
Modeling Programming Knowledge for Mentoring at Scale
Anvisha H. Pai

MIT CSAIL
anvishap@mit.edu

Philip J. Guo
MIT CSAIL / University of Rochester

pg@cs.rochester.edu

Robert C. Miller
MIT CSAIL

rcm@mit.edu

ABSTRACT
In large programming classes, MOOCs or online communi-
ties, it is challenging to find peers and mentors to help with
learning specific programming concepts. In this paper we
present first steps towards an automated, scalable system for
matching learners with Python programmers who have ex-
pertise in different areas. The learner matching system builds
a knowledge model for each programmer by analyzing their
authored code and extracting features that capture domain
knowledge and style. We demonstrate the feasibility of a
simple model that counts the references to modules from the
standard library and Python Package Index in a programmers’
code. We also show that programmers exhibit self-selection
using which we can extract the modules a programmer is best
at, even though we may not have all of their code. In our fu-
ture work we aim to extend the model to encapsulate more
features, and apply it for skill matching in a programming
class as well as personalizing answers on StackOverflow.

Author Keywords
Skill matching; personalized learning; learner modeling

ACM Classification Keywords
H.5.3. Group and Organization Interfaces: Theory and Mod-
els

INTRODUCTION
Learning programming is an ongoing process. Knowing the
syntax and built-in functions of a language is just the be-
ginning. Even the most experienced programmers need to
keep learning about new APIs, standard and external libraries,
and frameworks that they can use in their programs. Instruc-
tional textbooks focus heavily on syntax and a few standard
libraries, and can only go so far in helping a programmer learn
something new. Moreover, it is easy for a programmer to get
entrenched in certain practices, while there are better ones out
there that they are never exposed to.

Interacting with other programmers who have different areas
of expertise is a good way to address this problem [1]. Prac-
tices like pair programming, tutoring and mentoring are key.
In structured classes, group projects reinforce this learning
technique, as students have the opportunity to learn from each
others’ styles and expertise.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the au-
thor/owner(s).
L@S’14, March 4–5, 2014, Atlanta, Georgia, USA.
ACM 978-1-4503-2669-8/14/03.
http://dx.doi.org/10.1145/2556325.2567871

However, finding peers or mentor guidance is not as easy or
feasible at scale. Scale could be anything ranging from a large
programming class at a university (250–1,000 students) to a
whole community of programmers on the Internet. While it
is easy to find tutors online that can help with broad areas
like a CS1-style Intro. to Python, it is harder to find some-
one to help with specific application needs, such as using lin-
ear algebra functions of the Python library NumPy. Though
learners have online help forums like StackOverflow [1] as a
resource, forum answers are not personalized to the asker’s
experience level and often require non-trivial amounts of pre-
requisite knowledge.

In this work-in-progress, we present first steps toward a scal-
able learner matching system for Python based on program-
ming knowledge and styles. Our system will analyze the cor-
pus of code a programmer has written and build a fine-grained
knowledge model of their expertise in different areas. This
will enable it to match learners with mentors or with fellow
students for collaborative learning projects in either a MOOC
or large residential courses. Since code analysis is automated,
this system is easily scalable, and has the potential to improve
the learning experience for many programmers.

MATCHING BASED ON PYTHON MODULE USAGE
Python has a standard library of 226 modules that provide
standardized functions like regular expressions, JSON file
parsing, and email processing. Beyond the standard library,
widely used and approved modules are included in the Python
Package Index. These external modules include 24,147 li-
braries like Django, a major web framework for Python, and
NumPy, a computational and scientific package. Assessing
how well-versed a programmer is in using a particular mod-
ule is one proxy measure of their expertise in that application
area.

Data Collection and Analysis
As an initial investigation, we solicited Python code from 10
programmers. Three of these students were beginners who
submitted code from their introductory Python class at MIT.
Three were undergraduates who described themselves as in-
termediate to advanced level programmers, and submitted
projects they had done outside of classes. The remaining 4
programmers were researchers at the MIT Computer Science
and Artificial Intelligence Lab, and submitted code from their
research. We used regular expressions to mine the code and
count the number of function calls made from each module
in the standard library and Python Package Index. We also
asked the participants to rank their perceived expertise in the
most popular packages that came out of this analysis, using an

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78055705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Subject 1st Package 2nd Package 3rd Package
module calls module calls module calls

Beginner 1 random 19 UserDict 8 string 7
Beginner 2 random 6 string 5 graph 4
Beginner 3 random 6 Queue 1 string 1

Undergrad 1 Django 95 httplib2 71 socket 62
Undergrad 2 os 12 copy 4 profile 3
Undergrad 3 re 31 mechanize 23 lxml 12
Researcher 1 os 20 json 13 re 10
Researcher 2 Django 158 relay 20 teleport 16
Researcher 3 util 52 config 25 json 9
Researcher 4 Django 187 os 20 re 16

Table 1. Top 3 packages for participants, ranked by number of function
calls in their submitted code.

Subject Top 3 Packages
Self-Reported Ranking Calculated by Model

Beginner 1 random, string, os random, string, numpy
Beginner 2 random, string, numpy random, string, numpy
Beginner 3 numpy, string, random random, string
Undergrad 1 string, django, random django, numpy, random
Undergrad 2 numpy, random, os os, random, numpy
Undergrad 3 numpy, random, os os, random, numpy
Researcher 1 os, json, numpy os, json, random
Researcher 2 string, django, os django, os, json
Researcher 3 json, string, os json, os
Researcher 4 numpy, unittest, random django, os, random

Table 2. Perceived and actual rankings of modules by subject

online survey where they assigned a rank to each of 7 pack-
ages. We used these reported ranks to assess the validity of
the estimated expertise from the analyzing submitted code.

Results
Table 1 shows the top 3 Python packages per participant
ranked by the number of function calls in their submitted
code, showing a wide variety of modules across different ex-
perience levels and areas of expertise. As expected, different
applications and types of projects showed different modules
being used. The beginner programming students mostly used
the same packages, since their projects were in the context
of similar class assignments and applications. This was very
different for the more advanced programmers, however. Even
though Undergrad 1 and Researcher 2 informally charac-
terized themselves as Django-based web programmers, they
used very different modules in their code, showing specific
expertise and strengthening the idea of learning from peer
guidance.

We did not have access to all the code the participants had
written, hence we risk having an incomplete model of their
expertise. However, the results in Table 2 indicate that the top
3 packages reported by the participants were mostly consis-
tent with the top 3 packages from the code that they submit-
ted. This implies that we can identify the strongest areas of
expertise from the code submitted, and enables us to use this
model for the application of mentoring, where the strongest
skills of each potential mentor are important.

Self-selection could be a reason for this correlation between
the top reported and calculated packages. In the study we
asked people to submit code to us, and it is possible that they
self-selected recent projects that they thought were good ex-
amples. This skew in might actually benefit a skill-matching

system, since if a person wants to most accurately represent
their skills for offering their services as a mentor, they would
likely submit recent and accurate code. In contrast, analyzing
all of their code might yield worse results, since older code
might not be representative of current skills or interests.

APPLICATIONS AND ONGOING WORK
The simple model is that it does not normalize for compar-
ison: using the same functions repeatedly may not signify
expertise. We plan to eliminate this limitation by normaliz-
ing within a package and across different programmers, by
gathering data through larger versions of the study presented
here.We also plan to include more features that capture ex-
pertise and style, such as what percentage of functions in a
package were used (coverage) and the use of object-oriented
or functional programming.

Matching with Mentors
As seen in the results, even with a simple model that analyzes
modules used, we can capture to some degree which packages
a person is best at. A straightforward way to use this model
for matching beginners with mentors is to simply match them
with the people that are best at the packages that they want to
learn.

Matching with Peers
Matching with peers is slightly more complex than with men-
tors because the aim is to pair together people with comple-
mentary knowledge and styles. Programmers can be matched
by modeling each person as a vector with the dimensions as
different modules and the magnitude as the normalized score
from that module. Programmers could be matched based on
the relative magnitudes and angles between different vectors.
We aim to deploy our peer matching system in an MIT pro-
gramming class based on group programming projects to val-
idate our hypothesis.

Matching with Online Resources
An application of the model we plan to develop would be
StackOverflow customization. Especially for beginner pro-
grammers, it can be problematic when the top voted answer
to a question on StackOverflow uses libraries they do not un-
derstand. With a model of the programmer’s knowledge, we
can assess which answer falls closest to what they are famil-
iar with. StackOverflow answers have code snippets, which
make it possible to analyze these snippets in the same way
code is analyzed, reducing answer customization to a similar
matching problem

ACKNOWLEDGMENTS
This work is supported in by the MIT SuperUROP program,
funded by a donation from Robert Fano; and by Quanta Com-
puter as a part of Philip Guo’s postdoc funding.

REFERENCES
1. Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G., and

Hartmann, B. Design Lessons from the Fastest Q&A Site
in the West. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’11, ACM
(New York, NY, USA, 2011), 2857–2866.


	Introduction
	Matching based on Python module usage
	Data Collection and Analysis
	Results

	Applications and Ongoing Work
	Matching with Mentors
	Matching with Peers
	Matching with Online Resources

	Acknowledgments
	REFERENCES 

