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SUMMARY

Surface topography and the weathered zone (i.e., heterogene-
ity near the earth’s surface) have great effects on elastic wave
propagation. Both surface waves and body waves are contam-
inated by scattering and conversion by the irregular surface to-
pographic features. In this paper, we present a 2D numerical
solver for the elastic wave equation that combines a 4th- order
ADER scheme (Arbitrary high-order accuracy using DERiva-
tives) with the characteristic variable method at the free surface
boundary. The method is based on the velocity-stress formu-
lation. We demonstrate the method by calculating synthetic
seismograms for simple features.

INTRODUCTION

Numerical modeling of the elastic wave equation plays a key
role in almost every aspect of seismology as it provides a means
of explaining the recorded signal associated with complex earth
models. Most of the numerical schemes solving the wave equa-
tion are either based on the strong-formulation (e.g., finite dif-
ference and spectral methods) or the weak-formulation (e.g.,
finite elements and spectral finite elements).

Finite-element methods (weak-formulation) have an advantage
over other numerical methods since they have the flexibility to
model irregular boundary conditions. However, modeling seis-
mic wave propagation with FE methods is (i) computationally
much more expensive than finite difference especially in 3D,
(ii) requires mesh generation and adaption which can be labor
intensive and not easily automated and (iii) can impose sta-
bility restrictions due to the need for very small geometrical
elements near the boundary and thus requiring very small time
steps compared to finite-difference schemes.

The difficulties with finite difference modeling are mainly in
representing and constructing the numerical grid near a topo-
graphic surface and in how to accurately satisfy the traction-
free boundary conditions on the rough surface. Several ap-
proaches to handle irregular free surfaces in finite difference
simulations exist in the literature, with different drawbacks.
(i) The simplest approach is the heterogeneous formulation,
also known as the vacuum method (Kelly et al., 1976; Virieux,
1986; Muire et al., 1992.) This implicit approach is imple-
mented easily by setting the elastic parameters above the free
surface to vanish and using a small density value in the first
velocity layer above the free surface to avoid a division by
zero. However, the vacuum method is inaccurate (Greaves,
1996), and the accuracy of the solution decreases dramatically
when the angle between the boundary and the meshing in-
creases (Bohlen and Saenger, 2006). (ii) A second approach
is to handle the free surface explicitly using the image method
in staggered schemes, which was first developed to deal with
flat surfaces (Levander, 1998) and then extended to irregular

topography (Jih et al., 1988; Robertsson, 1996; Ohminato and
Chouet, 1997). However, the image method suffers from the
discretization error due to the staircase approximation of the
surface topography, which may have an effect on the physi-
cal conversion and scattered waves. (iii) A third approach to
handle the surface topography is to use conformal mapping
and solve the elastic wave equation in curvilinear coordinates
(Tessmer et al., 1992; Zhang and Chen, 2006; Appelo and Pe-
tersson, 2009). This approach, however, requires mesh gen-
eration and adaption, and it involves expanding the first order
hyperbolic velocity-stress equations in curvilinear coordinates,
which can be very expensive for large-scale problems.

To avoid most of these drawbacks, we developed a 2D finite-
difference solver that combines a 4th-order ADER scheme
(Schwartzkopff et al., 2005) with the characteristic variable
(CV) method (Gottlieb et al., 1982; Bayliss, 1986; Giese, 2009)
at the free surface boundary. We refer to this method as ADER-
CV. To validate this method, we benchmarked the finite differ-
ence solver with the conformal mapping method (Zhang and
Chen, 2006.)

FORMULATION OF ELASTIC WAVE MODELING

We followed the formulation of the elastodynamic equations.
For a 2D Cartesian system with a horizontal positive x-axis
pointing to the right, and a positive vertical z-axis pointing
down, the basic governing equations that describe elastic wave
propagation (in the velocity-stress formulation) are the equa-
tions of motion (Virieux, 1986)
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and the constitutive laws for an isotropic medium:
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where vx and vz are the velocity components, σi j are the stresses,
λ and µ are the Lame parameters, and ρ is density.

IMPLEMENTATION OF FREE SURFACE CONDITION
WITH SURFACE TOPOGRAPHY
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Free Surface Condition in 1D (Flat)

The boundary conditions at the free surface are zero normal
and shear stresses σxz = σzz = 0. The interior scheme requires
the use of two nodes in every direction from the point being
advanced as shown in Figure 1. The boundaries are taken into
account explicitly by using ghost points for points beyond the
free surface to impose the physical boundary condition. Thus,
at each time step, all boundary fluxes are updated at points out-
side the computational domain using the characteristic variable
method (Gottlieb et al., 1982; Bayliss et al., 1986). The vari-
ables vx, vz , and σxx are calculated by mirroring based on the
characteristic variables, which are defined as:
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where vg
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z , σ
g
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g
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g
zz are the ghost values outside the

computational domain obtained by mirroring the fluxes from
the interior domain. Combining the free surface boundary con-
dition with the mirrored fluxes of the characteristic variables
makes it possible to obtain all of the dependent variables.

Figure 1: ADER 4th order stencil with 25 points.

Free Surface Condition in 2D (Irregular)

The boundary treatment described in this section is based on
the idea developed by (Forrer and Jeltch, 1998) for the Euler
equations. The first step to find the mirror points inside the
computational domain is to calculate the normal vector to the
boundary for each ghost grid point. Therefore, we used the
fast marching level set method (Sethian 1996) to compute the
distance function of the free surface. Then, we used the dis-
tance function to find the mirror point inside the domain for
each ghost point outside the domain as shown in Figure 2. The
computation of the normal vector and the projection needs to
be done only once, and its computational cost is negligible.

The mirror point is interpolated using a 2nd order accurate La-
grange interpolation method in two dimensions given by

Pj (x) = y j

n∏
k=1
k 6= j

x− xk

x j− xk
.

where P(x) is the Lagrange interpolating polynomial of degree
≤ (n− 1) that passes through the n points (x1,y1 = f (x1)),
(x2,y2 = f (x2)), (xn,yn = f (xn)). To estimate a point in two
dimensions, the Lagrange interpolation is applied twice, once
along each direction.

In order to mirror the fluxes of the characteristic variables, we
rotated the coordinate frame by an angle θ , so the normal di-
rection is pointing in the positive z-direction (vertical) in the
new coordinate frame; then we determine the ghost values be-
fore rotating back to the original coordinate frame. The idea
can be summarized as follows:

• Transform the stresses and velocities into a local coor-
dinate frame Ũi = RθUi

• Obtain the ghost state vector Ũg using the characteris-
tics as shown in (3)

• Rotate back to the original coordinate frame Ug =R(−θ)Ũg

where Rθ is a linear transformation matrix.

(a) (b)

Figure 2: Determination of ghost values required for time-
marching at neighboring grid nodes. The blue circles corre-
spond to the ghost point (outside the domain) and its orthog-
onal projection on the surface (inside the domain). Lagrange
interpolation (a) and extrapolation (b) in 2D are used to es-
timate the point inside the domain that will be then used to
impose the boundary condition at the ghost point.

NUMERICAL EXPERIMENTS

In order to validate the ADER-CV method, we consider both
Gaussian and ramp shaped free surface models. We simulated
the excitation of an explosive source by adding a known value
to the stress for a point source with a 10 Hz Ricker wavelet. A
2D homogeneous earth consisting of a free surface over a half-
space is used as an example. The domain has 501 × 501 grid
points with 5m grid spacing, that is 2500m extent along each
axis. The benchmark test was calculated with a Courant num-
ber of

(
∆t Vp
∆x = 0.9

)
, which satisfies the stability condition.

The medium properties are: Vp = 2500m/s, Vs = 1200m/s,
and ρ = 2000kg/m3. The number of grid points per shortest
S-wavelength is about 10.



Finite Difference Elastic Wave Modeling Including Topography

The source was located at the middle of the computational do-
main at 1000m depth with a Gaussian shaped hill free surface
(200m height and 200m width) as shown in Figure 3a. Com-
parisons of the recorded pressure from the ADER-CV method
and the boundary conformal method (Zhang and Chen, 2006)
are shown in Figure 3b. The agreement between the results
calculated by the two methods is excellent. A snapshot of the
wave-field (vz-component) showing the scattering and multiple
reflections caused by the irregular surface is shown in Figure
4.

Ramp shape topography

Lastly, we show a homogeneous model with a ramp shape free
surface, in which the topography has a significant impact on
the seismic response. The slope of the ramp edge has a dis-
continuity, making it an extreme topographic model.

Time series of the velocity components along the free surface
of the ramp shape model is shown in Figure 5. Due to the
existence of sharp edges, strong and complex multiple body,
shear and several Rayleigh wave packages are clearly identi-
fied on the synthetic seismograms. The method has also been
applied to more complex models with surface topography and
near surface heterogeneity.

CONCLUSION

A 2D ADER time-domain single-grid finite difference approx-
imation of first order PDEs that is 4th order accurate in time
and space (with velocity-stress formulation) was developed
to model wave propagation in linearly elastic and isotropic
media with an irregular free surface. The characteristic vari-
able method is implemented to account for the free surface
B.C., and extended to handle arbitrary smooth boundaries. The
scheme does not require mesh generation and adaption, and it
does not involve expanding the governing equations in curvi-
linear coordinates, which can be computationally and labor in-
tensive. The computational cost added by treating the topogra-
phy is negligible compared to flat free surface as only a small
number of grid points near the boundary needs to be computed.
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Figure 3: A Gaussian shaped hill. The computational domain
is shown in (a): the source (red) and receivers (blue). (b)
Comparisons of the recorded pressure at the receiver locations:
ADER-CV (dashed-red) against the boundary conformal solu-
tion (black).

Figure 4: Snapshot of the wave-field vz component showing
the scattering and multiple reflections caused by the irregular
surface shown in Figure 3a.
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Figure 5: Time series of the velocity components along the free surface of the ramp shape surface model in (a), (b) the horizontal
velocity vx and (c) the vertical velocity vz. The obvious phases are labeled, where P indicates P-wave, R indicates Rayleigh wave,
and PRrefl indicates P to Rayleigh reflection.


