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Abstract—In this paper we consider the additive white Gaus-
sian noise channel with an average input power constraint in the
power-limited regime. A well-known result in information theory
states that the capacity of this channel can be achieved by random
Gaussian coding with analog quadrature amplitude modulation
(QAM). In practical applications, however, discrete binary chan-
nel codes with digital modulation are most often employed. We
analyze the matched filter decoding error probability in random
binary and Gaussian coding setups in the wide bandwidth regime,
and show that the performance in the two cases is surprisingly
similar without explicit adaptation of the codeword construction
to the modulation. The result also holds for the multiple access
and the broadcast Gaussian channels, when signal-to-noise ratio
is low. Moreover, the two modulations can be even mixed together
in a single codeword resulting in a hybrid modulation with
asymptotically close decoding behavior. In this sense the matched
filter decoder demonstrates the performance that is largely
insensitive to the choice of binary versus Gaussian modulation.

I. INTRODUCTION

The additive white Gaussian noise (AWGN) channel model
has been thoroughly studied in information theory. In the
discrete-time case the capacity of AWGN channel is given
by C = 1

2 ln
(

1 + P
N0

)
= 1

2 ln(1 + γ) (nats) with an average
input power constraint P , a noise power N0, and the resulting
signal-to-noise ratio (SNR) γ = P

N0
. This capacity can be

achieved by the random coding with codeword symbols drawn
from the zero-mean Gaussian distribution N (0, P ) [1].

Gaussian inputs are difficult to implement by digital equip-
ment, and are rarely used in real communications. Practical
codebooks are binary. The usage of binary symbols over the
AWGN channel does not allow to achieve the channel capacity.
However, the gap to capacity is practically negligible for
γ < 0 dB. The maximal achievable rate of a coding scheme
with random binary inputs {+

√
P ,−

√
P} and the Gaussian

channel is described in [2]; in the low-SNR regime (γ → 0)
it is approximated as

RB(γ) =
γ

2
+O(γ

3
2 ). (1)

As SNR goes to zero, the RB asymptotically approaches
the channel capacity, i.e. the maximal achievable rate of a
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coding scheme with the Gaussian input distribution, since
C = 1

2 ln (1 + γ)
γ→0
≈ γ

2 .
Similar results hold for the continuous-time AWGN channel

with a (two-sided) noise spectral density N0

2 and a passband
bandwidth W . Its capacity is given by CAWGN = W ln(1 +

γ)
γ→0
≈ Wγ, with an average input power constraint P , where

the SNR is γ = P
WN0

. This capacity is achieved by the random
Gaussian N (0, P

2W ) coding with analog quadrature amplitude
modulation and a continuous constellation. The random binary
coding with codeword symbols {+

√
P
2W ,−

√
P
2W } and binary

phase-shift keying (BPSK) modulation approaches the rate
CAWGN tightly as the SNR goes to zero (per (1)). This is
also true for high-order phase-shift keying (PSK) or quantized
QAM modulations.

Note that the fact that two modulations have the same
capacity in the low-SNR regime does not imply that they
have similar code and decoder constructions. For instance,
impulsive frequency-shift keying with low duty cycle is also
capacity-approaching for the wide-bandwidth AWGN channel
[3], but it employs a specific modulation and its error perfor-
mance is different from that of random coding.

In our work we consider random coding and matched
filter decoding. Matched filter is a maximum likelihood (ML)
decoder, so it achieves the best (lowest) decoding error prob-
ability. The decoder outputs the codeword which has the
maximal correlation with the channel output, i.e. the maximal
sum of ML metrics over the entire channel output vector.
Each metric is the product of a (demodulated) channel output
symbol and the corresponding symbol of all codewords in
the codebook. Therefore, this decoder uses metrics on per
codeword symbol basis. The intuition behind codeword symbol
metrics refers us to the technique of bit-interleaved coded
modulation [4], which demonstrates optimal performance with
decoding separated from demodulation. This behavior is quite
unusual in the traditional coding theory, where decoding and
demodulation should typically be performed together.

Based on the idea of ML symbol metrics, we show that in
the case of random binary and Gaussian coding in the low-
SNR regime, the error performance is essentially independent
of the modulation in use, specifically, for analog Gaussian
distributed QAM and BPSK. We also demonstrate that random
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binary and Gaussian codewords can be mixed together into
a hybrid code as on Figure 1 with asymptotically negligible
effect on performance.

The rest of the paper is organized as follows. In Section
II, we consider a discrete-time channel, introduce pairwise
error decoding probability, and use the Berry-Esseen theorem
to estimate the difference between such probabilities in the
cases of random binary and Gaussian coding. In Section III
we use these results to give an upper bound in a bandlimited
Gaussian channel to the difference of the average probabilities
of decoding error between the two coding schemes, BPSK and
analog QAM, respectively. We show this difference vanishes
as the bandwidth grows sufficiently large. In Section IV we
extend our results to the codes which mix both the binary
and the Gaussian symbols in their codewords. In addition, we
generalize our bound to multiple user and degraded broadcast
channels.

II. DISCRETE-TIME CHANNEL — TWO CODEWORDS

Let us consider an additive discrete-time Gaussian channel
Y n = Xn + Zn with a Gaussian noise z = (z1, . . . , zn),
zi’s are iid and drawn from N (0;N). A codebook C contains
codewords cm ∈ C of a length n. They are drawn randomly
and independently from the binary Uniform

(
{+√p,−√p}n

)
or the Gaussian N (0; p)n distribution in the binary or the
Gaussian coding cases, respectively.

Suppose that a codeword A = (A1, . . . , An) has been sent.
Upon receiving a noisy input Y = A + Z the matched filter
decoder outputs a codeword B for which the channel output
Y is the most likely result. The decoder uses ML symbol
metrics λmi , Yicmi, where cmi is the i-th symbol of the
codeword cm. The decoder decision on the input Y is given
by g(Y ) = arg maxc∈C

∑n
i=1 λmi = arg maxc∈C c · Y (here

and further vectors are multiplied in the inner product sense).
Thus the g(Y )’s correlation with the Y is the largest over the
entire codebook. The average pairwise probability of error,
i.e. the probability that A + Z will be decoded to a specific
codeword B 6= A is:

ε(A,B) = Pr[B(A+ Z) ≥ A(A+ Z)]

= Pr[

n∑
i=1

Bi(Ai + Zi) ≥
n∑
i=1

Ai(Ai + Zi)]

= Pr[
∑

(Bi −Ai)(Ai + Zi) ≥ 0]

= Pr[
∑(

(Bi−Ai)(Ai+Zi)+E[A2
1]
)
≥ nE[A2

1]]

= Pr[

∑
Ui√
n
≥ p
√
n].

(2)
Here, A,B are two different codewords in the code-

book, and Ui , (Bi − Ai)(Ai + Zi) + p. Since all
codeword symbols in all the codewords are chosen inde-
pendently from the input distribution, the random variables
{A1, . . . , An, B1, . . . , Bn, Z1, . . . , Zn} are mutually indepen-
dent. Clearly the Ui’s are also independent for different
values of i, and are identically distributed random variables
with mean EUi = E[B1A1+B1Z1−A2

1−A1Z1+p] = 0. Let

Fig. 1. Mixing of binary and Gaussian codewords

µk = E[Ak1 ] = E[Bk1 ] be the k-th moments of codeword
symbols. In the binary case µ2k = pk, in the Gaussian case
µ2k = (2k − 1)!!pk. All odd moments are zero. For the Ui’s
we can calculate their variance

σ2 = V ar[Ui]

= E
[
(B1A1 +B1Z1 −A2

1 −A1Z1 + p)2
]

= 2E[Z2
1 ]p+ µ4,

(3)

and upper-bound the absolute third moment via the Cauchy-
Schwarz inequality

ρ = E[|U1|3]

≤
√

E[U4
1 ]E[U2

1 ]

=
(
E[Z4

1 ](6p2 + 2µ4) + E[Z2
1 ](−24p3 + 30pµ4 + 6µ6)

+ 3p4 − 6p2µ4 + µ2
4 + 2pµ6 + µ8

)1/2
(2E[Z2

1 ]p+ µ4)1/2.
(4)

In the calculation of the variance and the third moment bound
all terms Ai1B

j
1Z

k
1 with odd powers of A1, B1, or Z1 are zero

mean, and do not affect the result. Note, that by (3), (4) for
p� E[Z2

1 ] = N (the low-SNR regime) we have

σ2
b ≈ σ2

g ≈ 2Np

ρb ≤ 4
√

3(Np)3/2, ρg ≤ 6
√

2(Np)3/2.
(5)

The indices ‘b’ and ‘g’ of σ, ρ denote the binary and the
Gaussian cases, respectively.

We shall upper bound the difference between the pairwise
probabilities (2) in the binary and the Gaussian cases using
the Berry-Esseen theorem [5]. The theorem is a quantitative
version of the central limit theorem: it gives the maximal error
of approximation of a scaled sum of iid random variables
Xi by the normal distribution. If E[Xi] = 0,E[X2

i ] >
0,E[|X3

i |] <∞, then for any real t∣∣∣∣Pr[

∑n
i=1Xi√
n

≤ t]− ΦE[X2
1 ]

(t)

∣∣∣∣ ≤ CE[|X3
i |]

E[X2
i ]3/2

√
n
, (6)

where Φσ2(t) is the cumulative distribution function (CDF)
of the zero-mean normal distribution with variance σ2, and
C < 0.5 [6].

Per the Berry-Esseen theorem we have∣∣∣∣Pr[

∑
Ui√
n
≤ t]− Φσ2(t)

∣∣∣∣ ≤ Cρ

σ3
√
n
. (7)

Let us compare the average pairwise probabilities of error
(2) for the Gaussian and the binary cases. Since the pairwise



probabilities of error do not depend on specific codewords
A,B, we denote the result just by ∆εpw, where the subscript
stands for “pairwise”:

∆εpw , |εg(A,B)− εb(A,B)| (8a)

=

∣∣∣∣Pr[

∑
Ugi√
n
≤ t]− Pr[

∑
U bi√
n
≤ t]

∣∣∣∣ (8b)

=

∣∣∣∣Pr[

∑
Ugi√
n
≤ t]− Φσ2

g
(t) + Φσ2

g
(t) (8c)

− Φσ2
b
(t) + Φσ2

b
(t)− Pr[

∑
U bi√
n
≤ t]

∣∣∣∣ (8d)

≤
∣∣∣∣Pr[

∑
Ugi√
n
≤ t]− Φσ2

g
(t)

∣∣∣∣ (8e)

+
∣∣∣Φσ2

g
(t)− Φσ2

b
(t)
∣∣∣ (8f)

+

∣∣∣∣Φσ2
b
(t)− Pr[

∑
U bi√
n
≤ t]

∣∣∣∣ (8g)

≤ Cρg
σ3
g

√
n

+ Φσ2
b
(p
√
n)− Φσ2

g
(p
√
n) +

Cρb
σ3
b

√
n
. (8h)

Here the terms (8e) and (8g) are bounded by the Berry-Esseen
theorem (7), t is substituted by t=p

√
n>0. Also note that

Φσ2
b
(t) > Φσ2

g
(t) when t > 0, and we can expand (8f).

The bound (8h) shows that the average difference between
the pairwise error probabilities can be made arbitrarily small
by increasing the codelength n.

III. CONTINUOUS-TIME CHANNEL — MANY CODEWORDS

Now we consider a continuous-time band-limited channel
with additive white Gaussian noise with a flat spectral density
N0/2 and a bandwidth W (Hz). Suppose we are given
an average input power constraint P . We are in the wide
bandwidth regime (γ = P

WN0
→ 0), and we fix an information

rate R < 2WRB(γ) (bits/s), and a message duration T
(s). After that we generate a random codebook C with 2RT

codewords. Each codeword has n = 2WT components with
the variance p = P/2W . The binary codewords are modulated
with BPSK, and the Gaussian codewords with analog QAM.
After modulation, passage through the noisy channel, and
reception the receiver sees each codeword symbol perturbed
with Gaussian noise with the variance N = N0/2.

We shall use the union bound to estimate the difference
between the average probabilities of incorrect ML decoding
in the binary and the Gaussian cases, given that a codeword c
has been sent:

∆ε(c) , |εg(c)− εb(c)|

= |
∑
i:ci 6=c

εg(c, ci)−
∑
i:ci 6=c

εb(c, ci)|

≤
∑
i:ci 6=c

∆εpw ≤ (2RT − 1)∆εpw.

(9)

In order to make the union bound small, we fix the codebook
size 2RT , and make the ∆εpw small by letting the codelength
n = 2PT

N0γ
grow by decreasing the SNR and keeping the

message duration T constant. Thus, we express the ∆εpw in
(9) in terms of the message duration T and the SNR γ:

∆εpw ≤
Cρg

σ3
g

√
2PT
N0γ

+
Cρb

σ3
b

√
2PT
N0γ

+ Φσ2
b
(

√
PTγN0

2
)− Φσ2

g
(

√
PTγN0

2
).

(10)

Note that the p is expressed as γN0

2 .
After that we use the expressions (3), (4) for the σ, ρ, and

expand our bound in Taylor series at γ = 0:

∆εpw ≤ (
3√
2

+
√

3)C

√
γ

S
+

γ

2
√

2π

√
Se−S/2

+O(

√
γ3

S
) +O(γ2

√
Se−S/2)

γ<1

≤ (
3√
2

+
√

3)C

√
γ

S
+

γ

2
√

2π

√
Se−S/2

+

√
γ3

S
+
γ2

2

√
Se−S/2,

(11)

where S = PT
N0

= TCAWGN (W → ∞) is the maximal
possible amount of information in nats per codeword in the
infinite bandwidth regime. Here we again make use of the
low-SNR assumption.

Next, we use the union bound to estimate the difference
between the average decoding error probabilities over the
entire codebook. These average probabilities do not depend
on the specific transmitted codeword, and the parameter c is
omitted. We also upper-bound the numerical constants, and
use
√
Se−S/2 < 1,∀S ≥ 0:

∆ε ≤ (2RT − 1)∆εpw (12a)

≤ (2RT − 1)

(
2

√
γ

S
+
γ

5
+

√
γ3

S
+
γ2

2

)
(12b)

= (2RT − 1)

(
2√
WT

+
S

5WT
+

S

(WT )3/2
+

S2

(WT )2

)
(12c)

≤ (2RT − 1)
2 + 2γ√
WT

, δ. (12d)

The final bound δ = δ(T,W, γ,R) is given in terms of
the codeword duration, the bandwidth, the SNR and the trans-
mission rate. Increasing the bandwidth W (thus decreasing
the SNR) will make the difference between the average error
probabilities in the binary and the Gaussian cases arbitrarily
close to zero for the fixed rate R and the duration T :

lim
W→∞

∆ε ≤ lim
W→∞

δ = 0. (13)

Therefore, the ML decoder performance on random binary
codes approaches that of random Gaussian codes asymptoti-
cally.

Numerical values of the bound δ for different values of
the rate, the duration T , and the corresponding codelength
n = 2WT , are shown on Figure 2. The plot shows the bound-
ary between the practical region and the unrealistic region of



Fig. 2. Upper-bound on ∆ε for various codeword durations and bit rates;
W = 107 Hz, γ = −40–0 dB; the dashed line corresponds to codebooks
with exactly |C| = 2RT = 2 codewords, the area below this line is the
impractical region of less than 2 codewords.

codebooks with fewer than 2 codewords. For a bandwidth 107

Hz the difference between the error probabilities can be made
as low as 10−3 for bit rates below 3 bit/s, although small
codebooks with few very long codewords are needed for such
∆ε. In this setup the bound is virtually the same for the SNR
in a range [−40, 0] dB.

IV. GENERALIZATIONS

The approach used in the proof suggests that neither the
binary alphabet, nor the uniformity of the input distribution
are essential for our results. The same method of bounding the
difference between the decoding error probabilities can also
be applied to different channel setups. Further generalizations
will be pointed out in the conclusion.

In this section we extend our results to the hybrid binary-
Gaussian random coding with mixed modulation (BPSK and
continuous QAM). We also demonstrate that the results de-
rived in the previous section are valid for multiuser environ-
ments. In particular we generalize the bound (12d) to multiple
access and the degraded broadcast Gaussian channels.

A. Hybrid code

The result can be extended to mixtures of the binary and the
Gaussian random coding in which nb < n codeword symbols
are drawn from the binary distribution, and the remaining ng =
n−nb symbols — from the Gaussian distribution (see Figure
1). The specific places of the binary and the Gaussian symbols
in a codeword are not important, as long as they are the same
for all codewords. The difference ∆εh−bpw between the pairwise
error probability of this hybrid coding and that of the pure

binary coding can be upper-bounded in a way similar to (8):

∆εh−bpw =

∣∣∣∣∣Pr[

n∑
i=1

Uhi ≤ pn]− Pr[

n∑
i=1

U bi ≤ pn]

∣∣∣∣∣
=

∣∣∣∣Pr[

∑ng

i=1 U
g
i√

ng
≤ pn
√
ng

]− Pr[

∑ng

i=1 U
b
i√

ng
≤ pn
√
ng

]

∣∣∣∣
≤ Cρg
σ3
g
√
ng

+ Φσ2
b
(
pn
√
ng

)− Φσ2
g
(
pn
√
ng

) +
Cρb
σ3
b

√
ng
.

(14)
If ng = αgn for some constant αg , then, by following the

arguments used for (10)–(12d), we result in

∆εh−b = (2RT − 1)∆εh−bpw

≤ (2RT − 1)
2 + 2γ√
WTαg

= δ/
√
αg,

(15)

where δ is the upper bound (12d). The difference ∆εh−g

between the hybrid and the Gaussian codes has the same
expression with αb = n/nb instead of the αg . On the other
hand ∆εh−b ≤ ∆εh−g + ∆ε by the triangular inequality.
Therefore,

∆εh−b ≤ (2RT − 1) min{(∆εh−g + ∆ε), δ/
√
αg}

≤ δmin{α−1/2b + 1, α−1/2g } ≤ 2.15δ.
(16)

Similarly, ∆εh−g≤2.15δ. The similar results can also be
obtained be applying a more general version of Berry-Esseen
theorem for non-identically distributed summands ([5]) to the
mixture input distribution.

B. Gaussian Multiple Access Channel

Consider M transmitters (users) with average power con-
straints Pm. A wideband multiple access channel with a
Gaussian noise spectral density N0/2 and a bandwidth W
(Hz) is given by Y =

∑M
m=1X(m) +Z. We assume that the

total SNR is small
∑M

m=1 Pm

WN0
� 1. Each user is associated with

a random codebook Cm of a size 2nRm . If the transmission
rates Rm of the users are in the MAC capacity region∑
m∈S

Rm<W log(1+

∑
m∈S Pm

WN0
) ∀S⊆{1, . . . ,M}, S 6=∅,

(17)
then the receiver can decode the messages of all the users
correctly with high probability by decoding the messages
successively with interference cancellation [8], [9].

In the low-SNR regime there is even no need for inter-
ference cancellation, we just treat the signals from all the
users but one as an extra noise

∑
k 6=mX(k). The correspond-

ing shrinking of the capacity region is at most W (log(1 +
Pm

WN0+
∑

k 6=m Pk
) − log(1 + Pm

WN0
)) ≈ −Pm

∑M
k=1 Pk

WN2
0

and is
negligible with respect to the capacity in the low-SNR regime.

As before, we start with analyzing the average pairwise
error probabilities in the binary and Gaussian cases, and then
proceed to the case of many codewords. Let A = (Am)Mm=1,
B = (Bm)Mm=1 be two sets of independent and identically dis-
tributed codewords for all the users, E[|Ami |2] = E[|Bmi |2] =



Pm

2W . Then, the probability of decoding into the B when the
A was sent is bounded by

εMAC
pw (A,B) ≤

∑
m

Pr[Bm(

M∑
k=1

Ak+Z)≥Am(

M∑
k=1

Ak+Z)].

(18)
Each summand on the right side can be expressed by (2) with
Umi = (Bmi − Ami ) · (

∑M
k=1A

k
i + Zi) + Pm

2W . The low-SNR
approximations (5) still hold for E[|Umi |2] and E[|Umi |3], given
p = Pm

2W . Next, we use (8h) to bound the difference between
the average pairwise error probabilities in the binary and the
Gaussian cases for every term in the summation (18). For the
case of many codewords with a duration T and a codelength
n = 2WT the difference between the average probabilities of
decoding error per (12d) is bounded by

∆εMAC ≤
M∑
m=1

(2RmT − 1)
2 + 2Pm

WN0√
WT

. (19)

C. Gaussian Degraded Broadcast Channel

Consider a transmitter X with an average power constraint
P , and M receivers (users) {Ym}Mm=1 with Gaussian noise
spectral densities {Nm/2}Mm=1, N1 < N2 < · · · < Nm. A
wideband degraded broadcast channel with a bandwidth W is
given by Y (m) = X + Z(m) for 1≤m≤M . In the low-SNR
regime P

WN1
� 1. Each user is associated with a random

codebook Cm of a size 2nRm . If the transmission rates Rm
between the transmitter and the users are in the capacity region

Rm < W log(1+
αmP

WNm +
∑m−1
k=1 αkP

) ∀m ∈ {1, . . . ,M}

for some (α1, . . . , αM ), such that αk≥0,

M∑
k=1

αk=1, (20)

then all the receivers can decode their messages correctly with
high probability, given the transmitter allocates αm fraction of
its power to the m-th user. Each user decodes the messages of
less capable users first, then performs interference cancellation
and decodes its own message [10], [11].

As we did with multiple access channel, we simplify
decoding in the low-SNR regime by treating other users’
messages as an extra noise. The capacity region shrinks to
Rm < W log(1 + αmP

WNm+P (1−αm) ), its difference with (20) is
negligible. Let A = (Am)Mm=1, B = (Bm)Mm=1 be two sets of
independent and identically distributed codewords for all the
users, E[|Ami |2] = E[|Bmi |2] = αmP

2W . Then, the probability of
decoding into the B when the A was sent is bounded by

εDBCpw (A,B)≤
∑
m

Pr[(Bm−Am)

(
M∑
k=1

Ak+Z(m)

)
≥ 0].

(21)
Each term on the right side can be expressed by (2) with
Umi = (Bmi −Ami )(

∑M
k=1A

k
i +Zi(m))+αmP

2W . The low-SNR
approximations (5) still hold for E[|Umi |2] and E[|Umi |3],
given p=αmP

2W . By using (8h) and (12d), we get a bound for
the difference between the average probabilities of decoding

error with the Gaussian/binary coding for the case of many
codewords with a duration T and a codelength n=2WT :

∆εDBC ≤
M∑
m=1

(2RmT − 1)
2 + 2αmP

WNm√
WT

. (22)

V. CONCLUSION

In this paper we compared the performance of matched filter
decoding of the binary and Gaussian coding in the AWGN
channel with average input power constraint. We showed that
in the low-SNR wide-bandwidth regime in capacity approach-
ing setups with binary encoder and BPSK modulation the
decoding error probability is asymptotically close to that of the
random Gaussian coding scheme with continuous constellation
with the same codelength. The result can be easily extended to
multiuser channels. The binary input distribution achieves the
lowest value of ρ/σ3 in (8h), and is therefore the closest to the
optimal Gaussian input distribution in terms of the bound (12a)
on ∆ε. However, the technique we used for comparison of
the input distributions also works for non-binary distributions
(with more than 2 points of support), thus, our result is valid
for higher order digital modulations (QPSK, 16-QAM, etc.).
The performance of non-uniform input distributions can also
be bounded with our method. They come up, for example,
in the channels with a peak power constraint, whose optimal
input distributions are not Gaussian, nor even continuous
[7]. Finally, different codeword symbols do not need to be
identically distributed. We analyzed a hybrid code which uses
both Gaussian, and binary symbols in its codewords, and
requires both discrete and continuous modulation at the same
time. Such a code is comparable to the pure binary or the pure
Gaussian codes in terms of the error performance.
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