
A general technique for deterministic
model-cycle-level debugging

Asif Khan, Muralidaran Vijayaraghavan and Arvind

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge, MA
{aik,vmurali,arvind}@csail.mit.edu

Abstract—Efficient use of FPGA resources requires
FPGA-based performance models of complex hardware
to implement one model cycle, i.e., one time-step of the
original synchronous system, in several implementation
cycles. Generally implementation cycles have no simple
relationship with model cycles, and it is tricky to recon-
struct the state of the synchronous system at the model-
cycle boundaries if only implementation-cycle-level control
and information is provided. A good debugging facility
needs to provide: complete control over the functioning of
the target design being simulated; fast and easy access to
all the significant target design state for both monitoring
and modification; and some means of accomplishing de-
terministic execution when the target design is a multicore
processor running a parallel application. Moreover, these
features need to be provided in a manner which does not
incur substantial resource and performance penalties.

In this paper, we present a debugging technique based
on the LI-BDN theory. We show how the technique
facilitates deterministic model-cycle-level debugging. We
used it to build the debugging infrastructure for Arete,
which is an FPGA-based cycle-accurate multicore sim-
ulator. The resource and performance penalties of our
debugging technique are minimal; in Arete the debugging
infrastructure has area and performance overheads of 5%
and 6%, respectively.

I. INTRODUCTION

As designs of digital systems continue to become more
complex, designers are increasingly adopting FPGAs for
both performance modeling and rapid prototyping. The
FPGA fabric allows designers to exploit the inherent
parallelism in these systems, and delivers a tremendous
performance improvement over software. This adoption,
however, comes at a price. Parts of the target system
being modeled or prototyped often do not map well
to the structures in the FPGA fabric, both in terms of
resources and timing. An established solution to the
problem is to implement the synchronous behavior of the

target system in an asynchronous manner on the FPGA
using techniques such as Connectors [1], Channels [2],
A-Ports [3] and LI-BDNs [4].

These techniques involve decomposing the syn-
chronous system into many asynchronous modules that
communicate with each other through FIFOs. Each mod-
ule is able to tolerate variations in the latencies of the
modules that it communicates with. Moreover, the notion
of clock cycles in the synchronous system, called model
cycles, is changed to the duration between the enqueuing
of the output FIFOs of a module and the dequeuing of
its input FIFOs. This allows each module to use as many
FPGA cycles as necessary to perform the work of one
model cycle in a resource and timing efficient manner.
A module may use different numbers of FPGA cycles
to simulate different model cycles. Moreover, various
modules in a system may use a varying number of FPGA
cycles to simulate the same model cycle.

Debugging is an integral part of the design effort. A
comprehensive debugging infrastructure needs to provide
model-cycle-level access to all the pertinent state in the
system. Providing such low-level access is not straight-
forward in such asynchronous implementations of syn-
chronous systems as described above. Taking a snapshot
of the state in a certain FPGA cycle is possible, but
the snapshot may contain values of state elements from
different model cycles. Either the lagging modules have
to be advanced or the hastening modules have to be
rolled back in order for the state snapshot to reconcile
to a particular model cycle.

At a high level, a designer should be able to is-
sue a stop(modelCycle n, state S) command,
which will freeze the entire system in model cycle n
and provide the values of all the state elements included
in vector S. A start(state S) command will also
be needed to resume the operation of the asynchronous
implementation with the state elements initialized to the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/78055706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

values specified in vector S.
Parallel system with inherent non-determinism, such

as multicore processors running parallel applications,
offer yet another challenge for debugging. A large body
of work [5]–[8] exists that strives to achieve deterministic
execution. To circumvent the non-determinism in the
system, these solutions have to keep a log of all the
non-deterministic events, the performance and resource
overheads of which can be prohibitive.

The main contributions of this paper are 1) a tech-
nique for building a deterministic model-cycle-level de-
bugging infrastructure, based on the LI-BDN modeling
methodology, and 2) an application of the technique
to build a comprehensive debugging infrastructure for
Arete [9], which is an FPGA-based multicore processor
simulator.

We show that the debugging infrastructure in Arete
provides a rich set of features, while incurring small re-
source and performance overheads. It allows for stopping
and starting any module in the processor model indepen-
dently by making a novel use of the provisions of the
LI-BDN methodology, and avoids complex forwarding
and rollback mechanisms. It also allows us to remove
the non-determinism from events such as DRAM access,
network access and I/O, without keeping expensive logs.
Paper organization: Section II presents the various de-
bugging techniques used in FPGA-based models and
prototypes. Section III discusses how the LI-BDN
methodology is used to implement a synchronous system
on an FPGA in an asynchronous manner. Section IV de-
scribes how deterministic model-cycle-level debugging
can be achieved from LI-BDNs. Section V discusses the
debugging infrastructure in Arete and presents statistics
on its resource and performance overheads. Section VI
summarizes our work and discusses some of the future
avenues we are planning to explore.

II. SURVEY OF DEBUGGING TECHNIQUES FOR

FPGA-BASED DESIGNS

In this section we discuss some of the common debug-
ging techniques used in FPGA-based designs. Figure 1
provides a summary of the comparison between these
techniques and the technique based on the LI-BDN
methodology that we present in this paper.

A. System monitoring through scan chains

System monitoring solutions based on scan
chains [10]–[13] are perhaps the most widely used tools
for debugging FPGA-based designs. They integrate
logic analyzers and other test and measurement cores

with the target design on FPGA. A remote graphical
user interface communicates with these cores, and
provides the designer with a logic analyzing solution.

In ChipScope [10], for example, the designer gen-
erates integrated logic analyzer (ILA) cores for all the
modules in his design that he wishes to monitor. The ILA
cores are customizable and include logic for detecting
trigger events. They also include logic for capturing and
storing data using on-chip Block RAMs. An integrated
controller (ICON) core is then used to provide com-
munication between all the ILA cores and the software
running on a host PC. The communication takes place
over the JTAG boundary scan port of the FPGA. The
ILA cores and the ICON core can be integrated into
the design at either the HDL-source-code-level or the
synthesized-netlist-level.

Although these tools provide some very useful fea-
tures for debugging synchronous designs, they lack con-
trol over both the FPGA and the model clocks. Moreover,
the monitoring cores are synchronous and use the FPGA
clock. To use these tools for debugging synchronous
designs implemented in an asynchronous manner, the
designer would have to develop forwarding and rollback
mechanisms to be able to construct model time accu-
rately. He would also have to develop some means of
operating the monitoring cores using the model clock.
These tools do not include support for deterministic
execution, and the cost of comprehensively monitoring
large designs may be prohibitive.

UtraSOC [14] and ARM CoreSight [15] are similar
debugging tools targeted towards SoCs.

B. SCE-MI-based emulation environment

An emulation environment based on the SCE-MI
standard, such as Bluespec emVM [16], comprises of
an FPGA configured with a hardware design and a
host PC running the emulation console. The FPGA and
the host PC are connected by a physical link such as
the PCIe, ethernet, RS-232, etc. The emulation console
communicates with the components of the hardware
design through implementation-independent transactors.
These transactors allow the designer to start and stop the
FPGA clock. They also allow control over the hardware
design in the form of reset and various testing and
debugging tasks. Probing functionality such as waveform
viewing is also often provided.

Although the provided set of monitoring and debug-
ging features is not as extensive as that in ChipScope,
SCE-MI based emulation environments provide the abil-
ity to freeze the entire synchronous design in any FPGA

Debugging support Clock control type Deterministic execution support Resource-performance overhead

Scan chains None No Substantial
SCE-MI-based FPGA No Substantial
ISA-based None No Moderate
Asynchronous models Modela Possible Substantial
LI-BDN-based Model Yes Minimal
a requires a forwarding or rollback mechanism

Fig. 1. Summary of the comparison between the LI-BDN-based debugging technique and other common debugging techniques used in
FPGA-based designs

cycle. However, for debugging synchronous designs
implemented in an asynchronous manner, the designer
would face the same set of challenges as he would with
ChipScope. A lack of support for deterministic execution
and substantial resource and performance overheads also
limit the appeal of such tools.

C. ISA-based debugging

When using FPGAs for modeling processors, design-
ers also have the option of implementing the debugging
facilities prescribed in the ISA. These facilities en-
able debugging functions, such as reset, instruction and
data breakpoints, and single-stepping of programs. They
generally consist of debug control and status registers,
address and data value comparison registers, and a debug
interrupt. Whenever a debug event takes place, it raises
a debug exception (if enabled by setting the appropriate
bits in the control register). A debug interrupt handler
routine is then invoked which performs the appropriate
debug operation.

ISAs also include instructions, such as Debugger
Notify Halt (DNH) in the Power ISA [17], which cause
the processor to stop fetching and executing instructions,
and allow the processor to be managed by an external
debugging facility. Such a facility is allowed to access
processor resources and control its execution.

Although ISA prescribed debugging facilities provide
fine-grained control over the processor’s resources, they
may be quite difficult to implement. For instance, im-
plementing a precise debug interrupt in an out-of-order
processor can be quite cumbersome.

D. Debugging in various asynchronous FPGA-based
models

Various FPGA-based simulators that rely on asyn-
chronous modeling of synchronous designs, such as
ProtoFlex [18], UT-FAST [1], RAMP Gold [19] and
HAsim [20], implement debugging facilities in an ad-
hoc manner. They need to implement forwarding and

rollback mechanisms in order to achieve model-cycle-
level debugging. In ProtoFlex, printf-like statements are
added to the generated RTL to provide monitoring during
software simulation of the RTL. The Connectors in UT-
FAST include support for triggering, logging of traces
and user-specified aggregation. RAMP Gold embeds a
microcode injector into the functional processor pipeline
for debugging and simulation control. HAsim provides
an elaborate mechanism for model-cycle-level control
which involves waiting for all the ports to become
empty.

III. SYNCHRONOUS CIRCUITS SIMULATED

ASYNCHRONOUSLY

A synchronous system has strict timing contracts
among its various modules. This makes it hard to imple-
ment a synchronous system as is on various hardware or
software target platforms because each platform has its
own timing constraints which may not map very well to
the timing constraints of the synchronous specification.
Designers refine the modules of the synchronous system
to make them tolerant of the latencies of other modules.
Latency Insensitive Bounded Dataflow Networks (LI-
BDN) [4] is one such technique to refine a synchronous
specification into a latency-tolerant asynchronous speci-
fication, albeit with a clock.

We present the synchronous specification of a decode-
execute-commit module in Figure 2 which describes
the three stages of an in-order pipeline. The stages are
connected through PipelineReg, a one-element FIFO
which can be enqueued and dequeued in the same cycle
when it is full. The module takes in a fetched instruction
whose presence is indicated by an associated valid bit,
and acknowledges its receipt. The module also provides
a new instruction address when a branch gets resolved.
The execute stage provides the two read register indices
to the register file module. The commit stage sends a
register update to the register file which includes a valid
bit, a register index and a new register value.

module decExecCmt {
Input fInst, valReg1, valReg2;
Output fInstAck, branchPC, rdReg1, rdReg2, upd;
PipelineReg dr, er;

action {
if(fInst.valid && !dr.full) {
dr.enq(decode(fInst));

}

if(!dr.empty && !er.full) {
er.enq(execute(dr.first, valReg1, valReg2));
branchPC = branch(dr.first, valReg1, valReg2);
dr.deq;

}

if(!er.empty) {
er.deq;

}

fInstAck = fInst.valid && !dr.full;
rdReg1 = dr.first.reg1;
rdReg2 = dr.first.reg2;
updReq = !er.empty ? Valid er.first : Invalid;

}
}

decode

commit

valReg1

rdReg1
dr

exec, branch

er

upd

valReg2

rdReg2

fInst fInstAck branchPC

Fig. 2. Synchronous specification of a decode-execute-commit module

module regFile {
Input rdReg1, rdReg2, upd;
Output valReg1, valReg2;
Reg entries[sizeRF] rf (initial 0);

action {
if(upd.valid) {
rf[upd.index] <= upd.val;

}

valReg1 = upd.valid && rdReg1 == upd.index ? upd.val : rf[rdReg1];
valReg2 = upd.valid && rdReg2 == upd.index ? upd.val : rf[rdReg2];

}
}

Fig. 3. Synchronous specification of a 2-read, 1-write register file module

Figure 3 presents the synchronous specification of
a register file module. The module can take in three
requests simultaneously: reading of two register values,
and update of one register value. The presence of the
update request is indicated by an associated valid bit.
If all the requests are present simultaneously, and either
of the registers being read is also being updated, the
updated value is bypassed as the read response.

The two modules can be composed in a straight-
forward manner through the common port names.

A. Overview of the LI-BDN technique

We give a brief overview of the LI-BDN technique
using the register file example. We start with the cycle-
level specification described above and depicted in Fig-
ure 4(a). Such a specification does not map well to the

FPGA fabric in terms of both resources and timing. We
transform the specification into an LI-BDN so that the
register array which has three ports and combinational
reads can be simulated with a Block RAM which has two
ports and one-cycle-latency reads. We start by attaching
FIFOs to all the ports and done flags to all the output
ports, as shown in Figure 4(b). Note that these FIFOs
are in addition to the FIFOs which may be part of the
synchronous specification. Now as Figure 4(c) depicts
the valReg1 output depends on the rdReg1 and the
upd inputs, which are both available. So we enqueue
valReg1 and set its done flag. We handle the valReg2
output in the same manner. Finally, after all the outputs
are enqueued and all the inputs are available, we update
the Block RAM, dequeue all the inputs and reset all the
done flags, as shown in Figure 4(d). The conversion from

register

array

read logic

write logic

rdReg1

rdReg2

upd

valReg2

valReg1

(a)

rdReg1

rdReg2

upd

valReg2

valReg1

done

done

Block

RAM

rd1Start

rd2Start

(b)

rdReg1

rdReg2

upd

valReg2

valReg1

Block

RAM

rd1Start

rd2Start

done

done

(c)

rdReg1

rdReg2

upd

valReg2

valReg1

done

done

Block

RAM

rd1Start

rd2Start

(d)

Fig. 4. Transforming a cycle-level specification into an LI-BDN

a specification into an LI-BDN is what we call the LI-
BDN transformation of a module [4], [21]. The control
logic for the LI-BDN transformation of the register file
module is provided in Figure 5 (the non-highlighted por-
tion of the code). The two requirements, that an output
waits only for the inputs that it depends on, called the no-
extraneous dependencies (NED) requirement, and that all
the input FIFOs are dequeued when all the inputs are
available and all the outputs have been produced, called
the self-cleaning (SC) requirement, together guarantee
the absence of deadlocks from the LI-BDN transforma-
tion.

The decode-execute-commit module can be converted
into an LI-BDN using the same transformation algo-
rithm. It will contain a separate rule for producing each
output, followed by a finish rule to update the state,
dequeue all the inputs and reset all the done flags.

The time duration between the enqueuing of the output
FIFOs and the dequeuing of the input FIFOs comprises
one model cycle for the transformed module. During
one model cycle, the transformed module can use any
number of implementation cycles to produce the outputs
or to update the state. In this manner, the model cycle is
decoupled from the implementation cycle which enables
an efficient implementation of the model on the desired

platform while maintaining model-cycle-level accuracy.

IV. DEBUGGING USING THE LI-BDN TECHNIQUE

The major requirement for debugging a large and
complex model is to have the ability to freeze it in a par-
ticular model cycle so that a precise snapshot of all the
state can be obtained. This requirement gets quite tricky
when the synchronous specification of a target design is
decoupled from its platform-specific implementation. A
designer typically requires the values of the state during a
particular model cycle as opposed to the implementation
cycle. Even if the entire implementation is frozen during
a particular implementation cycle, various asynchronous
modules in the implementation have to either rollback
or advance so that the entire design converges to a
particular model cycle. Such an ability is similar to
taking a snapshot of the architectural state of an out-
of-order processor for precise exceptions.

We present a novel technique, based on the LI-BDN
theory, for freezing an asynchronous implementation of
a synchronous design during a particular model cycle.
The technique does not involve forwarding or rollback
of modules. As shown in Figure 6, we introduce a new
proceed input to the register file module from Fig-
ure 4(b). We also add debugging logic, and debugReq
and debugResp FIFOs to the module. An external

libdn regFile {
LiBdnIn rdReg1, rdReg2, upd , proceed ;
LiBdnOut valReg1, valReg2;
FifoIn debugReq;
FifoOut debugResp;
BlockRAM entries[sizeRF] rf (initial 0);
Reg rd1Start, rd2Start (initial False);

rule rd1 {
if(!valReg1.done && !valReg1.full && !rdReg1.empty && !upd.empty && !rd1Start) {

rf.req1(Read, rdReg1.first, DontCare);
rd1Start <= True;

}
if(rd1Start) {

valReg1.enq(upd.first.valid && rdReg1.first == upd.first.index ? upd.first.val :
rf.resp1);

valReg1.done <= True;
rd1Start <= False;

}
}

rule rd2 {
if(!valReg2.done && !valReg2.full && !rdReg2.empty && !upd.empty && !rd2Start) {

rf.req2(Read, rdReg2.first, DontCare);
rd2Start <= True;

}
if(rd2Start) {

valReg2.enq(upd.first.valid && rdReg2.first == upd.first.index ? upd.first.val :
rf.resp2);

valReg2.done <= True;
rd2Start <= False;

}
}

rule finish {
if(valReg1.done && valReg2.done && !proceed.empty) {

if(proceed.first == Normal) {
if(upd.first.valid) {
rf.req1(Write, upd.first.index, upd.first.val);

}
rdReg1.deq; rdReg2.deq; upd.deq; proceed.deq;
valReg1.done <= False; valReg2.done <= False;

}
else if(!debugReq.empty) {
if(debugReq.first.type == Read && !debugResp.full) {

if(!rd1Start) {
rf.req1(Read, debugReq.first.index, DontCare);
rd1Start <= True;

}
else {

debugResp.enq(rf.resp1);
rd1Start <= False;

}
}
else if(debugReq.first.type == Write) {

rf.req1(Write, debugReq.first.index, debugReq.first.val);
}
else if(debugReq.first.type == Finish) {

if(upd.first.valid) {
rf.req1(Write, upd.first.index, upd.first.val);

}
rdReg1.deq; rdReg2.deq; upd.deq; proceed.deq;
valReg1.done <= False; valReg2.done <= False;

}
debugReq.deq;

}
}

}
}

Fig. 5. FPGA-optimized LI-BDN of the register file module with support for debugging

rdReg1

rdReg2

upd

valReg2

valReg1

done

done

Block

RAM

rd1Start

rd2Start

proceed debugReq debugResp

debugger

Fig. 6. LI-BDN of the register file module with support for model-
cycle-level debugging

debugger can freeze the module in model cycle n by
enqueuing a Normal token n−1 times into the proceed
input FIFO and enqueuing a Debug token the nth time.
Once the module receives a Debug token, it enters the
debug mode and waits for debug commands that are sent
through the debugReq FIFO. The debug commands
can either read or update the Block RAM. Responses
for Block RAM read requests become available one
cycle after the request is made, and are sent back to
the external debugger through the debugResp FIFO.
When the external debugger sends a Finish command,
the module leaves the debug mode, updates the Block
RAM, dequeues all the LI-BDN input FIFOs, resets all
the done flags and proceeds onto the next model cycle.
The highlighted code in Figure 5 shows the debugging
logic added to the LI-BDN of the register file module.
Only the parts that deal with rf are specific to the
register file module, the rest can be added to any LI-
BDN module for debugging.

A. Correctness of the LI-BDN-based debugging tech-
nique

An LI-BDN module obtained through the transforma-
tion discussed in Section III simulates a model cycle
by first producing all the outputs once (in an order
determined by the availability of the inputs), followed
by the firing of the finish rule. It can take multiple
implementation cycles to produce an output or to fire the
finish rule. The output rules can fire concurrently,
but cannot fire in parallel with the finish rule. The
finish rule acts as a barrier and prevents output rules
from refiring before the model cycle is completed. The

LI-BDN transformation of any synchronous specification
can be easily automated and we assume that it is correct.

The additional input, proceed, introduced for de-
bugging, only affects the firing of the finish rule. The
finish rule waits for a proceed token to arrive be-
fore firing, which can result in a prolonged model cycle.
The latency of an LI-BDN module, i.e., the number of
implementation cycles consumed to simulate a model
cycle, can be varied without affecting the correctness
of the module. Moreover, the external debugger has to
enqueue a proceed token, either Normal or Debug, for
every model cycle.

The additional FIFOs, debugReq and debugResp,
are out-of-band communication links that remain outside
the scope of the LI-BDN. The debug commands deliv-
ered by the debugReq FIFO are only serviced when
the module is in the debug mode, which can only be
activated after all the outputs are enqueued, but before
the model state is updated. The LI-BDN resumes normal
operation upon leaving the debug mode.

Debugging logic, as in the case of the register file
example above, can be introduced into an LI-BDN
module such that it remains completely disjoint from
the LI-BDN control logic in the module. This is evident
from the highlighted code in Figure 5. Moreover, the
debugging logic does not introduce any new behaviors
into the target design being modeled. It only allows for
reading and writing of model state when the LI-BDN
module is in the debug mode.

It is also evident that the addition of the debugging
logic does not violate the NED and SC requirements
of the LI-BDN transformation, preserving the deadlock-
freedom guarantee.

B. Deterministic execution

There are many sources of non-determinism in com-
plex, parallel systems such as the randomness of the
DRAM access latency. This complicates the debugging
further by prohibiting deterministic replays. The use
of LI-BDNs in modeling provides an opportunity to
suppress the non-determinism. In the case of DRAMs,
the access latency can be fixed to any desired value.
This is possible because the LI-BDN can utilize different
numbers of FPGA cycles to simulate different model
cycles, and accommodate the randomness appropriately.
The enqueuing of the output FIFOs (or the dequeuing of
the input FIFOs) can happen when the non-deterministic
event has taken place.

As an example, we will show how a DRAM module
with a non-deterministic read latency is converted into

module memory {
Input req;
Output resp;
DRAM dram;

action {
dram.req = req;
resp = dram.resp;

}
}

Fig. 7. Synchronous specification of a DRAM module with non-
deterministic read latency

libdn memory {
LiBdnIn req;
LiBdnOut resp;
DRAM dram;
Reg tempResp (initial Invalid);

rule tempRule {
if(!tempResp.valid) {

tempResp <= dram.resp;
}

}

rule respRule {
if(!resp.done && !resp.full) {

resp.enq(tempResp);
resp.done <= True;
if(tempResp.valid) {

tempResp <= Invalid;
}

}
}

rule finish {
if(resp.done && !req.empty) {

dram.req = req.first;
req.deq;
resp.done <= False;

}
}

}

Fig. 8. LI-BDN of a DRAM module with non-deterministic read
latency

an LI-BDN module with a deterministic read latency, viz,
a combinational read. Figure 7 presents the synchronous
specification of a memory module that uses a DRAM.
Both req and resp have associated valid bits. The
system which uses this module makes req valid for only
one cycle, consumes resp in the cycle in which resp
is valid, and does not make another valid req until it
receives a valid resp. dram has a non-deterministic
response time, and produces a response, dram.resp,
which is valid for only one cycle.

Figure 8 presents the LI-BDN of the non-deterministic
memory module shown in Figure 7. It increments
model time irrespective of the validity of dram.resp.
tempResp ensures that a valid dram.resp is not

libdn memory {
LiBdnIn req;
LiBdnOut resp;
DRAM dram;
Reg start (initial False);

rule respRule {
if(!resp.done && !resp.full &&

!req.empty && !start) {
if(req.first.valid) {
dram.req = req.first;
start <= True;

}
else {
resp.enq(Invalid);
resp.done <= True;

}
}
if(dram.resp.valid) {
resp.enq(dram.resp);
resp.done <= True;
start <= False;

}
}

rule finish {
if(resp.done) {
req.deq;
resp.done <= False;

}
}

}

Fig. 9. LI-BDN of a DRAM module with combinational reads

dropped.
Figure 9 presents the LI-BDN of a combinational-read

memory module. If req is valid in a model cycle, the
LI-BDN sends it to dram, and waits, without incre-
menting the model cycle, until dram.resp becomes
valid. When dram.resp becomes valid, the LI-BDN
enqueues it into resp and completes the model cycle
by dequeuing req. Even though dram can take a non-
deterministic number of FPGA cycles to produce a valid
response, model cycles are incremented deterministically
leading to deterministic execution.

The two LI-BDNs presented in Figures 8 and 9 model
different memory modules, but both fulfill the NED and
SC requirements, and are deadlock-free.

V. LI-BDN-BASED DEBUGGING INFRASTRUCTURE

FOR A MULTICORE PROCESSOR MODEL: A CASE

STUDY

Using the LI-BDN-based debugging methodology de-
scribed in Section IV, we built a comprehensive de-
bugging facility for Arete [9], which is an FPGA-based
cycle-accurate multicore simulator. Arete may be imple-
mented as a distributed multicore simulator on a multi-
FPGA platform, which requires the debugging infras-
tructure to be implemented in a distributed manner. We

L1 D$Back-End

TLB

Mem-1

Register
File

Branch
Resol

Addr
Calc

ALU Mem-2
Excep

Handler

L1 I$Front-End

Fetch-2

Crack Decode
Branch
Pred

Fetch-1

Debugger

Fig. 10. Arete core with model-cycle-level debugging facilities

make use of the tiled microarchitecture of the processor
to partition the model among various FPGAs in such
a way that only one configuration file can be used for
all the FPGAs. This enables a simple replication of the
debugging facilities, but complicates the design of the
controller.

The distributed debugging facilities in FPGA are
controlled by a software running on a MicroBlaze soft
core. The MicroBlaze core communicates with the model
through the PLB. The software presents a GDB-like
interface to the user. Its features include model initial-
ization, break points, single-stepping, access to processor
state such as program counter, general purpose registers
(GPRs), special purpose registers (SPRs), TLB array, and
data and tag arrays in caches, and access to performance
counters which include model cycles, FPGA cycles,
instructions, stalls due to data and control hazards, and
cache hits and misses.

Figure 10 shows the debugging facilities incorporated
into a core in Arete. These FPGA-based facilities include
logic and state for

• model initialization, which may be done in a dis-
tributed manner on a multi-FPGA platform, and
requires assigning a unique identifier to each of the
identical model partitions,

• distribution and accumulation of debugging and
performance information from various tiles, cores
and modules,

• instruction address, data address and model cycle
comparisons.

Without With ChangeDebugging Debugging

LUTs 61155 64154 +5%

Flip flops 49359 51331 +4%
Block RAMs 111 111 0%

DSP slices 24 24 0%

FPGA clock
125 117 −6%frequency (MHz)

Fig. 11. Resource and performance penalties of the debugging
infrastructure in Arete. Model parameters: 1 tile, 2 in-order 10-stage
cores, 64 KB 4-way associative L1, 512 KB 4-way associative L2

The use of the LI-BDN modeling methodology in
building Arete also enables us to provide deterministic
execution of parallel applications on the multicore pro-
cessor model. We make the observation that the three
sources of non-determinism in Arete are memory, on-
chip network, and external inputs. We transform the
DRAM along with the memory controller, and the on-
chip network (implemented in a distributed manner on
multiple FPGAs) into LI-BDN modules. This allows
us to fix their latencies in the manner described in
Section IV. We deal with external inputs by freezing
the model whenever the program expects such an input.
This ensures that the external input is always received
in the same model cycle. Both of these techniques have
very low resource and performance overheads, and help
to avoid keeping expensive logs of non-deterministic
events.

Figure 11 shows the minimal overhead of including
the deterministic model-cycle-level debugging facility
in Arete. It causes an increases of 5% in resource
utilization, and reduces FPGA clock frequency by 6%.
As described in the register file example in Section IV,
the debugging facility requires limited additional state
and logic resources, and the overhead is expected to
scale linearly with model size. Moreover, the debugging
facility has no impact on the average number of FPGA
cycles required to simulate a model cycle, which remains
9.

VI. CONCLUSION

We have presented a debugging technique based
on the LI-BDN modeling methodology. The technique
facilitates deterministic model-cycle-level debugging,
while avoiding both forwarding or rollback mecha-
nisms for model-cycle-level control, and logging of non-
deterministic events for deterministic replay. We used the

technique to build the debugging infrastructure for Arete,
which is an FPGA-based cycle-accurate multicore simu-
lator. The debugging infrastructure provides a rich set of
features, while incurring small resource and performance
overheads.

Moving forward, we are planning to develop a tool
that will automatically transform a synchronous specifi-
cation into an LI-BDN which will include the debugging
facility.

ACKNOWLEDGEMENTS

We would like to thank Kattamuri Ekanadham and
Jessica Tseng for their help and guidance. The research
work presented in this paper was funded in large part
by IBM. We are thankful to Quanta Computer for
supporting this work in the later stages. We would also
like to thank Xilinx for donating FPGAs, FPGA boards
and development tools. Many thanks to all members of
the CSG-Arvind group whose valuable input helped us
shape the narrative in this paper.

REFERENCES

[1] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart,
D. E. Johnson, J. Keefe, and H. Angepat, “FPGA-Accelerated
Simulation Technologies (FAST): Fast, Full-System, Cycle-
Accurate Simulators,” in MICRO ’07: Proceedings of the 40th
Annual IEEE/ACM International Symposium on Microarchitec-
ture. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 249–261.

[2] G. Gibeling, A. Schultz, and K. Asanovic, “RAMP Architecture
and Description Language,” in 2nd Workshop on Architecture
Research using FPGA Platforms, February 2006.

[3] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J. Emer,
“A-Port Networks: Preserving the Timed Behavior of Syn-
chronous Systems for Modeling on FPGAs,” ACM Trans.
Reconfigurable Technol. Syst., vol. 2, no. 3, pp. 1–26, 2009.

[4] M. Vijayaraghavan and Arvind, “Bounded Dataflow Networks
and Latency-Insensitive circuits,” in MEMOCODE’09: Pro-
ceedings of the 7th IEEE/ACM International Conference on
Formal Methods and Models for Codesign. Piscataway, NJ,
USA: IEEE Press, 2009, pp. 171–180.

[5] D. F. Bacon and S. C. Goldstein, “Hardware-Assisted Replay
of Multiprocessor Programs,” SIGPLAN Not., vol. 26, no. 12,
pp. 194–206, Dec. 1991.

[6] J.-D. Choi and H. Srinivasan, “Deterministic Replay of Java
Multithreaded Applications,” in Proceedings of the SIGMET-
RICS symposium on Parallel and distributed tools, ser. SPDT
’98. New York, NY, USA: ACM, 1998, pp. 48–59.

[7] M. Xu, R. Bodik, and M. Hill, “A “Flight Data Recorder”
for Enabling Full-System Multiprocessor Deterministic Replay,”
in Computer Architecture, 2003. Proceedings. 30th Annual
International Symposium on, june 2003, pp. 122 – 133.

[8] G. Altekar and I. Stoica, “ODR: Output-Deterministic Replay
for Multicore Debugging,” in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, ser. SOSP
’09. New York, NY, USA: ACM, 2009, pp. 193–206.

[9] A. Khan, M. Vijayaraghavan, S. Boyd-Wickizer, and Arvind,
“Fast and Cycle-Accurate Modeling of a Multicore Processor,”
in ISPASS ‘12: Proceedings of the International Symposium on
Performance Analysis of Systems and software, April 2012.

[10] ChipScope Pro – Software and Cores User Guide Version 13.4,
Xilinx, January 2012.

[11] Identify – Simulator-like Visibility into Hardware Debug, Syn-
opsys, 2011.

[12] P. Graham, B. Nelson, and B. Hutchings, “Instrumenting Bit-
streams for Debugging FPGA Circuits,” in Field-Programmable
Custom Computing Machines, 2001. FCCM ’01. The 9th An-
nual IEEE Symposium on, April 2001, pp. 41 –50.

[13] K. Camera, H. K.-H. So, and R. W. Brodersen, “An integrated
debugging environment for reprogrammble hardware systems,”
in Proceedings of the sixth international symposium on Auto-
mated analysis-driven debugging, ser. AADEBUG’05. New
York, NY, USA: ACM, 2005, pp. 111–116.

[14] http://www.ultrasoc.com/.
[15] http://www.arm.com/products/system-ip/coresight/index.php.
[16] emVM User Manual, Bluespec, January 2012.
[17] Power ISA Version 2.05, IBM, October 2007.
[18] E. S. Chung, M. K. Papamichael, E. Nurvitadhi, J. C. Hoe,

K. Mai, and B. Falsafi, “ProtoFlex: Towards Scalable, Full-
System Multiprocessor Simulations Using FPGAs,” ACM Trans.
Reconfigurable Technol. Syst., vol. 2, no. 2, pp. 1–32, 2009.

[19] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patter-
son, and K. Asanovic, “RAMP Gold: An FPGA-based Architec-
ture Simulator for Multiprocessors,” in DAC ’10: Proceedings
of the 47th Annual Design Automation Conference, 2010, pp.
463–468.

[20] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J. Emer,
“Quick Performance Models Quickly: Closely-Coupled Parti-
tioned Simulation on FPGAs,” in ISPASS ’08: Proceedings
of the International Symposium on Performance Analysis of
Systems and software. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 1–10.

[21] T. Harris, Z. Ruan, and D. Penry, “Techniques for LI-BDN syn-
thesis for hybrid microarchitectural simulation,” in Computer
Design (ICCD), 2011 IEEE 29th International Conference on,
oct. 2011, pp. 253 –260.

