
Feature Engineering for Clustering Student Solutions
Elena L. Glassman Rishabh Singh Robert C. Miller

MIT CSAIL, 32 Vassar St. Cambridge, MA
{elg,rishabhs,rcm}@mit.edu

ABSTRACT
Open-ended homework problems such as coding assignments
give students a broad range of freedom for the design of so-
lutions. We aim to use the diversity in correct solutions to en-
hance student learning by automatically suggesting alternate
solutions. Our approach is to perform a two-level hierarchi-
cal clustering of student solutions to first partition them based
on the choice of algorithm and then partition solutions imple-
menting the same algorithm based on low-level implemen-
tation details. Our initial investigations in domains of intro-
ductory programming and computer architecture demonstrate
that we need two different classes of features to perform ef-
fective clustering at the two levels, namely abstract features
and concrete features.

Author Keywords
Algorithm recognition; program comprehension; feature
engineering

ACM Classification Keywords
K.3.1 Computers and Education: Computer Uses in
Education—Computer-assisted instruction (CAI)

INTRODUCTION
There are a variety of ways in which students implement so-
lutions for open-ended homework problems such as coding
assignments. Their correct solutions vary in at least two di-
mensions: (i) choice of algorithm, and (ii) choice of language
constructs and library functions for the low-level implemen-
tation. This variation among correct solutions gives us an
opportunity to use them to enhance student learning, in ac-
cordance with Marton et al.’s Variation Theory (VT) [3]. VT
holds that in order to learn concepts, one must see examples
that vary along dimensions of contrast, generalization, sep-
aration, and fusion. In this work, we aim to build a system
that can automatically provide students with examples of al-
ternative correct solutions across these different dimensions,
powered by a large dataset of previous student solutions.

In order to separate solutions along VT’s recommended di-
mensions, we must design metrics that capture the distinc-
tions VT makes between solutions. Our first exploratory

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
L@S’14, March 4–5, 2014, Atlanta, GA.
ACM 978-1-4503-2669-8/14/03
((DOI HERE))

feature design study is based on a large dataset of stu-
dents’ Python submissions from an introductory program-
ming course offered on the edX MOOC platform in Fall 2012.

We show a few hand-picked examples in Figure 1 from the
comp-deriv problem, which computes the derivative of a
polynomial. To illustrate VT’s contrast dimension, we in-
clude an example of a comp-deriv solution paired with a so-
lution to a different problem, eval-poly. Under the gener-
alization heading, we have shown two solutions that use the
same approach or algorithm, but different low-level functions
and language constructs to implement it. We illustrate the
separation dimension of variation by pairing two comp-deriv
solutions that implement different algorithms.

RELATED WORK
A common goal of the prior work cited here is to help teachers
monitor the state of their class, or provide solution-specific
feedback to many students. However, the techniques for an-
alyzing solutions have not converged on a particular method.
Huang et al. [1] use unit test results and AST edit-distance al-
gorithms to identify clusters of submissions that could poten-
tially receive the same custom feedback message. Taherkhani
et al. [4] identify which sorting algorithm a student imple-
mented using supervised machine learning methods. Each so-
lution is represented by statistics about language constructs,
measures of complexity, and detected roles of variables.

Luxton-Reilly et al. [2] label types of variations as structural,
syntactic, or presentation-related. The structural similarity is
captured by the control flow graph of the student solutions.
If the control flow of two solutions is the same, then the syn-
tactic variation within the blocks of code are compared by
looking at the sequence of token classes. Presentation-based
variation, such as variable names and spacing, is only exam-
ined when two solutions are structurally and syntactically the
same. Our motivation is similar to that of Luxton-Reilly et
al., but we explore a less strict notion of solution similarity.

OUR APPROACH
We are pursuing a two-level hierarchical clustering method-
ology. The high-level clusters are intended to partition so-
lutions along the separation dimension, where each cluster
represents a particular algorithm. We have used k-means to
create these high-level clusters of solutions based on abstract
features. The abstract features for Python programs consist
of 12 features that include the position of conditional state-
ments relative to the loop statements (before, after, or inside),
the depth of nested loops, number of AST nodes, return state-
ments, loops, comparisons, etc.

The sub-clusters within each high-level cluster are intended
to capture the generalization dimension, where the only dif-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78055688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONTRAST GENERALIZATION SEPARATION

def computeDeriv(poly):
ans = []
for i in range(1,len(poly)):

ans.append(i*poly[i])
if ans == []:

ans = [0.0]
return ans

def computeDeriv(poly):
powers = len(poly)
if powers == 1:

return [0.0]
deriv = []
for i in range(powers):

deriv.append(poly[i]*i)
return deriv[1:]

def computeDeriv(poly):
idx = 1
res = list([])
polylen = len(poly)
if polylen == 1: return [0.0]
while idx <= polylen:

coeff = poly.pop(1)
res.append(coeff*idx)
idx = idx + 1
if len(poly) < 2: return res

def evaluatePoly(lis,a):
total = 0
for i in range(len(lis)):

e = lis[i]*(a**i)
total = total + e

return total

def computeDeriv(poly):
if len(poly) > 1:

res = []
else: return [0.0]
for i in range(len(poly)):

res.append(poly[i]*i)
res.pop(0)
return res

def computeDeriv(poly):
result = []
for i in range(1,len(poly)):

result.append(i*poly[i])
if len(result) == 0:

result.append(0.0)
return result

Figure 1: Hand-selected examples of student solutions varying along Variation Theory dimensions. Students were asked to im-
plement a function to compute a polynomial’s derivative; the polynomial’s coefficients are represented as a list. The contrast
dimension contains examples that are and are not a derivative-computing function. The generalization dimension includes ex-
amples with the same algorithm but different low-level implementations. The separation dimension captures the full variation of
implementations which still compute the derivative of a polynomial.

ferences between clusters are low-level language constructs
and used library functions. We plan to use k-means again on
solutions within each high-level cluster, based on low-level,
concrete features. The concrete features for Python programs
consist of 48 low-level features that include the number of
specific types of operators (add, subtract, etc.), comparisons
(<, >, etc.), loops (while or for), library functions, and state-
ments (assignments, conditional, or loop), number of pro-
gram variables, constant values, etc.

PRELIMINARY RESULTS
We use abstract features for k-means clustering of student so-
lutions for the separation dimension, which partitions the so-
lutions into k clusters. We compute clusterings for different
k values, and then compare these clusterings to those created
by two course teaching assistants (TAs). The TAs were given
50 randomly chosen student solutions as a clustering task. We
did not give them specific directions for clustering, in order to
better understand how the TAs naturally group solutions. We
observed that they ignored low-level features, e.g., they clus-
tered together solutions implementing the same algorithm but
using different functions such as pop, list slicing, and delete.

We use the adjusted mutual information (AMI) metric to
compare TAs’ clusterings with each other and with our k-
means clustering. An AMI value of 0 indicates purely in-
dependent clusterings, whereas a value of 1 indicates perfect
agreement between the clusterings. The agreement of the two
TAs’ clusterings, referred to here as the inter-TA AMI, is only
0.3275. When k was sufficiently high, i.e., at least 15, the
k-means-produced clusterings agreed, as measured by AMI,
with each TA’s clusterings as much or more than the TAs’
clusterings agreed with each other. We found high agreement

between our k-means and TA-produced clusterings on two
additional coding assignments as well.

FUTURE WORK
We are generalizing this approach to two additional domains.
The Mathworks runs an online game, Cody. Users submitted
218,000 Matlab functions as solutions to 1000 or so prob-
lems. We hope to categorize software metrics, library func-
tions, and language constructs within Matlab functions as
abstract features, differentiating algorithms, or concrete fea-
tures, distinguishing implementations of the same algorithm.
The second domain is code written by MIT students in a hard-
ware description language. Students define their own library
of circuits, from which larger circuits are composed. Within
each high-level cluster based on overall structure, we could
cluster based on low-level library circuit implementation.

REFERENCES
1. Huang, J., Piech, C., Nguyen, A., and Guibas, L. J.

Syntactic and functional variability of a million code
submissions in a machine learning mooc. In AIED
Workshops (2013).

2. Luxton-Reilly, A., Denny, P., Kirk, D., Tempero, E., and
Yu, S.-Y. On the differences between correct student
solutions. In ITiCSE ’13, ACM (2013), 177–182.

3. Marton, F., Tsui, A., Chik, P., Ko, P., and Lo, M.
Classroom Discourse and the Space of Learning. Taylor
& Francis, 2013.

4. Taherkhani, A., Korhonen, A., and Malmi, L. Automatic
recognition of students’ sorting algorithm
implementations in a data structures and algorithms
course. In Koli Calling, ACM (2012), 83–92.

	Introduction
	Related Work
	Our Approach
	Preliminary Results
	Future Work
	REFERENCES

