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Summary 
 
We develop a theory for using 3D beam interference to 
infer scattering properties of a fractured reservoir using 
reflected seismic P data. For the sake of simplicity, we use 
Gaussian beams. The scattering properties are important to 
infer fracture spacing, orientation and compliance. The 
method involves the interference of two beams, one from 
the source region and the other from the receiver region. 
Each beam is formed by first windowing the data in space 
and time and then performing f-k filtering. The interference 
pattern depends on frequency, the incident angle, the 
reflection angle, and the azimuth. We try to interpret the 
interference pattern using local Born scattering in the target 
region. This interpretation is motivated by the observation 
that full-wave finite difference simulation of waves 
propagating through a set of vertical fractures using 
Schoenberg’s linear-slip boundary condition and fracture 
compliances consistent with those inferred from field and 
laboratory data shows that single scattering dominates in 
the reflection data. The methodology is versatile in that by 
adjusting the window sizes we can obtain plane wave 
interference as well as interference for a single shot or 
receiver gather. By suitable choice of pairs of source and 
receiver beams, the spatially varying fracture properties as 
well as the fracture orientation can be inferred.  
 
Introduction 
 
Reliable assessment of properties of fractures is critical for 
enhanced oil recovery. The type of information we are 
interested in includes fracture orientation, fracture density 
or spacing and fracture compliance. Widely used seismic 
methods to characterize fractured reservoirs include shear 
wave splitting (Hudson, 1981; Vetri et al., 2003) and the 
amplitude-versus-angle-and-azimuths (AVAz) for P waves 
(Ruger and Tsvankin, 1997). These methods regard the 
vertically fractured medium as an equivalent anisotropic 
medium (HTI) with a horizontal symmetry axis. It is 
essentially a long-wavelength approximation, which 
requires there are many fractures per wavelength. If the 
fracture spacing is close to the wavelength, one needs 
scattering theory to characterize the fractures (Tura et al., 
1992; Gibson et al., 1993; Willis et al., 2006; Burns et al., 
2007). Recognizing that the seismic response along and 
perpendicular to the fracture strike is different, Zhang 
(2005) used f-k analysis to study scattered signals by 
fractures. The moveout of the scattered waves seen in 
Figure 1 follows that for the singly backscattered waves 
when the fracture compliance is similar to that found in 
laboratory and field studies; e.g. about 10-9 m/Pa (see e.g., 
Bakku et al., 2011). However, complex overlaying 

geological structures will make the CDP based method less 
accurate and the uneven illumination can also cause bias in 
the P wave AVAz analysis. So we need a method, which 
can account for complex wave phenomenon in the 
overlying structures. The method should also be able to 
extract spatially varying fracture information.  
 

 
Figure 1. Seismic gathers for a line of receivers parallel (left) and 
perpendicular (right) to the fracture strike. The background 
velocity is 2500m/s; finite-difference scheme plus the Schoenberg 
(1980) linear slip boundary condition is used to simulate wave 
propagation. The fracture spacing is 60m. The source wavelet is a 
Ricker with f0=40 Hz. The fracture compliance is 10-9m/Pa. The 
vertical extent of the fractures is 40m. The top of the fracture zone 
is at 1000m depth.  
 
Here we aim at developing such a new scheme, which we 
call the double-beam stacking method. The method is a 
phase-space method and it can provide spatially varying 
fracture properties for a wide range of scales. Therefore, it 
is localized in the spatial as well as in the angular domains 
(Figure 2), necessary for balancing the uneven illumination. 
Fracture information within the interference zone (pink 
area in Figure 2) is extracted.  
 

 
Figure 2. Interference geometry for double beams. Stars are 
sources and triangles are receivers. The pink ellipse indicates the 
interference zone within which the fracture properties can be 
inferred.  
 
Theory and Method: beam interference  
  
The 5-dimensional seismic data can be represented as 
p xs ,xg , t( )  where symbols xs, xg and t are source location, 

receiver location and time, respectively. The double-beam 
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stacking is an f-k analysis for the localized data, resulting in 
a 10-dimensional dataset (Figure 2): 

 
B xs

0 ,xg
0 ,t0; ks ,kg ,!( ) = pw xs ,xg ,t( )ei! t  iks ·xs  ikg ·xg# d 2xsd

2xgdt  
 
where pw xs ,xg ,t( )  is the windowed data  

pw xs ,xg ,t( ) = p xs ,xg ,t( )ws xs ! xs
0( )wg xg ! xg

0( )wt t ! t0( )  

where Ws, Wg and Wt are windowing functions for sources, 
receivers and time, respectively.  If the source window 
width Ws is zero, then we have the case of common source 
gather. Likewise, if Wg = 0 , we have the common receiver 

gather. If Ws ! 0  and 
W

g
! 0 , we get beams. t0  is the center 

of the time window and it is determined as the traveltime 
for waves from the source beam center x

s

0  to the target 
then reflected back to the receiver beam center 

x
g

0 . The 

form of the beams can be taken as Gaussian beams 
(Cerveny, 1982; Hill, 1990; 2001). Moreover, converging 
beams, which converge to the target from the surface, can 
also be constructed. Imaging using beams is a very active 
area of research and many objects such as Wigner optics, 
X-waves, Bessel beams, Gaussian packets, coherent states, 
curvelets are intimately related. If the beam widths are 
infinite, then we have plane wave extrapolation such as the 
double-square-root operator, plane wave migration, offset 
plane waves etc. The local angle information for waves is 
essential to perform the illumination correction (Wu et al., 
2004). For the reverse time migration, there is no angle 
information. To obtain this information, one has to do local 
angle decomposition of the wavefield. The double-beam 
stacking is a phase-space method which by its design 
possesses both space and wavenumber properties of the 
wavefield. Before we go into the inverse problem of 
finding fracture orientation and spacing, let us take a look 
on how fractures scatter seismic waves. We first consider 
plane wave scattering by periodic structures and then 
consider scattering of Gaussian beams by periodic 
structures. Scattering by non-periodic structures is a 
straightforward extension.  
 
Anaytical Results: plane waves 
 
It has been recognized that the Born approximation is good 
for understanding the interference patterns shown in Figure 
1. Assume we have a set of vertical fractures that are 
equally spaced along the x direction and let a plane wave 
be incident upon the fractures from above (Figure 3). The 
incident field upon the fractures is exp ik

s
· r ! r

s( )"# $%
 and the 

scattered field at wavenumber k
g
 is  

 

  

uscatt kg ,ks( )! ! r( )e
iks · r"rs( )+ ikg · rg "r( )

d
3
r

V###
= !! kg " ks( )exp "iks ·rs + ikg ·rg$% &'

 

where  !  can be thought as the scattering function caused 
by fractures. Assuming the fracture system is periodic 
along x and the spacing between two adjacent fractures is 
a , its Fourier transform (Poisson summation formula) is  

  

!! k
x( ) =
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! k

x
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2#
a

$
%&

'
()

n="*

*

+  

where k
e
= k

g
! k

s
 is the exchange horizontal 

wavenumber. If the fracture system is localized at r = r
0

or 
non-periodic, i.e.,  

 
!̂ r( ) =W r ! r

0( )! r( )  
where W is some spatial window, the Fourier transform of 

 ̂!  is  

  

!̂! k( ) = !! k( )* !W k( )  
where * denotes convolution. For example, if W  is 
Gaussian, then 
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So we have  

  

!̂! k( ) = ! !k( )" W k # k '( )dk ' . 

Because the spectral spacing of 
 
! k( )  is 2! / a , the width 

of spectral leakage of the window should be less than that, 
i.e., 
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. So the aperture L of the window W 

should be at least a couple of times bigger than the fracture 
spacing a lest we cannot resolve the spectrum after 
convolution.  
 

 
Figure 3. Schematic showing scattering by a set of parallel 
fracture. Fracture planes are vertical and parallel to the y 
direction.  
 
Let !  be the angle measured clockwise from the -y 
direction and !

1
 and !

2
 are the incident angles for k

s
 and 
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k
g
with respect to the vertical direction, the exchange 

wavenumber along the direction normal to the fractures is 
k
x

e
= k sin!

2
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1( )sin#  

where we assume the azimuths for k
s
 and k

g
 are the same 

! . We have 

! k sin"
2
# sin"

1( )sin$ # n
2%

a

&

'(
)

*+n=#,

,

-

=
1

2%
!
1

.
sin"

2
# sin"

1( )sin$ # n
1

a

&

'(
)

*+n=#,

,

-

 

and in this case, k
x

e
! 1, therefore, !  should be smaller 

than 2a , i.e., ! " 2a . Along the normal direction 
sin! = 1 , we have for n = 1 :  

sin!
2
" sin!

1
= # / a  

and Figure 4 shows the non-zero values of 
  
!! k

x( )  for an 
interference pattern for the double beams.  

 
Figure 4 Expected stacking pattern for two plane waves at 
! / a = 0.5 . 
 
Anaytical Results: Gaussian beams 
 
If we use Gaussian windowing for the space and no time 
windowing, we obtain the interference pattern for Gaussian 
beams. In addition, if we use a Gaussian windowing for the 
time, we obtain the fracture interference pattern for the 
Gaussian packets. In this section, we present the case for 
the Gaussian beams in a locally homogeneous medium. If 
the medium is inhomogeneous, one can use the generalized 
formulation for Gaussian beams/packets using the 
dynamical ray tracing (Cerveny, 1982; Hill, 2001). 
However, in a local homogeneous medium, the double-
beam stacking reads: 
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where ! = kgx " ksx  is the exchange horizontal wavenumber 

in the x direction and vertical wavenumbers 
ksz = k

2
! ksx

2
! ksy

2  and kgz = k
2
! kgx

2
! kgy

2 . h is the vector 

from the source beam center to the receiver beam center 
and h = h . p

s
 and p

g
 are the horizontal wavenumbers for 

the incident and reflected Gaussian beams, respectively; 
and !

sz
 and !

gz
 are their corresponding vertical 

wavenumbers. We can use the paraxial approximation to 
expand the vertical wavenumbers around k

s
= p

s
 and 

k
g
= p

g
, respectively, and then integrate analytically. The 

integral is composed of three Gaussian integrals that are 
easy to be calculated. If the fracture spacing is on the order 
of the wavelength, only the terms with n = 0,±1  are 
significant and represent propagating waves. Other terms 
are evanescent waves, which cannot be recorded in the 
reflection geometry. n = 0  corresponds to specular 
reflection and n = ±1  corresponds to the traditional 
“grating” diffractions in optics. Next, we investigate how 
the beam interference pattern B changes with (1) different  
h; (2) different fracture spacing a; and (3) different 
azimuths.  
 
It is evident that if the beam widths are infinite, the double-
beam interference pattern along the symmetry axis is the 
same as that of the plane waves (Figure 4). When the beam 
widths are finite and we vary the distance h, we obtain an 
energy packet from the double-beam stacking, moving 
along the interference curve for the plane waves as shown 
in Figure 5.   
 

 
Figure 5. Gaussian beam interference pattern for different source-
receiver distances (a) h = 100m; (b) h = 200m; (c)h = 300m and 
(d) h = 400m. L

s
= L

g
= 100 m and z=400m; f = 60Hz and 

a = 100m. The line connecting the source and receiver beam 
centers is along the x axis. n = !1 . The background velocity is 
2500m/s.  
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The effect of the fracture spacing on the beam interference 
pattern is dramatic. To demonstrate this numerically, we 
use a set of parallel fractures whose symmetry axis is the x 
axis. We assume the depth to the top of the fracture is z 
=1000m. The distance between the beam centers is 200m. 
L
s
= L

g
= 100m. The orientation of the source and receiver 

beam centers is the same as the fracture symmetry axis. 
The main energy of the beam interference shifts to different 
locations for different fracture spacing (Figure 6).  
 

 
Figure 6. Gaussian beam interference pattern for (a) a = 60m  and 
(b) a = 100m  at n = !1 .  
 
Although the spacing of the fractures is important, the 
orientation of the fracture is another important property, 
which is related to the preferential direction of permeable 
flow. Azimuthally, the beam interference pattern also 
varies (Figure 7).  

 
Figure 7. Gaussian beam interference pattern for source-receiver 
azimuth (a) ! = 0  degrees (perpendicular to fractures) and (b) 

! = 90  degrees (parallel to fractures). L
s
= L

g
= 100m and 

z=400m; f = 60Hz and a = 100m. n = !1 .  

  
Conclusions 
 
We have intoduced a double-beam stacking method, in 
which the interference of two beams produce a 
characteristic pattern that depends on fracture spacing and 
orientation. Analytical results for the cases of interfering 
plane waves and Gaussian beams are derived. When the 
beam width is infinite, we obain interferometric plane 
waves. Our theory is based on a single scattering model. 
The use of single-scattering is consistent with our 
observations made using the 3D finite-difference algorithm 
with the Schoenberg’s linear slip boundary condition and 
fracture compliances that are of similar in magnitude to 

those measured in the field and the laboratory. It shows that 
in the reflection data the interference pattern (or the 
moveout) resembles that of the singly scattered waves. The 
double-beam stacking pattern changes with the beam center 
distance, source-receiver azimuth with respect to the 
fracture orientation and the fracture spacing. However, it is 
a scattering method, working most effectively when the 
wavelength and the fracture spacing are comparable (on the 
order of 10s of meters in typical seismic surveys). For 
closely spaced fractures (e.g., on the order of meters), 
effective-medium methods should be used.  
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