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SUMMARY

The measurements of fracture parameters, such as fracture ori-
entation, fracture density and fracture compliance, in a reser-
voir is very important for field development and exploration.
Traditional seismic methods for fracture characterization in-
clude shear wave birefringence (Gaiser and Dok, 2001; Dok
et al., 2001; Angerer et al., 2002; Vetri et al., 2003) and ampli-
tude variations with offset and azimuth (AVOA) (Ruger, 1998;
Shen et al., 2002; Hall et al., 2003; Liu et al., 2010; Lynn et al.,
2010). These methods are based on the equivalent medium the-
ory with the assumption that fracture dimension and spacing
are small relative to the seismic wave length, so a fracture zone
behaves like an equivalent anisotropic medium. But fractures
on the order of seismic wave length are also very important
for enhanced oil recovery, and they are one of the important
subsurface scattering sources that generate scattered seismic
waves.
Willis et al. (2006) developed the Scattering Index method
to extract the fracture scattering characteristics by calculating
the transfer funtion of a fracture zone. This method has two
sources of uncertainty: (1) calculation of the transfer function
is sensitive to the analysis time window; (2) the interpreta-
tion of the transfer function is based on the assumption that
the background reflectivity of the medium is white. Here we
propose a modification of the SI methods that addresses these
issues and leads to a more robust fracture characterization.

METHODOLOGY

In order to understand the relationship between the transfer
function and fracture scattering, a simplified three layer model
(Figure 1) is used to study the process of fracture scattering.
We assume that fractures are only present in the middle layer
and layer interfaces exist both above and below the fractured
layer. For simplicity, the data acquisition is assumed to be in
one direction first, the azimuth effect will be discussed later. In
Figure 1, the wave field reflected from layers above the fracture
zone is

O1(ω) = r1(ω) · I(ω) (1)

where r1(ω) is the reflectivity of the layers above the frac-
ture zone and I(ω) is the incident wave field, ω is angular
frequency.

When the wave field propagates into the fracture zone, it gener-
ates fracture scattered waves, if fractures are vertical or subver-
tical, which is the general state of fractures present in a reser-
voir due to overburden stress, most of the scattered waves will
propagated downward (Fang et al., 2010), so the downgoing
trasmitted waves can be express as

T (ω) = I(ω)+S(ω) (2)

where S(ω) denotes the downgoing scattered waves.
Based on the assumption of the stationarity of the incident seis-
mic wavelet, we can represent the downgoing scattered waves
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Figure 1: Cartoon showing how incident waves I are reflected
by layers above and below the fracture zone. The gray hori-
zontal zone with vertical black lines denotes the fracture zone,
O1 and O2, respectively, are waves reflected back by layers
above and below the fracture zone, of which the reflectivities
are r1 and r2, respectively. T is the transmitted waves.

as a convolution of the fracture systems transfer function and
the incident wave field:

S(ω) = f (ω) · I(ω) (3)

where f (ω) is the transfer function for fracture scattering.

By substituting Equation 3 into Equation 2, we get
T (ω) = I(ω) · [1+ f (ω] (4)

Equation (4) is the Born approximation. The downgoing wave
field T is reflected back to the fracture zone by reflectors below
it, and the upgoing trasmitted waves generate scattered waves
again, thus we can express the upgoing wave field O2 as

O2(ω) = r2(ω) ·T (ω) · [1+ f (ω)] = r2(ω) · I(ω) · [1+ f (ω)]2 (5)

where r2(ω) is the reflectivity of the lower reflectors.

In Equation 5, we assume the transfer function f (ω) is inden-
tical for downgoing and upgoing waves. The physics behind
this assumption is that fractures are subvertical and there is no
preferential dip direction. Thus, the transfer function of the
fracture zone is

T F(ω) =
O2(ω)
O1(ω)

=
r2(ω)
r1(ω)

· [1+ f (ω)]2 (6)

We define the fracture transfer function as

FT F(ω) = |1+ f (ω)|=
˛̨̨̨

T F(ω)
T F0(ω)

˛̨̨̨1/2
(7)

where T F0(ω) = r2(ω)/r1(ω) is the matrix transfer function.

The background matrix response can not be measrued directly
in the field, but the scattered waves can be reduced by stacking
through an appropriate way, so the stacked data can be used to
estimate the background reflectivity. Thus, the matrix transfer
function can be expressed as

T F0(ω) =
O0

2(ω)

O0
1(ω)

(8)

where O0
1(ω) and O0

2(ω) are data after stacking.

Therefore, the fracture transfer function can be rewritten as

FT F(ω) =
˛̨̨̨

T F(ω)
T F0(ω)

˛̨̨̨1/2
=

˛̨̨̨
˛O2(ω) ·O0

1(ω)

O1(ω) ·O0
2(ω)

˛̨̨̨
˛
1/2

(9)
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Instead of calculating f (ω) directly, we prefer to calculate
FT F(ω), because FT F(ω) can be obtained by simply calcu-
lating the amplitude spectrum of the data. So the result is less
sensitive to the analysis time window and thus more robust. In
the calculation of Equation 9, a water level is added to the de-
nominator to avoid instability, and multi-taper spectral method
(Park et al., 1987) is applied to obtain an accurate result.

Willis et al. (2006) pointed out that the fracture scattered wave
field acquired normal to the fracture strike direction is incoher-
ent, while the scattered wave field acquired parallel to the frac-
ture strike is much more coherent. After stacking, the scattered
waves can be enhanced in the fracture strike direction, while
they are eliminated significantly in the direction normal to the
fracture strike. Based on these observations, fracture strike
can be determined by identifying the acquisition direction with
shot records containing coherent scattered waves (Willis et al.,
2006). With multi-azimuth data, we stack the data into differ-
ent azimuthal stacks, as in Willis et al. (2006), and calculate
the FT F for each azimuth. So, at each CDP, FT F is a func-
tion of frequency and azimuth, thus, Equation 9 can be written
as

FT F(ω,θ) =

˛̨̨
O2(ω,θ) ·O0

1(ω)
˛̨̨1/2

˛̨
O1(ω,θ) ·O0

2(ω)
˛̨1/2

(10)

where θ is the stacking azimuth.

Due to interference, the fracture scattered waves are stronger
at some frequencies. From both laboratory experiments and
numerical simulations, which will be shown later, we find that
the fracture scattered waves are stronger at the following fre-
quencies:

fn = n · V
2 ·FS

, n = 1,2, ... (11)

where FS is fracture spacing and V is velocity.

A similar relationship between fracture spacing and frequency
was observed by Willis et al. (2005), who analyzed the spectral
notches of transfer functions extracted from azimuthal stacks,
and Grandi et al. (2007), who studied the back scattering of
fractures in the F-K domain.

In our study, fn is defined as the n-th eigen-frequency of the
fracture zone, and f1 = V

2·FS is the base eigen-frequency. From
both laboratory experiments and numerical simulations, which
will be discussed later, we find that, in the direction normal to
fracture strike, due to the disruptive nature of fracture scattered
waves, notches can be found in FT F at the eigen-frequencies
after stacking, in the fracture strike direction, the scattered
waves can stack constructively, so peaks appear at the eigen-
frequencies after stacking. So the azimuthal variation of
FT F(ω,θ) is larger at the eigen-frequencies given by Equa-
tion 11. The eigen-frequencies and the azimuthal variation of
FT F after stacking give information about both fracture orien-
tation and spacing. In order to quantify the azimuthal variation
of FT F(ω,θ), which can be used to determine the fracture
orientation, we define the fracture orientation function as

FOF(θ) =
Z

ω2

ω1
FT F(ω,θ) ·SDFT F(ω) ·dω (12)

with

SDFT F(ω) =

vuut 1
N

NX
i=1

h
FT F(ω,θi)−FT F(ω)

i2
(13)

where θ is azimuth, [ω1,ω2] is frequency window, the weight-
ing function SDFT F(ω) is the azimuthal standard deviation
of FT F , FT F(ω) is the mean of the FT F at frequency ω , N
is the number of azimuthal stacks.

Because the azimuthal variation of FT F(ω,θ) is larger at the
eigen-frequencies, FOF(θ) can achieve higher resolution by
preferentially choosing the data at those frequencies through
adding the weighting function SDFT F(ω). The maximum
of FOF(θ) gives the fracture strike direction. The frequency
window [ω1,ω2] should be chosen as the one that contains the
fracutre scattered energy.

We want to emphasize that our analysis is based on two im-
portant assumptions: (1)azimuthal variation of the scattered
energy is induced by subsurface fracture systems; (2)fracture
scatterd waves are preserved and enhanced if stacking is con-
ducted along the fracture strike direction. In the following sec-
tions, we use both laboratory and numerical simulation data to
explore the FT F and FOF .

LABORATORY EXPERIMENT

We built a parallel fracture network model by cutting parallel
notches with 5 mm (±0.5 mm) spacing and 5 mm depth in a
Lucite block, then we put this Lucite block on top of another
intact Lucite block to form a two-layer model. These two Lu-
cite blocks were coupled by a very thin water layer with thick-
ness less than 0.5 mm, but the fractures are air-filled.

In this experiment, a P-wave source with 500 kHz central fre-
quency and 600 kHz bandwidth and a vertical component trans-
ducer were used to generate and record seismic waves on the
top surface of the model. The data were collected at 10 differ-
ent azimuths. For each azimuth, 7 traces with common mid-
point were collected and then stacked into a common midpoint
stack after normal moveout.

Figure 2 shows the 10 CMP stacks corresponding to acquisi-
tions at 10 different azimuths. For comparison, the CMP stack
of 7 traces from a region without fractures is shown as the blue
trace labeled ’Control’. In Figure 2, direct arrivals and sur-
face waves have been muted, the strong signals that arrive at
about 0.18 ms are the reflection from the bottom of the lower
Lucite block, the signals inside the red window are the waves
scattered from the fracture zone.

Because there is no layer interface above the fracture zone in
the Lucite model, we compute the FT F , which is shown in
Figure 3, by using the Control trace to estimate the reflectivity
of the interface between the two Lucite blocks. In our analy-
sis, the analysis time window length is 0.05 ms and time sam-
pling is 0.4×10−6 s, so the frequency resolution is 20.2 kHz.
A higher frequency resolution can be obtained by increasing
the length of the time window, however, the window length
is restricted by our Lucite model, because the results will be
influenced by the P-to-S converted waves from the interface
and the surface waves if a longer window is chosen. Because
stacking at different azimuths has different effect on the frac-
ture scattered waves, so the SDFT F(ω), which is shown as
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Figure 2: (a) shows CMP stacks at 10 different azimuths, (b)
shows the expanded view of the waves in the red window of
(a). For each azimuth, 7 traces of offsets 4 cm, 6 cm, 8 cm,
10 cm, 12 cm, 14 cm, and 16 cm were collected and stacked at
the common midpoint after applying gain and normal move-
out. The acquisition angles are denoted above each trace, ’Par-
allel’/’Normal’ indicates the acquisition is parallel/normal to
the fracture strike. ’Control’ represents the stack of traces col-
lected at the region without fractures.

the magenta curve in Figure 3, has larger value at the eigen-
frequencies which can be predicted by Equation 11. From Fig-
ure 3, we can clearly see the eigen-frequencies correspond to
the numbering of n=1, 2 and 3. n=1/2 and 1/3, respectively,
correspond to the interference of every three and four fractures
with double and triple fracture spacings. The black error bars
show the uncertainties of the predicted eigen-frequencies in-
duced by the error of fracture spacing (±0.5 mm). For the
FT F at the frequency corresponding to n=1/2, the value at
900 (normal to fracture strike) is higher than that at 00 (par-
allel to fracture strike), which seems to be conflicting with our
statement on the character of azimuthal stacking of fracture
scattered waves. To explain this, instead of using the scat-
tering theory, it would be more appropriate to adopt the ef-
fective medium theory, since the seismic wave length at this
frequency is at least twice of the fracture spacing. From tra-
ditional AVOA analysis (e.g. Ruger (1998)), which is based
on the effective medium theory, we know that the amplitude
of the reflected waves from above a fracture zone is larger if
the wave propagation direction is normal to the fracture strike
direction, which has higher impedance contrast. The analysis
time window chosen for computing the FT F already contains
these reflected waves from the fracture zone, which are the
waves that arrive at about 0.08 ms in Figure 2. Therefore, in
Figure 3, the FT F at high frequency (>200 kHz) agrees with
our understanding on fracture scattering, and the FT F at low
frequency (<200 kHz) agrees with the effective medium the-
ory. The value of the FT F below 100 kHz may not be reliable,
because the source has little energy in this frequency range and
spurious high amplitude could be caused by the spectral divi-
sion.

In Figure 4, the fracture orientation can be clearly determined
from the variation of FOF (solid curve), which is defined by
Equation 12. Because the central frequency of the source is
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Figure 3: Plot of the FT F of the fracture zone. 00 and 900 at
X-axis represent the direction parallel and normal to the frac-
ture strike, respectively. The magenta curve shows the nor-
malized SDFT F (log scale). The numbers n in the figure are
the numbering of the eigen-frequencies predicted by Equation
11. Black error bars show the uncertainties of each eigen-
frequency.
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Figure 4: Solid curve shows FOF defined by Equation 12, the
frequency window in the calculation is from 200 kHz to 800
kHz. Dash curve is the sum of FT F in the same frequency
window without adding the weight.

500 kHz, so 200kHz-800kHz would be a reasonable frequency
window for computing the FOF . The fluctuation of FOF near
the normal direction is caused by the low fold in stacking. For
comparison, we also show the sum of FT F without adding the
weighting function SDFT F(ω). In Figure 4, we can see that
a higher directional resolution can be obtained by adding the
weighting function in Equation 12.

NUMERICAL MODELING

A 3D anisotropic, elastic finite-difference code is used in the
numerical simulation. In numerical models, fractures are rep-
resented by grid cells containing an equivalent anisotropic med-
ium, which is known as the effective medium method (Coates
and Schoenberg, 1995). A five layer model with fractures in
the third layer is used in our numerical study, Table 1 shows
the property of the model. The source wavelet is a Ricker
wavelet with a 40 Hz central frequency. Fractures are verti-
cal and parallel to the y axis. Normal and tangential fracture
compliance are 10−9 m/Pa, which represents gas-filled frac-
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Table 1: Parameters of the numerical model
Layer Thickness (m) Vp(m/s) Vs(m/s) ρ(g/cm3)

1 200 3000 1765 2.20
2 200 3500 2060 2.25
3 200 4000 2353 2.30
4 200 3500 2060 2.25
5 200 4000 2353 2.30
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Figure 5: CDP stacks at ten different azimuths. Paral-
lel/Normal represnets that the acquisition direction is paral-
lel/normal to the fracture strike. The traces labeled Average
and Control, respectively, correspond to the average of ten
CDP stacks and the reference trace, which is obtained from
a reference model without fracture. Red and blue windows,
respectively, indicate the input and output windows for com-
puting the FT F .

tures. PML (perfectly match layer) is added to all boundaries
of the model.

Figure 5 shows the CDP stacks of vertical seismograms in 10
different azimuths. For each azimuth, twenty traces with off-
sets less than 400 m are chosen and stacked after NMO cor-
rection. The blue and red traces in Figure 5, respectively, are
the average of CDP stacks of ten azimuths and the control,
which is computed from a reference model without fractures.
Generally, the background matrix response of a reservoir is
unknown, but through numerical study of different models, we
find that the average of CDP stacks can be taken as an approx-
imated background response, and this approximation can give
us the correct SDFT F and would not alter the major features
of the FT F , except for increasing the overall amplitude.

Seven models with fracture spacings of 12 m, 20 m, 32 m, 40
m, 60 m, 80 m and 100 m are simulated in our study, and in or-
der to investigate the robustness of our approach, we also sim-
ulate a model which has varying fracture spacing with mean
40 m and standard deviation 4 m. Figure 6a shows the polar
plot of the FOFs for all models, which are obatined by apply-
ing Equation 12 with calculation frequency window from 10
Hz to 80 Hz. Except for the models with 12m and 20m frac-
ture spacings, the FOFs of all models clearly give the fracture
strike direction. This implies that our approach can not resolve
the fracture orientation if fracture spacing is much smaller than
the seismic wave length, which results in small azimuthal res-
olution in the FOF .

In Figure 6b, solid curves represent the theoretical eigen-
frequencies predicted by Equation 11, and asterisks are the
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Figure 6: (a) Polar plot of the SDFT Fs of eight models with
different fracture spacings, ’40 m*’ represents the fracture
spacing has a Gaussian distribution with mean 40 m and stan-
dard deviation 4 m; (b) Solid curves show the base, 2nd, 3rd
and 4th eigen-frequencies predicted by Equation 11. Asterisks
are the eigen-frequencies picked from the SDFT Fs, different
color indicates different order of eigen-frequency.

eigen-frequencies obtained from the SDFT Fs. We can see
that the base eigen-frequencies, which are represented by black
asterisks, agree well with the therotical values, and the 2nd
eigen-frequencies are also consistent with the theoretical val-
ues, shown by the blue line. But for higher order eigen-frequencies,
as seen from Figure 6b, their theoretical lines become closer to
each other, which blurs the distinction of each eigen-frequency
and makes it hard to pick the eigen-frequencies accurately.
However, this would not affect the accuracy of fracture ori-
entation detection, since the FOF is defined as the sum of
FT F over a frequency range, and we only use the base eigen-
frequency to estimate the fracture spacing, because the base
eigen-frequency is the one that can be picked from data most
accurately. Therefore, Figures 6 shows that both fracture ori-
entation and fracture spacing can be extracted from the FT F .

CONCLUSIONS

By applying Equations 11 and 12, the fracture orientation and
fracture spacing can be determined from the FT F of the frac-
ture system. Our approach has been tested using both labora-
tory experiment and numerical modeling. Moreover, the ap-
plication of this method on the Emilio Field (Italy) provides
information about both fracture orientation and fracture spac-
ing, which will be discussed in the presentation. Comparing to
the Scattering Index method, the advantage of this approach is
its robustness, we find that a stable and accurate result can be
obtained from the FT F . However, our approach can only be
applied to a fracture network with fracture spacing on the or-
der of seismic wavelength. In fracture spacing measurement,
we still need to find a better way to determine the base eigen-
frequency and to develop an uncertainty analysis method.
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