈E

βϕi j,kl (ϕi j−ϕkl)
2

 , (5)

where βzi j,kl and βϕi j,kl are smoothness parameters which can be
manipulated to account for discontinuities such as that those
which may arise from a fault. Treating the two different frac-
ture properties as independent a priori gives the overall prior
distribution for the fracture properties as

p(x) = p(z,ϕ) = p(z)p(ϕ). (6)

Likelihood Model
The seismic data used in this study are extracted from the seis-
mic trace dataset and denoted by yAvAz and yFTF, respectively.
We assume that given the fracture parameters x, the two types
of seismic data yAvAz and yFTF are conditionally independent,
and hence

p(y|x) = p(yAvAz|x)p(yFTF|x). (7)

We now discuss how we model the data to arrive at the likeli-
hood models p(yAvAz|x) and p(yFTF|x).

Amplitude versus Azimuth Data
In order to arrive at a forward model for the P-wave reflection
coefficient of the interface above the fractured layer as a func-
tion of acquisition azimuth, we make various simplifying as-
sumptions about the formation and the fractured medium. The
layers above the fractured layer are assumed to be isotropic
and homogeneous and the background medium of the layer in
which the fractures exist is assumed to be homogeneous and
isotropic with known medium parameters. We assume that the
presence of fractures in the fractured layer causes the layer to
behave as an horizontally transverse isotropic (HTI) medium,
which is a geophysically valid assumption when the fracture
spacing is small compared to the seismic wavelength (Schoen-
berg and Douma, 1988; Willis et al., 2006). Rüger (1998b)

derives the P-wave reflection coefficient is as a function of
the incidence and azimuthal phase angles and in terms of the
isotropic background and anisotropy parameters. We can re-
late the fracture properties of the medium to the anisotropy
parameters by computing the excess compliance tensor of the
fractures and combining it with the background medium com-
pliance tensor (Schoenberg and Sayers, 1995). This gives a de-
terministic model for the AvAz data. We perturb this model by
adding zero-mean, independent, identically distributed (i.i.d.)
Gaussian noise to arrive at a stochastic data model p(yAvAz|x).

Fracture Transfer Function Data
We compute the fracture transfer function from the seismic
trace dataset according to the methodology described by Fang
et al. (2012). As FTF captures the intensity of scattering at
different acquisition azimuths, we use as our data the azimuth
that maximizes the FTF. We then model this as a function of
the fracture properties by setting this azimuth to the strike of
the fractures. We again perturb the model with i.i.d. Gaus-
sian noise and obtain our stochastic model for the FTF data
p(yFTF|x).

Inference Algorithms
We return to the graphical model representation of the distri-
bution, as this will play a key role in the inference algorithms
used to obtain the posterior marginals and MAP estimate. The
updated MRF for the posterior distribution is shown in Fig-
ure 3.
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Figure 3: Graphical model showing the Markovianity between
the observations y and the fracture parameters x.

We can write the posterior distribution in terms of factors de-
fined on the nodes and edges of the graph. This allows us to
apply belief propagation algorithms to perform approximate
inference of the fracture properties x.

Loopy Belief Propagation
Belief propagation (BP) is a technique for performing infer-
ence on graphical models which has recently enjoyed much
popularity for use amongst a wide-range of applications (Pearl,
1988, 1982; Murphy et al., 1999). Originally formulated for
tree graphs (i.e. graphs having no cycles), BP refers to message-
passing algorithms for computing either marginal distributions
(the sum-product algorithm) or MAP configurations (the max-
product algorithm). Applying BP to perform inference on a
graph with loops is referred to as loopy belief propagation.
While LBP is an approximate algorithm, it has nonetheless
been used extensively in various settings and found to often
give very good approximations (Murphy et al., 1999). With
this in mind, we apply loopy belief propagation on the poste-
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Figure 4: Approximate BLS estimates of the fracture proper-
ties computed for models of a single fracture set, with fracture
compliance 10−9 m/Pa and fracture strike ϕi j = 60◦.

rior distribution for the fracture parameters to approximate the
MAP configuration and marginal distributions.

RESULTS

We validate our methodology by performing inference on a
synthetic data set. The synthetic data are obtained from 3D
elastic finite-difference simulations of the seismic wavefield
(with a 40 Hz Ricker source) on reservoir models having topol-
ogy as shown in Figure 1. The results of the inference proce-
dure on a single fracture set are plotted in Figures 4 and 5.
Figure 4 shows the approximate BLS estimates of the fracture
properties over the 2D grid L. The approximate marginal dis-
tributions for the fracture properties at a particular node are
shown in Figure 5, where peakier posterior marginal distribu-
tions represent less uncertainty about the estimates (i.e. due to
a lower variance a posteriori). The resulting residuals between
the estimates and true values are given in Table 1 in terms of
the root mean squared (RMS) residuals over all nodes. We
see from the results that the estimates for both fracture strikes
and excess compliance are very good even up fracture spac-
ings of 100 m, where the dominant seismic wavelength in the
fractured layer is 100 m. Figure 6 displays the MAP estimate
of two sets of fractures separated by a fault, both with and
without a priori knowledge of the fault. We observe that the
estimates are less correct near the discontinuity when the fault
is not known a priori.

Spacing εrms,ẑBLS εrms,ϕ̂BLS
εrms,ẑMAP εrms,ϕ̂MAP

12 m 0.099 10.80◦ 0.100 10.95◦

20 m 0.037 7.49◦ 0.038 7.62◦

40 m 0.154 16.09◦ 0.118 16.37◦

60 m 0.165 11.67◦ 0.143 11.79◦

80 m 0.065 15.14◦ 0.087 15.39◦

100 m 0.091 11.09◦ 0.101 11.23◦

Table 1: Root mean square of residuals between estimates
and ground truth. For comparison, note that azimuth ϕ is
discretized into 20◦ bins and log compliance z has been dis-
cretized into bins of size 0.1.
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Figure 5: Approximate posterior marginal distributions (blue)
of the fracture properties at a single node plotted along with
the prior distributions (green). Results are given as mean ± 1
S.D. over all grid nodes. Ground truth shown by red ‘x’.
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Figure 6: Effect of a priori knowledge of the fault on approxi-
mate MAP estimates of the fracture properties of a model con-
taining two fracture sets. Notice the incorrect estimates shown
by the cyan coloration at the discontinuity when the fault is not
known. This vanishes when the fault is known.

CONCLUSIONS AND FUTURE DIRECTION

A methodology for estimation of fracture properties from sur-
face seismic data under a Bayesian inference framework is pre-
sented. We have demonstrated that the approximate inference
results are very accurate at low fracture spacings and continue
to give good estimates up to 100 m spacing, where the dom-
inant seismic wavelength is 100 m. This is significant, as we
are able to estimate the fracture properties in a rigorous manner
at a greater range of spacings than would otherwise be attain-
able. We also demonstrated the capability of this framework to
handle prior information about geological features, such as a
spatial discontinuity arising from a fault. While we presented
a very simple case of this, it is not difficult to extend this to
more complicated scenarios. A related future direction is to
incorporate additional features of the seismic data in the infer-
ence procedure. In particular, Zheng et al. (2011) describe a
theory for using 3D beam interference to model the scattering
properties of a reservoir from reflected seismic P-wave data.

ACKNOWLEDGEMENTS

This work was supported by Total S.A. The authors thank Xind-
ing Fang of MIT ERL for providing the data for this paper and
John Fisher of MIT CSAIL for an insightful discussion that
provided motivation for the general idea.



Bayesian Fracture Characterization

REFERENCES

Ali, A., and M. Jakobsen, 2011, Seismic characterization of
reservoirs with multiple fracture sets using velocity and at-
tenuation anisotropy data: Journal of Applied Geophysics,
75, 590–602.

Eidsvik, J., P. Avseth, H. Omre, T. Mukerji, and G. Mavko,
2004, Stochastic reservoir characterization using prestack
seismic data: Geophysics, 69, 978–993.

Fang, X., M. Fehler, Z. Zhu, Y. Zheng, and D. Burns, 2012,
Reservoir fracture characterizations from seismic scattered
waves: SEG Technical Program Expanded Abstracts, 31.
(Submitted).

Gaiser, J., and R. V. Dok, 2001, Green river basin 3-d/3-c
case study for fracture characterization: Analysis of ps-
wave birefringence: SEG Technical Program Expanded
Abstracts, 20, 764–767.

Koller, D., and N. Friedman, 2009, Probabilistic graphical
models: Principles and techniques: MIT Press.

Lynn, H., S. R. Narhari, S. Al-Ashwak, V. K. Kidambi, B. Al-
Qadeeri, and O. Al-Khaled, 2010, Pp azimuthal-amplitudes
and -acoustic impedance for fractured carbonate reservoir
characterization: SEG Technical Program Expanded Ab-
stracts, 29, 258–262.

Murphy, K., Y. Weiss, and M. Jordan, 1999, Loopy belief prop-
agation for approximate inference: an empirical study: Pro-
ceedings of Uncertainty in Artificial Intelligence, 467–475.

Pearl, J., 1982, Reverend Bayes on inference engines: A dis-
tributed hierarchical approach: Proceedings of the Sec-
ond National Conference on Artificial Intelligence, AAAI,
AAAI Press, 133–136.

——–, 1988, Probabilistic reasoning in intelligent systems:
networks of plausible inference: Morgan Kaufmann Pub-
lishers Inc.

Rüger, A., 1998a, Variation of P-wave reflectivity with offset
and azimuth in anisotropic media: Geophysics, 63, 935–
947.

——–, 1998b, Variation of P-wave reflectivity with offset
and azimuth in anisotropic media: Technical Report CWP-
218P, Center for Wave Phenomena.

Sayers, C., 2009, Seismic characterization of reservoirs con-
taining multiple fracture sets: Geophysical Prospecting, 57,
187–192.

Sayers, C., and J. Rickett, 1997, Azimuthal variation in AVO
response for fractured gas sands: Geophysical Prospecting,
45, 165–182.

Schoenberg, M., and J. Douma, 1988, Elastic wave propaga-
tion in media with parallel fractures and aligned cracks:
Geophysical Prospecting, 36, 571–590.

Schoenberg, M., and C. Sayers, 1995, Seismic anisotropy of
fractured rock: Geophysics, 60, 204–211.

Sil, S., and S. Srinivasan, 2009, Stochastic simulation of
fracture strikes using seismic anisotropy induced velocity
anomalies: Exploration Geophysics, 40, 257–264.

Willis, M., D. Burns, R. Rao, B. Minsley, M. Toksoz, and L.
Vetri, 2006, Spatial orientation and distribution of reservoir
fractures from scattered seismic energy: Geophysics, 71,
O43–O51.

Zheng, Y., X. Fang, M. Fehler, and D. Burns, 2011, Double-

beam stacking to infer seismic properties of fractured reser-
voirs: SEG Technical Program Expanded Abstracts, 30,
1809–1813.


