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SUMMARY

Formation elastic properties near a borehole may be altered
from their original state due to the stress concentration around
the borehole. This could result in a biased estimation of for-
mation properties but could provide a means to estimatein situ
stress from sonic logging data. In order to properly account
for the formation property alteration, we propose an iterative
numerical approach to calculate the stress-induced anisotropy
around a borehole by combining Mavko’s rock physics model
and a finite-element method. We show the validity and accu-
racy of our approach by comparing numerical results to labo-
ratory measurements of the stress-strain relation of a sample of
Berea sandstone, which contains a borehole and is subjectedto
uniaxial stress loading. Our iterative approach convergesvery
fast and can be applied to calculate the spatially varying stiff-
ness tensor of the formation around a borehole for any given
stress state.

BRIEF REVIEW OF MAVKO’S METHOD

Mavko et al. (1995) proposed a simple and practical method to
estimate the pore space compliance of rocks using experimen-
tal data of rock velocity versus hydrostatic pressure. Their ap-
proach for calculating the stiffness tensor with stress-induced
anisotropy at a stress stateσ is described below:
(1) Calculate the pressure-dependent isotropic elastic compli-
ancesSiso

i jkl (p) from measurements ofVP andVS versus hydro-

static pressure. The complianceS0
i jkl at the largest measured

pressure, under which most of the compliant parts of the pore
space are closed, is chosen as a reference point. The additional
compliance∆Siso

i jkl (p) due to the presence of pore space at pres-

surep is defined to beSiso
i jkl (p)−S0

i jkl .
(2) Calculate the pressure-dependent crack normal compliance
WN(p) and crack tangential complianceWT (p) from ∆Siso

i jkl (p)
via

WN(p) =
1

2π
∆Siso

j jkk(p) (1)

and
WT (p) =WN(p) ·

∆Siso
jk jk(p)−∆Siso

j jkk(p)

4∆Siso
j jkk(p)

, (2)

where the repeated indices in∆Siso
j jkk and∆Siso

jk jk mean summa-
tion.
(3) Calculate the stress-induced compliance∆Si jkl (σ) through

∆Si jkl (σ) =

∫ π/2

θ=0

∫ 2π

φ=0
WN(m

T σm)mi mj mkml sinθdθφ

+

∫ π/2

θ=0

∫ 2π

φ=0
WT (m

T σm)[δikmj ml +δil mj mk

+δ jkmi ml +δ jl mi mk −4mimj mkml ]sinθdθdφ (3)

whereσ is a 3×3 stress tensor,m≡ (sinθcosφ ,sinθsinφ ,cosθ )T

is the unit normal to the crack surface,θ andφ are the polar
and azimuthal angles in a spherical coordinate system. Note
thatWN(p) andWN(p) in equations 1 and 2 have been replaced

Figure 1: Workflow for computation of stress-induced
anisotropy around a borehole. See text for explanation.

by WN(mTσm) andWT(mTσm) in equation 3, assuming that
the crack closure is mainly determined by the normal stress,
mTσm, acting on crack surface. The stress tensorσ needs to
be projected onto the normal directions of the crack surfaces.
(4) Obtain the stiffness tensorCi jkl (σ) by inverting S0

i jkl +

∆Si jkl (σ).

WORKFLOW OF THE NUMERICAL MODELING

The method of Mavko et al. (1995) can be applied to calculate
the stress-induced anisotropy in homogeneous rocks. When
a borehole is drilled in a rock subjected to an applied stress,
the local stress field around a borehole is changed and causes
anisotropy. Similar to the procedure proposed by Brown and
Cheng (2007), in this paper, we investigate this stress-induced
anisotropy around a borehole by combining the method of Mavko
et al. (1995) and a numerical approach illustrated in Figure1.

We first begin with a homogeneous isotropic intact rock model,
on which Mavko’s model is based. After experimentally ob-
taining theVP andVS data as a function of hydrostatic pressure,
we apply equation 3 to calculate the anisotropic stiffness ten-
sor Ci jkl (σ) of the intact rock under stressσ , which can be
anisotropic. Next, we drill a borehole in the model and use
the calculatedCi jkl (σ) as the input in our initial model con-
taining a borehole. The currentCi jkl (σ) does not include the
effect from stress change due to borehole. We apply a finite-
element method (FEM) to calculate the spatially varying stress
field within the model including the borehole for a given stress
loadingσ and the initial anisotropicCi jkl (σ). From the output
of FEM, we can obtain the local stress tensorσ(x) and then
calculate new elastic tensorCi jkl (σ ,x) as a function of space
applying equation 3. The newCi jkl (σ ,x) includes the effect
of the borehole. We keep iterating the above steps by calling
FEM and applying equation 3 untilCi jkl (σ ,x) converges. We
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use the following as a convergence criterion

Convergence(m) =
1
N

N
∑

n=1

√

√

√

√

√

√

∑

i jkl

[

Cm
i jkl (xn)−Cm−1

i jkl (xn)
]2

∑

i jkl

[

Cm−1
i jkl (xn)

]2
(4)

wherem indicates themth iteration,N is the total number of
spatial sampling points of the model,

∑

i jkl means the summa-
tion over 21 independent elastic constants, Convergence(m)
indicates the percentage change of the model stiffness after the
mth iteration comparing to the model at the(m−1)th iteration.
We defineCi jkl to have converged when Convergence(m) <
1%. Convergence means thatCi jkl and the stress are consistent
and Hooke’s law is satisfied. Finally, we can obtain the spa-
tial distribution of the anisotropic elastic constantsCi jkl (σ ,x)
around a borehole for the given stress state as the output of our
numerical model.

In our approach, we assume that stress induced anisotropy is
caused by the closure of cracks due to the applied compres-
sive stress on crack surfaces and the effect of tensile stress is
negligible. This assumption brings out two issues: (1) how
important is the tensile stress in the earth? (2) how do we deal
with the tensile stress in our calculation? We will discuss these
in the following.

For a homogeneous isotropic elastic rock, the circumferential
stressσθ and the radial stressσr around a circular borehole
subjected to minimum and maximum principal stresses (Sh and
SH ) are given by (for example, Tang and Cheng (2004))

σθ =
1
2
(SH +Sh)

(

1+
R2

r2

)

−
1
2
(SH −Sh)

(

1+3
R4

r4

)

cos2θ (5)

σr =
1
2
(SH +Sh)

(

1−
R2

r2

)

+
1
2
(SH −Sh)

(

1−4
R2

r2
+3

R4

r4

)

cos2θ (6)

whereR is borehole radius,r is the distance from the center of
borehole,θ is azimuth measured from the direction ofSH .

The compressive stressσθ +σr around the borehole provides
an indication on how velocity around the borehole is affected
by stress concentration.σθ +σr has maximum and minimum
values at the wellbore, andσr=0 at r=R, so the stress field
at the wellbore is dominated byσθ , which has the maximum
value σθ = 3SH −Sh at θ = ±900 and the minimum value
σθ = 3Sh−SH atθ = 00 and 1800. In situ, bothSH andSh are
present, andSH ≤ 3Sh in most case (Zoback et al., 1985; Brace
and Kohlstedt, 1980), thus the minimumσθ = 3Sh−SH ≥ 0 is
compressive. In this sense, there is no tensile stress around the
borehole.

However, the conditionSH ≤ 3Sh may not be satisfied in the
laboratory experiments. Uniaxial compression experiments (i.e.
Sh=0), which would induce significant tensile stress around
the borehole, have been conducted for the study of stress in-
duced velocity change around a borehole by many researchers
(Winkler, 1996; Winkler et al., 1998; Tang and Cheng, 2004).
The change of rock elastic properties caused by tensile stress
is usually unknown. Traditional methods (Sinha and Kostek,
1996; Tang et al., 1999) for calculating the stress dependent
velocity around a borehole use the data measured from com-
pression experiments to estimate either the third order elastic
constants or empirical coefficients, which relate the rock ve-
locity change to the applied stresses. For the case of uniaxial

stress, they based their equations on compression experiment
data to predict the velocity in the tensile stress regions, this
kind of extrapolation has no physical basis and could resultin
underestimation of the velocity in the regions aroundθ = 00

and 1800. Different kinds of rock would respond to tensile
stress differently due to varying microcrack structure androck
strength. For Berea sandstone, which is used in our experi-
ments, tensile stresses are relatively less efficient in opening
microcracks (Winkler, 1996), we assume the rock elastic con-
stants under tensile stress remain the same as in a zero stress
state in our calculation. Our results will show that good results
can be obtained with this assumption on Berea sandstone.

LABORATORY EXPERIMENT

In this section, we present results from static strain measure-
ment on a Berea sandstone sample under uniaxial loading to
verify the validity and reliability of our numerical approach.
The dimension of the Berea sandstone sample used in this ex-
periment is 10×10×10 cm. We measured theP- andS-wave
velocities of the unstressed rock sample in three directions and
find that P-wave andS-wave anisotropy are only 0.7% and
1.8%, respectively. Density of the rock is 2.198g/cm3 and
porosity is 17.7%.

First, we measureP- andS-wave velocities under varying hy-
drostatic stress. These data are used to estimate the normaland
tangential crack compliances as functions of hydrostatic pres-
sure, which are required by the method of Mavko et al. (1995).
Then, we measure the strain-stress behavior of the rock con-
taining a borehole subjected to a gradually increasing uniaxial
stress and compare it with our numerical calculations.

Measurement of P- and S-wave velocities under hydrostatic
compression
In order to measureP- and S-wave velocities versus hydro-
static pressure, we cut a 2 inch long and 1 inch diameter cylin-
drical core from our rock sample that will also be used for the
subsequent experiments. We measuredP- andS-wave veloc-
ities along the core axis direction. TheS-wave velocity mea-
surements were made using two orthogonal polarization direc-
tions, as shown in Figure 2. We use the following empirical
equation to fit the velocity data

V =

{

a1 ·P+b1, P≤ 1 MPa

a2 · logP+b2, P> 1 MPa
(7)

whereV represents bothP- andS velocities andP is hydro-
static pressure,a1, b1, a2 andb2 are constants to be determined
through least-squares method by adding the constraint thatthe
two fitting functions are equal atP=1 MPa. The fits to theP-
andS-wave (average ofS1 andS2) velocities are shown as the
blue and red curves, respectively, in Figure 2. Given equation
7, we can now analytically calculate theP andS-velocity at
any given hydrostatic pressure.

Strain measurement of the rock with a borehole under uni-
axial loading
A borehole with 14.2 mm radius was drilled through the rock
along the X-axis, as shown in Figure 3. Uniaxial stress, which
is applied along Z-axis, is perpendicular to the borehole axis.
The stress is raised from 0 to 10.6 MPa in steps of 0.96 MPa.
Strain measurements are made at four locations represented
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Figure 2: Measurements ofVP (squres) andVS (triangles and
circles) of the Berea sandstone core sample under hydrostatic
compression. Shear wave velocitiesS1 andS2 were measured
along the same propagation direction but with orthogonal po-
larization directions. Blue and red curves are the fitting curves
(equation 7) to theVP andVS (average ofS1 andS2) respec-
tively. The root-mean-square misfits are, respectively, 38m/s
and 18 m/s for the fits toP- andS-wave velocities.

Figure 3: Schematic showing uniaxial stress loading of a rock
with a borehole. Strain measurements are made at locations A,
B, C and D. B and C are 2 cm away from the borehole center,
A and D are 3 cm away from the borehole center.

by A, B, C and D, as shown in Figure 3. We applied our work
flow illustrated in Figure 1 and used a FEM software to nu-
merically calculate the stress-induced anisotropy aroundthe
borehole subjected to uniaxial stress.

Figure 4 shows the convergence (equation 4) of the iterations
at eleven loading stresses. We found that the convergence is
very fast and the change of model stiffness is less than 1% after
the first two iterations. We will show the results obtained after
the fifth iteration. Figure 5 shows the comparison between the
strains (black solid curves) calculated using our approach(Fig-
ure 1) and the measured strains (solid and empty squares) at
positions A, B, C and D. The dashed curves, which are shown
for comparison, are the strain values calculated under the as-
sumption that rock properties remain isotropic during the ex-
periment but using theVP andVS given by equation 7 in differ-
ent stress state. The absolute values of these dashed curvesare
always smaller than those of the solid curves. For the isotropic
case, the normal stress causes the closure of all cracks inde-
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Figure 4: Convergence (equation 4) of the iteration scheme.
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Figure 5: Comparison of lab measured strains and numerical
results at locations A, B, C and D, which are shown in Figure
3. Solid and open squares are the measured strains in the di-
rections parallel and normal to the loading stress respectively.
Error bars represent estimates of errors from uncertainty in
the measurement of loading stress (∼ 5%) and the error of
the gage factor (∼ 1%). Solid curves and dashed curves are
the predicted values obtained from the anisotropic model and
isotropic model, respectively.

pendent of orientation, while the anisotropic model assumes
smaller closure of cracks oriented in directions not perpendic-
ular to the loading direction. We find a good match between
the lab measurements and the black solid curves. Strains mea-
sured at B and C are strongly affected by the stress alteration
around the borehole. The straine|| at B in absolute value is
much larger than those at A, C and D, and it reaches a mini-
mum value at C. This is because stress is highly concentrated
at B and released at C. The straine|| at D is smaller than that
at A. This is again due to the alteration of stress concentration
around borehole. The straine⊥ always seems to be underes-
timated in our approach perhaps due to the neglect of crack
opening. Our numerical results, however, are a very reason-
able match with the measurements.

Winkler (1996) measured theVP versus azimuth around a bore-
hole in Berea sandstone with applied uniaxial stress. In hisex-
periment, a block of Berea sandstone (15×15×13 cm) with
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a 2.86 cm diameter borehole was saturated in a water tank
for conducting acoustic measurements.VP at each azimuth
was measured along the borehole axis by using directional
transducers.Vp of their rock sample in an unstressed state
is 2.54km/s and porosity is 22%. The center frequency of
their recorded acoustic signals is about 250 kHz, the corre-
sponding wave length is 1.02 cm, which is equal to 0.36D (D:
borehole diameter). We defineλ̃ = 0.36D as the characteristic
wavelength for measuringVP. The size of the rock sample and
borehole in our experiment is different, therefore we compare
our results through scaling the model by the borehole diame-
ter. We calculate the spatial distribution of the stiffnesstensor
of our Berea sandstone borehole model with 10 MPa uniax-
ial stress applied. The velocity of a P-wave propagating along
the borehole axis is mainly governed by the elastic constant
C1111, which is shown in Figure 6. Figure 6 shows that the
rock becomes stiffer around the regions atθ = ±900, while
it is relatively softer atθ = 00 and 1800. Assuming thatVP

along X-axis direction is mainly governed byC1111, thenVP

along borehole axis direction is given asVP =
√

C1111
ρ , ρ is

density.

For a wave with wavelength̃λ , the penetration depth of the
waves propagating along the wellbore could be up to 1∼2 λ̃ .
We first calculateVP from C1111 and then averageVP at each
azimuth to obtain the velocity variation with azimuth. The ve-
locity averaging method is shown in Figure 6. In Figure 6, the
black circle represents a circular area centered at the wellbore
atθ = 00 with radiusr, which represents the penetration depth
of the waves,VP at θ = 00 is taken as the average ofVP inside
the black circle. By moving this black circle fromθ = 00 to
3600, a scan ofVP versus azimuth can be obtained. We choose
r = λ̃ , 1.5λ̃ and 2̃λ to do the averaging separately over differ-
ent areas, which are shown as the red, blue and magenta circles
in Figure 6, respectively. The predicted average velocities nor-
malized by theVP with no applied stress are plotted in Figure
7 together with the data measured by Winkler (1996) (black
dots). Winkler (1996) used a cos(2θ ) function, shown as the
black curve in Figure 7, to fit the data based on the cos(2θ )
dependence ofσθ andσr on θ in equations 5 and 6. Winkler
(1996) also showed that we can use an exponential function to
fit the data, but we only show the consine fit here. Red, blue
and magenta curves are the velocities obtained from our model
by using different averaging radiir. The azimuthal velocity
variation decreases away from the wellbore, so a larger aver-
aging radiusr gives smaller velocity variation.r = 1.5λ̃ could
be a reasonable averaging radius. The mismatch between the
blue curve and the black best fit curve is larger atθ=00 and
1800, this may be caused by the neglect of crack opening in
our calculation.

CONCLUSIONS

In this paper, we present a numerical approach to predict the
stress-induced anisotropy around a borehole given a stressstate
by applying the method of Mavko et al. (1995). Our method
uses hydrostatic data (i.e. VP andVS), which are easy to obtain,
to calculate the distribution of this stress-induced anisotropy
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Figure 6:C1111 in the Y-Z profile under 10 MPa uniaxial stress
loading in Z direction. Circles show how theVP is calculated
through averaging over a region. Black circle represents a cir-
cular region centering at the wellbore atθ=00 with radiusr.
Red, blue and magenta dashed circles indicate the averaging
regions forr=λ̃ , 1.5λ̃ and 2̃λ , respectively.
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Figure 7: Solid circles are the normalizedVP (normalized by
the velocity measured at 0 stress state) measured by Winkler
(1996) under 10 MPa uniaxial stress. Black curve is the best fit
to the data. Red, blue and magenta curves show the normalized
velocities of the Berea sandstone used in our experiment by
usingr=λ̃ , 1.5λ̃ and 2̃λ , respectively, in the averaging.

around a borehole. The accuracy of our method is validated
through laboratory experiments on a Berea Sandstone sam-
ple. Our approach can predict the stress-strain relation around
a borehole in Berea sandstone under uniaxial stress reason-
ably well. Our method can be applied to calculate the spatially
varying anisotropic elastic constants which are required for the
forward modeling of wave propagation in a borehole under a
given stress state. Also, this could potentially provide a phys-
ical basis for using acoustic cross-dipole logging to estimate
the in situstress state.
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