
A SIMULATION MODEL FOR
DYNAMIC SYSTEM AVAILABILITY ANALYSIS

by

D. L. Deoss and N. 0. Siu
May, 1989

MITNE-287

A SIMULATION MODEL FOR
DYNAMIC SYSTEM AVAILABILITY ANALYSIS

by

D. L. Deoss and N. 0. Siu
May, 1989

MITNE-287

Nuclear Engineering Department
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Abstract

Current methods of system reliability analysis cannot easily evaluate the
time dependent availability of large, complex dynamic systems. This report
describes a discrete event simulation program developed to treat such prob-
lems. The program, called DYMCAM (DYnamic Monte Carlo Availability
Model), allows the user to construct system models by specifying components
and the links between components. External events, needed in phased mission
analysis, are also incorporated. A number of example problems are analyzed to
illustrate the accuracy of the base program, and the ease with which various
additional features (e.g., complex repair processes) can be incorporated. In
particular, an application to a simple process control system is performed to
show how continuous variables can be treated within the discrete event simula-
tion framework.

- ii -

Acknowledgements

This report is based on the master's thesis of the first author. Both
authors would like to thank CACI, Inc., who provided the SIMSCRIPT 11.5
program language and associated documentation. This language was used to
create the DYMCAM program described in the report. Thanks are also given
to Professor Tunc Aldemir of Ohio State University for providing data neces-
sary for one of the example problems treated, and to the U.S. Navy, who
provided financial support.

- iii -

TABLE OF CONTENTS

Page

Abstract - - - - - . - - - - - - -

Acknowledgementsiii

Table of Contents . iv

List of Figures . .

List of Tables . .

List of Appendices

Chapter 1. Introduction

Chapter 2. DYMCAM
2.1 Model Characteristics
2.2 SIMSCRIPT 11.5
2.3 Base Program Characteristics
2.4 DYMCAM Program Elements and Flow

Chapter 3.
3.1
3.2
3.3
3.4
3.5

Chapter 4.
4.1
4.2
4.3
4.4
4.5

Application of DYMCAM
Single Component, Single Repair State . . .
Single Component, Dual Repair State
Two-out-of-Three System
Phased Mission Problem
Summary

Continuous Simulation Application
Problem Description *.
The TANK Program - Modifications to DYMCAM
Simplified Model for Benchmarking
Simulation Analysis
Summary

Chapter 5. Summary and Conclusions

References

- iv -

v

vii

viii

1

3
4
6
9
11

. 27
. 27
. 29
. 33
. 35
. 51

. 51
. 51
. 53
. 58
. 64
. 66

. . . . 83

. . . . 85

List of Figures

Figure Page

1 State Transition Diagram for a Simple System 18

2 General Component Model 19

3 Active Component 20

4 Passive Component 21

5 Valve 22

6 Check Valve 23

7 Switch 24

8 DYMCAM Program Flow Chart 25

9 Simulation Unavailability Time Line 40

10 Single Component, Single Repair State - 41
Average Unavailability

11 Single Component, Single Repair State - 42
Time Dependent Unavailability

12 Single Component, Dual Repair State - 43
Average Unavailability

13 Single Component, Dual Repair State - 44
Time Dependent Unavailability

14 Two out of Three Pumps System Diagram 45

15 Two out of Three Component - Average Unavailability 46

16 Markov State Transition Diagram for Two out of Three 47
Pump System

17 Two out of Three Component - Time Dependent Unavailibility48

18 Light Bulb Problem Diagram 49

19 Tank Problem Diagram 72

20 Flow Chart of TANK Problem 73

21 TANK Program Signals 74

List of Figures (cont.)

Figure Page

22 Tank Case A State Transition Diagram 75

23 Tank Case F State Transition Diagram 76

24 Case A - Cumulative Dryout Probability 77

25 Case A - Cumulative Overflow Probability 78

26 Comparison with Ref. 10's Results for Case A 79

27 Cumulative Dryout Probability 80

28 Cumulative Overflow Probability 81

29 Comparison with Ref. 10's Results for Case F 82

- vi -

List of Tables

Table Page

1 DYMCAM Subroutines 17

2 Single Component, Single Repair State, Instantaneous 35
Unavailability

3 Single Component. Dual Repair State, Instantaneous 36
Unavailability

4 Two out of Three Component Instantaneous Unavailability 37

5 Light Bulb Problem Results (1,000 to 5,000 Trials) 38

6 Light Bulb Problem Results (6,000 to 10,000 Trials) 39

7 Flow Control Unit States as a Function of Fluid Level 66

8 Tank Subroutines 67

9 Markov States for Tank Case A 68

10 Case A Failure Sequence Summary 69

11 Case F Failure Sequence Summary 70

12 Markov States for Tank Case F 71

- vii -

List of Appendices

Appendix A:

Appendix B:

Appendix C:

Appendix D:

Appendix E:

DYMCAM Input File Description

DYMCAM Program Listing

TANK Program Listing

Sample Input Files

Sample Output Files

- viii -

Page

87

95

147

159

163

1. INTRODUCTION

Current methods for analyzing the reliability and availability of systems can be

characterized as being either static or dynamic. The former include reliability block

diagrams [1], fault trees [2], and the GO methodology [3]; these are suited for treating

systems whose structures do not change over time. The latter include Markov models

(e.g., [4]) and simulation methods (e.g., [5, 6]), and are able to treat time-dependent

problems. Methods designed to treat "phased missions" (where the system structure

remains constant over a set period of time), such as the GO-FLOW methodology [7], have

limited ability to treat changing system structure, and lie somewhere in-between the static

and dynamic methods.

Static methods are appropriate for many reliability and availability analysis

problems, including the determination of the time-dependent availability of a system

consisting of completely independent components. However, if the components interact in

a time-dependent manner, dynamic methods are required for an accurate analysis. Such

interactions may arise, for example, due to the repair scheme used for components, or due

to the behavior of process variables (e.g., when analyzing the reliability of control systems).
The purpose of this report is to present a discrete event simulation model and

associated computer code for dynamic system availability analysis. As compared with the

more conventionally used Markov modeling approach, this approach has the ability to

handle, in a very natural manner, arbitrarily complex problems (e.g., very large numbers of

components, non-exponential transition rates, complicated repair strategies). As compared

with most other Monte Carlo simulation approaches, the discrete event approach

encourages the construction of a model whose elements correspond directly to actual

elements in a real system. This leads to a more readily understandable and maintainable

model.

The code presented, called the DYnamic Monte Carlo Availability Model

(DYMCAM) employs a commercially available simulation language for process-oriented

discrete event simulation modeling, SIMSCRIPT 11.5 [8]. With the DYMCAM code, the

user can construct a system availability model simply by specifying what components are

in the system and how they are linked; standard subroutines are used to model component

behavior (this is analogous to the decision table approach to fault tree construction [9]).
Simple applications of the code are illustrated, as is an extension which allows the

treatment of continuous process variables.

Section 2 of this report discusses the discrete event simulation approach, along with

the specific characteristics of SIMSCRIPT 11.5 used in DYMCAM. It also describes the

1

basic DYMCAM code, including program objectives and assumptions. In Section 3, simple

availability problems are analyzed using DYMCAM and results are compared with Markov

model results. It is shown that the code predictions are relatively accurate. Section 4

presents a modification to the program to demonstrate the capability of discrete event

simulation to model continuous variables. Specifically, the model is altered to perform the

storage tank problem described in Ref. 10. Results are compared with a simplified Markov

model and the predictions of Ref. 10. Finally, Section 5 summarizes the discrete event

simulation approach as applied to dynamic system availability analysis. The advantages

discussed include the flexibility and adaptability of the simulation model. The

disadvantages include the long running times observed for relatively small numbers of

trials. It is pointed out that methods to perform intelligent sampling and to identify key

contributors to system unavailability need to be developed to make the approach more

practical. These methods may exist for other applications of discrete event simulation;

work needs to be done to apply them to availability analysis (which typically deals with

rare events).

The source code listing of DYMCAM, as well as sample input and output files, are

provided in the report Appendices.

2

2. DYMCAM DYNAMIC SIMULATION MODEL

Monte Carlo simulation is a potentially attractive method for analyzing the

reliability and availability of dynamic systems, due to its ability to treat arbitrarily

complex stochastic problems. One possible implementation of the Monte Carlo method in

availability analysis is to simulate a discrete time stochastic system in a manner similar to

that used for Markov chains. In Figure 1, for example, the probability that the system will

transfer from State 1 to State 2 in the next At, given that the system is originally in

State 1, is approximated by P12 = A12At, where A12 may be dependent on a large number of

factors (including time). The transition probabilities P12 and Pi3 are then used, in a Monte

Carlo sampling scheme, to determine (for a given trial) which transition (if any) occurs in

the next At.

An alternate implementation of the Monte Carlo method is to directly sample the

transition times T 12 and T 13. The ordering of the sample results will determine which

transition occurs first. This latter implementation focuses on observable quantities (times,
rather than hazard rates) and does not require the specification of an arbitrary time scale

(the At); as a result, it is a somewhat more natural approach and will provide the basis for

the DYMCAM (DYnamic Monte Carlo Availability Model) code.

The above description of the second Monte Carlo implementation provides a simple

illustration of the discrete event simulation approach used by DYMCAM. More generally

in this approach, a queue (sometimes called a "master schedule" or "pending list") is

created into which events are entered along with their scheduled occurrence times. For

example, a command signal causing a valve to close can be scheduled to occur at a specified

time, or a pump could be scheduled to be placed in a standby condition (to simulate the

performance of maintenance). At a different time, the valve may be given a command to

open or the pump could be placed back in an operational state. Numerous such events can

be scheduled and entered in the queue; events in the queue are ordered by their occurrence

times.

At the beginning of the simulation, the simulation clock is started and time is

advanced to the time corresponding to the first event in the queue. This event is executed

(which may result in changes being propagated through the system). Operation continues

until there are no more entries in the event queue. The difference between this type of

simulation and "continuous simulation" is that in discrete event simulation, it is assumed

that no changes occur in the system between the scheduled discrete events.

3

Note that although Monte Carlo sampling is employed to determine the time

intervals in the case of stochastic processes, each sequence of actions is deterministic.

Distributions for desired quantities are built up by repeated sampling. It is also important

to note that the queue, i.e., the list of actions to be performed, is dynamic; as a result of an

action, the queue can be changed. For example, currently scheduled actions can be

removed, and new actions added. This list provides a mechanism by which the computer

code can treat an arbitrarily complex scenario.

A number of references provide more details on the different approaches to

simulation, and on computer languages constructed to implement these approaches (e.g.,
see [11, 12]). This section discusses the desired characteristics of the dynamic system

availability model and the ability of the SIMSCRIPT 11.5 language adopted for DYMCAM

to provide these characteristics. It also discusses some aspects of the , and the DYMCAM

program itself.

2.1 Model Characteristics

Monte Carlo simulation has been used previously in reliability and availability

analysis applications. Ref. 13 reviews a number of these applications, including the

analysis of fault trees and electric power distribution systems. Ref. 14 outlines an

application of discrete event simulation (developed using SIMSCRIPT 11.5) to determine

the distribution of the time to recover electric power at a nuclear power plant following a

loss of offsite power accident. These applications, however, have been developed to solve

specific problems. The intent of this work is to take advantage of the characteristics of

discrete event simulation to build a more general model which can be applied to a large

number of problems.

The characteristics desired of this more general model are:

0 Model entities should correspond to physical entities in the system being modeled,
where possible.

0 Links between entities should also correspond to physical links in the real system.

0 Many system models should be constructable simply by selecting component models

from an available library of component types (and specifying the links between

components).

0 Component interactions due to linkages between components should be modeled;

interactions due to repair efforts and other operator actions should be easily

incorporated.

4

* Scheduling of system changes at pre-specified times must be possible (e.g., for

treating phased missions).

* The model should allow easy updating for incorporating continuous process variables

(e.g., for control system analysis).

The first characteristic is desirable more from the standpoint of understandability

than efficiency. In it is expected that a model whose basic elements (e.g., subroutines)

correspond in a one-to-one manner with the elements of the system being analyzed (e.g.,
components) will be easier to construct and maintain, perhaps at some cost in execution

speed.

The combination of the first three characteristics leads to the specification of

"general component models," which consist of specifications of the input to and output

from a given component type, and a rule, or set of rules, which determine the component

output and state based on input information. Figure 2 shows a general component model.

It can be thought of as a box into which signals are fed and from which an output emerges.

In addition to signals, information concerning failure and repair rates must be specified.

To provide dynamic system information the signals must be able to change value as a

function of time.

To allow the propagation of disturbances through a system within the framework of a

one-to-one modeling scheme, it is necessary to model links between components. These

links consist of the control and process variable signals passed from one component to

another. By modeling these signals explicitly, it is possible to create an entire system

model out of the general component models. By requiring the components to change state

based on their inputs the interaction between components will be modelled. Since in some

systems it may be possible to produce loops of elements, it may be useful to continue

propagating changes through the system in a cyclic fashion until no further changes occur

(otherwise, delays in signal propagation will need to be modeled).

Regarding the fourth characteristic, it is desirable that a model be able to treat

groups of related events (i.e., "processes") and their interactions. The last two

characteristics in the list indicate the desirability of treating "external events" and

continuous variables. Process-oriented modeling allows the integrated treatment of

different events in a component's history (e.g., failure and repair), and allows relatively

simple treatment of the interactions between components (e.g., one process can interrupt

another). External event scheduling allows treatment of events external to the base

processes, e.g., the occurrence of a scheduled maintenance outage. Continuous simulation

is useful when treating systems whose behavior is strongly affected by the dynamic

behavior of process variables (e.g., control systems).

5

The characteristics described above can be accommodated by a number of languages

developed for discrete event simulation. As an example, the process-based simulation

modeling approach used in SIMSCRIPT 11.5 encourages the definition of "process routines"

corresponding to individual components. In the following section, some of the features of

the SIMSCRIPT 11.5 simulation language are discussed; this provides background needed

to better understand the characteristics of the DYMCAM dynamic simulation model.

2.2 SIMSCRIPT 11.5

There are many references available describing the SIMSCRIPT 11.5 language and

related programming techniques for developing simulation models. Ref. 15 is a beginning

handbook for understanding the language. For a more detailed description on

programming procedures, Ref. 16 should be consulted. Other references used in

development of the DYMCAM model include Refs. 8, 17, and 18. All three of these texts

provide useful information for understanding the use of SIMSCRIPT commands and

modeling techniques.

SIMSCRIPT 11.5 is a general programming language which facilitates the develop-

ment of a discrete-event simulation model. It allows for both process interaction and

event-scheduling points of view, or a combination of the two, in simulation modeling. A

language extension in current versions allows for continuous simulations [18]. In addition,
it also has scientific computing and list processing capabilities. A unique feature of the

SIMSCRIPT language is that it can be written in English-like statements.

Several terms are useful to know when attempting to develop an understanding of

SIMSCRIPT: scheduling, entity, process, attribute, and sets.

"Scheduling" refers to the discrete event feature of SIMSCRIPT. An event queue is

created and events are placed in the queue (scheduled) along with their time of occurrence.

The events in the event queue are arranged in the order of their occurrence time and

executed in that order. Time then is advanced to the occurrence time of the next event in

the queue. The event queue is dynamic; as simulated time progresses, new events may be

scheduled and other (previously scheduled) events removed from the queue. For example,
a component failure can be scheduled to occur at a certain time. Once the failure has

occurred, an event representing repair completion can then be scheduled. As an example of

removing events from the queue, an event can be scheduled at the beginning of a

simulation which restores all components to as-good-as-new condition at a specified time.

This event can remove all scheduled component failures from the event queue. Later in the

simulation, the failures can be rescheduled to occur at later times.

6

An "entity" is a program variable and has a memory location allocated to it once it is
created. Entities are of two types, permanent and temporary. Permanent entities are

created once, at the beginning of the program, and exist throughout program execution.

Temporary entities are created only when needed and memory can be made available again

for other variables by destroying the temporary entity once it is no longer needed. This

provides a means of keeping data structures contained in computer memory to a minimum,
thus providing for more efficient program operation. Several identical entities can be

created by using a pointer variable. For example, if a simulation is to contain 10 valves,
the following lines of code can be used to create them:

reserve pointer(*) as 10
for i equals 1 to 10
do

create a valve called pointer(i)
loop

Then, to refer to valve k, "valve called pointer(k)" can be used in the program.

A "process" is a special SIMSCRIPT entity which has memory associated with it in

the same manner as a temporary entity. It can have several identical instances created.

For example, if a component is modeled as a process, several identical processes can be

created, one associated with each component. The most important feature of a process is

that it has a subroutine associated with it which can schedule events and interrupt other

processes. A process subroutine can also contain statements which cause the execution of

the routine to be suspended, and an event notice to be placed in the event queue to cause

the process routine to continue execution at a later scheduled time. If a component is

modeled as a process, then the failure of the component can be scheduled by the process

and process execution suspended until this time has been reached. Once the failure time

has been reached, the component process again begins execution in the line of code follow-

ing the failure scheduling. Here, for example, a repair delay can be defined and execution

suspended until the scheduled delay time has passed. Then repair can be scheduled in the

same manner. A process can also create other processes or temporary entities.

All entities and processes can have "attributes" associated with them. This is a way

of creating a data structure. For instance, a pump can be defined as an entity. Several

pumps may be created. Associated with each pump there may be a demand failure

probability, a failure rate, a repair rate, etc. These characteristics can be defined as

attributes of the pump entity and thus when a pump is created, memory storage is also

allocated for the array of characteristics associated with it. Processes can also have attri-

butes in the same manner.

7

"Sets" are an important SIMSCRIPT feature. Several items which are of the same
type can be grouped as members of a set. These members may be entities or processes, but
must be one or the other, in a given set. For example, consider a system containing 100
different input and output signals from ten system components. Several of the signals may

be input signals to a given component. A signal set can be defined to group these signals.

The set will be "owned" by the component process, and the input signals will "belong" to
the set. (In SIMSCRIPT terminology, all sets must have an owner and may have any

number of members which belong to the set.)
SIMSCRIPT also has useful statistics features available for evaluating a system

simulation. The two basic commands are TALLY and ACCUMULATE. The TALLY

command is used to compute statistics of a distribution, such as the mean and variance, at
specified instants of time. The distribution can be an array variable. The

ACCUMULATE command tracks the behavior of an entity over the duration of a simula-

tion. It performs integration with respect to time and can be used to determine the
time-averaged behavior of a system entity. By properly defining the possible system

states, this feature can be used directly to calculate the time averaged system

unavailability.

The process-interaction approach adopted by SIMSCRIPT is very useful in the

analysis of complicated phased mission problems. Components can be modeled as

processes, thus allowing each component to control its own time dependent behavior.

Failure and repair procedures can be included in the component process subroutine to

provide scheduling of failure and repair times. By modeling testing and maintenance as

separate processes it is possible to correctly model random testing and maintenance events
interrupting component operation and then restarting the components once they are
completed.

In addition, if it is desirable to limit repair resources, such as by limiting the number
of components under repair at any given time, or if random repair delays are to be
incorporated based on the number of components presently failed, the approach can treat
this very naturally via a "repair supervisor process." This process could be used to
prioritize repair processes by interrupting and rescheduling selected component events. (A
purely event oriented simulation approach, which does not group highly related events,
would require more effort to implement.)

On the other hand, there are situations where event based simulation is useful (e.g.,
when dealing with regularly scheduled testing and maintenance). SIMSCRIPT 11.5 has the
capability to handle these situations; in particular, it has facilities to incorporate "external
events," i.e., events whose occurrences are not driven by the simulation model. Finally,

8

SIMSCRIPT 11.5 has some capability to perform continuous simulation. This allows

analysis of process controls systems, and is demonstrated in Section 4.

2.3 Base Program Characteristics

The DYMCAM (Dynamic Monte Carlo Availability Model) base simulation program

was developed with the three primary objectives. These objectives are:

1) the program should enable the user to construct system models for assessing the

time-dependent unavailability of dynamic systems,
2) the models should be easy to construct and interpret, and

3) the base program should be easily expandable to incorporate additional features as

needed.

The last objective reflects the fact that there are a number of different system

characteristics that are more easily treated with modified coding, rather than with

user-supplied data.

The following list of characteristics describe some of the key features and limitations

of the base DYMCAM program.

1) Failure times are exponentially distributed; repair times are Weibull distributed.

Since the SIMSCRIPT 11.5 language allows for many types of sampling distributions,
it is an easy matter to change distribution types if others are more appropriate for

certain applications. These changes can accommodate such time-dependent effects as

component aging.

2) Demand failures of active components, valves, and switches are allowed. Data for

these failures are entered in the input file and applied to cases of the indicated

component failing to transfer in either direction. For instance, a valve can fail to

open when it receives a signal to open or it can fail to close once it receives a signal to

close. This can be easily generalized via minor changes to the program and the input

file.

3) There is no capability to consider delays prior to the start of repair in the base case

program listed in Appendix B. However, this can be easily treated by modifying the

REPAIR.SUPERVISOR routine, or the process routine associated with a component.

If the repair delay acts functionally in the same manner as the delay associated with

repair itself, then a simple change in the repair time sampling distribution will

suffice.

9

4) Dependent failure events are considered only to the extent that the loss of the process

variable to an active component causes it to fail if it is in an operating state, and

external events can be used to model shocks which fail several components simultane-

ously.

5) Dependent repair events are treated in a problem-specific manner via the

REPAIR.SUPERVISOR process subroutine.

6) Uncertainty analysis is not performed.

7) Continuous variables are not treated in the base program. A problem-specific

modification designed to demonstrate how continuous variables can be incorporated

is described in Section 4. Complex interactions are also considered, to a certain

extent in Section 4, as operational states of components are dependent on the level of

the continuous process variable.

8) Program output consists of a printout of the time dependent system unavailability

(at user-specified time points) and the average system unavailability over the

duration of simulated time.

9) Five component types are available to model components. Other component types

can be easily created using these five as templates. The component types currently

included are: valves, check valves, switches, and generic active and passive

components. Component types are defined by the number and type of input signals,
by the possible internal states of the component, and by the rules used to process the

input/output signals as a function of the component state. A large number of

engineering components can be modeled effectively using these basic elements.

Active components, valves, and switches have a minimum of three inputs which

include a power signal, a command signal, and at least one process input. Passive

components have a minimum of one input. They require at least one process input

and do not require power or commands. All components can have any number of

process outputs. Figures 3-7 provide diagrams and rule tables describing the five

component types. The rule tables are taken directly from the program listing of

Appendix B. Generally, at the start of a run, no component is initially in a failed

state. Note that it is a simple matter to use an external event to change a

component to a failed state at time zero.

10) Changes can be forced on the system at any time through the use of external events.

These external events can be scheduled to occur during the simulated system

operating period and can be used to change the state of components or to change

system signals, such as changing a command signal to tell a pump to turn on or off.

10

The current model requires the times of such occurrences to be known before the

start of the simulation and included in the input file. The programming language,
however, will allow for the random scheduling of these external events. If this is

desirable at a later date, it simply involves creating a process routine (similar to the
REPAIR.SUPERVISOR routine) which schedules events in a random fashion.

11) Concerning process signals in the program which represent such system charac-

teristics as fluid flow, pressure, temperature, or electric current, there is no provision
in the base model to treat signal magnitudes. It is assumed that the existence or
non-existence of the signal is enough to establish the state of components or of the
system. In the base program, all components can have any number of process inputs
and process outputs. Where inputs are concerned, if the component has at least
input signal, then, if the state of the component is correct, all output process signals
will be "on". Of course, it is possible to modify the program by changing the input
requirements to a component so that it does not produce output unless it has the
necessary number of input signals (this is done in a 2-out-of-3 system example in
Section 3). This, however, is not a satisfactory solution, in general, if process signal
strength is important in the system analysis. More generally, changes can be made
to all component routines and the input file to accommodate the notion of signal
strength, or "gate" components could be added (this, however, leads to the
introduction of non-physical entities in the system model).

2.4 DYMCAM Program Elements and Flow

This section describes the different subroutines in the base version of DYMCAM, and
the program flow. The program listing is provided in Appendix B.

In SIMSCRIPT 11.5 there are many language features which may not be familiar to
those who are accustomed to other programming languages. First of all, every program is
composed of many subroutines. Two subroutines which are common to all programs are

the "PREAMBLE" and the "MAIN" subroutines.

The PREAMBLE is used to define all program variables and entities used in the rest
of the program. The MAIN routine controls overall program execution. It is used to call
the subroutines and to start and stop the simulation program. For simple programs, this
may be the only routine used other than the PREAMBLE.

The DYMCAM program contains many additional subroutines. Table 1 gives a list
of all these routines and their basic purposes. Figure 8 is a flow chart for the program.

11

Several subroutines are executed before the beginning of actual system simulation.

The first of these is the INPUT subroutine. The INPUT routine is used to read the input

file and store the information in the appropriate memory locations. In particular, it defines

the characteristics of the components to be modeled. This routine is called once during the

execution of the program from the MAIN routine.

The next routine called from MAIN is RUN.INITIALIZE. This routine uses the

input information to link the system components together. This is done by filing signals in

appropriate input and output sets of various components. It also records appropriate

signals and components in files associated with each external event for reference when the

external event is executed. This routine also initializes all entities. Variables which are

not assigned values are automatically set equal to zero by SIMSCRIPT.

The routine TRIAL.INITIALIZE is called from the MAIN program inside the loop

which is executed once for each Monte Carlo trial. Its purpose is to reset the state of all

components and signals to the initial value they should have at the beginning of execution

of the simulation trial.

The next two routines called from inside the loop of the MAIN routine are the

scheduling modules. The SCHEDULE.AVAIL.SAMPLES process is used to schedule

interrupts in the execution of a simulation run to sample the time dependent system

unavailability. The sample times specified by the user are entered in the event queue; the

simulation will be interrupted when these times are reached. The actual computing of the

availability is done by the AVAILABILITY process. There is a separate AVAILABILITY

process created by the program for each time point specified by the input file.

The SCHEDULE.EXTERNAL.EVENTS process is used to schedule the interrupts in

the execution of the simulation run for the processing of external events. It schedules these

interrupts to occur at the specified times indicated by the input file. For every external

event there is an EXTERNAL.EVENT process. Each EXTERNAL.EVENT process has a

component set and a signal set associated with it which specify which components and

signals are to be changed. The specified changes are performed when the external event is

executed and then control is passed to the SYSTEM.UPDATE routine.

EXTERNAL.EVENT processes are created by the RUN.INITIALIZE routine along with

their associated component and signal files.

Also inside the loop in MAIN is the STOP.SCENARIO routine. It is used to stop

the execution of all processes which have not concluded at the end of a trial and to reset

the execution of each component to its original operating condition.

12

The CALL.UPDATE process exists inside the loop of the MAIN routine to escape a

complication associated with the program. In SIMSCRIPT, any series of commands

executed sequentially without undergoing the simulated passage of time must not contain

commands which start and stop the same process or create and destroy the same entity. It

is also not possible to activate the same process twice. DYMCAM is designed so that on

the initial trial of a run, all component processes are activated at time zero by the

RUN.INITIALIZE routine. Thus a notice is put in the scheduled events list which will be

executed once the timing routine is begun. One of the first statements in the

COMPONENT process is a command to suspend operation, since some components, e.g.

standby components, may not be operating at the start of the simulation. Standby

components are not allowed to undergo failure in this model and therefore should not have

failure times placed in the event queue until they are placed in an operational mode. The

components that should be operating are then restarted by the SYSTEM.UPDATE

routine.

The problem is that the SYSTEM.UPDATE routine should be executed from the

loop of the MAIN routine before the passage of simulated time is begun. This would cause

an error since the sequential execution of commands would make it appear that a

COMPONENT process has been scheduled to start twice. Therefore the CALL.UPDATE

routine is included in the MAIN program loop. Its sole purpose is to wait a short period of

time so that the simulation clock is started and all components are in the suspended state

before the SYSTEM.UPDATE routine is executed and the operation of selected compo-

nents is started again.

The SYSTEM.UPDATE routine is called many times during the execution of a

simulation program run and it performs many functions. The first time it is called, it is

used only to activate the components which should be operational at the beginning of a

simulation. These components will advance from their original suspended states and begin

their failure and repair cycles. Thus at the beginning of the simulation each operating

component, if it has a non-zero failure rate, it will have a failure time scheduled for it in

the event queue.

At this point the simulation is started. Currently there are three types of events

scheduled in the event queue. These are component failures, availability samples, and

external events. The simulation clock will be advanced to the time corresponding to the

first event in the queue, the notice scheduling the event will be removed from the overall

schedule, and the event will be processed.

13

If the event is an external event, then an EXTERNAL.EVENT process will be exe-
cuted. Components in the external event component set and signals in the external event

signal set for this external event will be changed to their new values. Then the

SYSTEM.UPDATE routine will be called.
If the event is an AVAILABILITY sample, then the system indicator variable, X(t),

which indicates whether or not the system is in a satisfactory state, will be tested. The
result will be summed with previous and future results for that particular time point, and
stored for use in generating the output file. No change to the system is made by this
interruption, therefore time is advanced to the next event in the event queue without any
changes to the system being performed.

If the event is a component failure, then the COMPONENT process for that particu-
lar component will again begin operation. The function FAILURE.TRANSLATION will
be called and used to determine the state of the failed component. The failed state will be
dependent on the type of component and the initial state, e.g. an open valve will fail dosed
and a closed switch will fail open. FAILURE.TRANSLATION is an example of the use of
the SIMSCRIPT function command which simplifies programming when a series of
commands is reused often. The commands in the FAILURE.TRANSLATION function
could be placed in the COMPONENT routine without complicating execution of the
program. Once the type of failure is determined, a REPAIR.SUPERVISOR process will be
activated and the SYSTEM.UPDATE routine will be called.

At this point, the SYSTEM.UPDATE routine is used to propagate changes through

the system. It is called any time a component changes state or an external event is
activated. It looks for changed signals or components and if it finds a change, it calls the
response function (SWITCH, VALVE, etc.) for that particular component or the
component which contains the altered signal in its input signal file. If this component
changes state, or its output signal changes strength, then it will be necessary to propagate

this change through the system. The routine continues to call affected components until no
further changes occur. This routine also monitors the overall system state and changes it

as necessary to reflect whether the system is available or unavailable as a unit according to

the definition provided in the input file.
The SYSTEM.UPDATE routine handles the loops which must occur in a process

interaction system. The routine stores the value of all system signals and then looks for
changes to this set. If a signal changes value then this is an indication that changes are
still occurring in the system. The routine looks for components which have changed state
or whose input signals have changed strength and calls the associated response function to

14

ensure the component is in the proper operational state. If it is not, it may change accord-

ing to its response function and new output signal strengths may be generated. These

outputs are inputs to other components, so these components must also be updated. Since

the possibility exists for loops to occur in system component structure, once all components

have been checked once, the new signals are compared with the old signal strengths. If a

difference is indicated, then it is possible that a component is not in its desired state, thus

the affected components are evaluated again. This process continues until the value of all

signal strengths at the end of an iteration, equal the value of the signal strengths at the

beginning of the iteration, indicating that no component has changed state during the last

iteration. Since infinite loops may be possible, a maximum number of iterations is speci-

fied, which, if exceeded, causes an error message to be printed.

Another important function of the SYSTEM.UPDATE routine is to reset the "failure

clock" for components which change state. For example, whenever an ACTIVE component

is placed in standby from an operating condition, the COMPONENT process associated

with the ACTIVE component is reset so that when it begins operation again it will start a

new failure clock. This program feature is very important for the analysis of phased

mission problems where it is feasible that a single component may be turned on and off

several times during a simulation run.

The five routines entitled ACTIVE, PASSIVE, CHECK VALVE, VALVE, and

SWITCH are the response functions called by the SYSTEM.UPDATE routine used to

determine the state of all system components and the value of their output signals. These

routines are used to change the state of components when a new command is received or

the strength of an input signal changes. Each routine tests the state of the component and

the value of all input signals and compares the results to a set of control "rules" to deter-

mine the new component state and the value of all of the component output signals. If the

component is ACTIVE, a VALVE, or a SWITCH and it has been called upon to change

state, then the DEMAND.TEST routine is called to determine if the component has failed

or not. The DEMAND.TEST routine's sole function is determine if a demand failure

occurs based on the demand failure probability for the component. Once the tests are

performed and the component state is modified, execution is returned to the

SYSTEM.UPDATE routine.

After a component has undergone failure and the effect propagated through the

system, the REPAIR.SUPERVISOR routine is called. In the base DYMCAM program,

this process is currently used to start a repair process once a component is failed. Thus it

simply reactivates the component process which controls the repair time calculation for the

15

component. The repair process is activated from the COMPONENT routine whenever a

component fails. The listing of the REPAIR.SUPERVISOR process in Appendix B

contains a version which immediately starts a repair once a failure has occurred. Line 31,
which causes a Weibull distributed repair delay, is not being used (it is "commented" out).
It is used in one of the examples of Section 3. By changing the values of "a" and "b" in

lines 23 and 24 it is possible to change the repair delay distribution. However, if different

repair delay distributions are desired for different components, then the input file structure

and other program characteristics must be changed slightly.

The REPAIR.SUPERVISOR process can also be modified to limit the amount of

repair resources available. It is a simple matter to count the number of components failed

and the number of components under repair by checking the status variable associated with

each component. Then, if too many components are failed, repair of some components

could be delayed until repair is finished on other components. It is possible to prioritize

repair based on which component has been failed the longest since when a component fails

its failure time is recorded. This or any other prioritization scheme can be programmed in

to the REPAIR.SUPERVISOR process.

The COMPONENT process is used to control the transfer between good and failed

states for all components of the system. There is a COMPONENT process for each system

component and these COMPONENTs are created by the RUN.INITIALIZE routine.

Within the COMPONENT process there is a section which controls the transfer from

operational to failed and a separate section which controls the transfer from failed to

operational. Whenever a component changes state the SYSTEM.UPDATE routine is

automatically called to propagate the component change through the system as discussed

above. Under the current program structure, when a component changes state from

operational to failed, the component goes to a suspended state. The repair process is not

begun until the REPAIR.SUPERVISOR process reactivates the component.

Once the STOP.SCENARIO event is reached in the event queue, the

STOP.SCENARIO process is executed. This process removes all remaining events from

the event queue and resets all component processes so that all system processes are ready

to begin operation for the next trial. With no events now remaining in the event queue,
operation of the program is returned to the MAIN routine which causes the

RUN.OUTPUT routine to be called. The RUN.OUTPUT routine is used to write the

program results to an output file. The results provided are of two types. There is a print

out of the time dependent unavailability data and there is a list of the average system

unavailability distribution. Examples of output files are included in Appendix E and are

discussed in Sections 3 and 4.

16

Table 1. DYMCAM SUBROUTINES

Subroutine Description

PREAMBLE
MAIN
ACTIVE
AVAILABILITY

CALL.UPDATE

CHECK.VALVE
COMPONENT

DEMAND.TEST
EXTERNAL.EVENT
FAILURE.TRANSLATION
INPUT
PASSIVE
REPAIR.SUPERVISOR
RUN.INITIALIZE
RUN.OUTPUT
SCHEDULE.AVAIL.SAMPLES

SCHEDULE.EXTERNAL.EVENTS
STOP.SCENARIO
SWITCH
SYSTEM.UPDATE

TRIAL.INITIALIZE
VALVE

Defines all Entities and Processes
Controls overall execution
Controls active components
Process that takes time-dependent data for
unavailability
Process that causes delay then calls Update
routine
Controls Check Valves
Process to control failure and repair of
Components
Determines failure on demand
Process to execute External Events
Function to determine failed state
Reads input file
Controls Passive components
Process to allocate Repair resources
Initializes Variables for Run
Prints output results to a file
Process to cause recording of time dependent
unavailability data
Process to schedule External Events
Stops execution of all processes
Controls Switches
Propagates Component changes through the
system
Initializes Variables for a Trial
Controls Valves

17

Figure 1. STATE TRANSITION DIAGRAM FOR A SIMPLE SYSTEM

18

Power Signal In

Control Signal In -

Process Variable in #1

Process Variable In #N

Process Variable Out #1

Process Variable Out #N

Figure 2. GENERAL COMPONENT MODEL

19

Input Command

Input Power

Input Process

o Output Process

Decision Table

Case

1
2
3
4
5

Command
Input

stop
none
start

6 start

7 -
8 stop

9 stop

10
11
12
13
14
15
16
17

none
none
start
start

Power Process I
Input Input

- -- -- --

no -
yes -

yes -
yes no

yes

no
yes

yes

yes
yes
yes
yes

no
yes
yes

yes

- 0
no o

yes C

no
yes
no
yes

no
yes

C
C
C
C

nitial Final Pr
State State Ou

failed failed
standby standby
standby standby
standby standby
standby standby*

failed
standby standby*

operating
perating standby
perating failed

standby
perating operating*

standby
perating failed
perating operating
perating failed
perating operating
standby* standby*
operating* operating*
operating* failed
operating* operating*

ocess
tput

no
no
no
no
no
no
no
yes
no
no
no
yes
no
no
yes
no
yes
no
no
no
yes

Figure 3. ACTIVE COMPONENT

20

ACTIVE

Output Process

Decision Table

Process Initial
Input State

- failed
no standby
yes standby

no operating
yes operating

Final Process
State Output

failed no
standby no
-failed no
operating yes
standby no

operating yes

Figure 4. PASSIVE COMPONENT

21

Case

1
2
3

4
5

Input Process

Input Command

Input Power

Input Process

Decision Table

Command Power Process Initial
Case Input Input Input State

Output Process

Final
State

Process
Output

1
2
3
4
5

open
none
close

6 close

7
8
9

10
11 open

12 open

13
14
15
16

no

yes

yes

no
no
yes

yes

none
none
close
close

no

yes

no
yes
no
yes
no

yes

no
yes
no
yes

failed open
open
open
open
open

open

failed closed
failed closed

closed
closed
closed

closed

closed
closed
closed
closed

failed open
open
open
open

failed open
closed

failed open
closed

failed closed
failed closed

closed
closed

failedclosed
open

failedclosed
open

closed
closed
closed
closed

Figure 5. VALVE

22

no
no
no
no
no
no
no
yes
no
yes
no
yes
no
no
yes
no
no
yes
no
yes

Input Process -. CHECK VALVEH-. Output Process

Decision Table

Initial
State

failedclosed
closed
closed

failed_open
failed_open

open

open

Final
State

failedclosed
closed

failedclosed
open

failed_open
failed_open
failed_open

closed
open

Figure 6. CHECK VALVE

23

case

1
2
3

4
5
6

Process
Input

no
yes

no
yes
no

7 yes

Process
Output

no
no
no
yes
no
yes
no
no
yes

Input Command

Input Power

Input Process

Output Process

Decision Table

Command Power Process
Case Input Input Input

1
2
3
4
5

close
none
open

6 open

7
8
9
10
11 close

12 close

13
14
15
16

no

yes

yes

no
no
yes

yes

none
none
open
open

no

yes

no
yes
no
yes
no

yes

no
yes
no
yes

Initial
State

failed closed
closed
closed
closed
closed

closed

failed open
failed open

open
open
open

open

open
open
open
open

Final Process
State Output

failed closed no
closed no
closed no
closed no

failedclosed no
open no

failedclosed no
open yes

failed open no
failed-open yes

open no
open yes

failed open no
closed no

failed open yes
closed no
open no
open yes
open no
open yes

Figure 7. SWITCH

24

Initialize RunI

NO
nother NO 01Print Output]

Schedule Events in Event Queue
(External Events, Component Failures,

and Availability Samples)

[Initialize Trial

FStart Simulato

NO Another Event
n Queue?

YES

Record YES Availability
System Status Sample?

NO

Make Component or Signal
Changes as Required by

External Event or
Component State Change

Propagate Change
Through System

YES Has Another
Change

Occured?

NO

Figure 8. DYMCAM PROGRAM FLOW CHART

25

3. APPLICATION OF DYMCAM

In this section, a number of simple problems are analyzed to demonstrate the

application of DYMCAM. The first problem considered involves a single component with

exponential repair and failure times. The second example also involves a single component

with exponential repair and failure; in addition, it includes a second repair state which also

has an exponential transition time. The third problem involves three pumps in parallel, in

series with a valve. Success of the system requires two of the three pumps to operate and

the valve to be open. The final example involves a phased mission problem.

The results obtained using DYMCAM are compared with analytical results in the

first two examples. A fourth order Runge-Kutta method, obtained from Ref. 19, is used to

provide the "exact" answer for the two-out-of-three system, since this problem involves 16

different system states. The phased mission example is compared with exact results as

computed using the GO-FLOW method [7].

The chapter concludes with a summary of the performance of the basic DYMCAM

dynamic simulation model over the test cases considered. General comments are made

concerning the program capabilities, the accuracy of results, and how this approach

compares with other system reliability analysis methods.

3.1 Single Component, Single Repair State

The first example problem to be tested using the DYMCAM program is a very

simple example involving a single component subject to exponential failure and repair (i.e.,
the failure times and repair times are exponentially distributed). The time-dependent

unavailability of the component is easily obtained using a two-state Markov model:

Q(t) = exp{-(A + pt (1)

where A and y are the failure and repair rates, respectively. Rather arbitrarily in this

example, it is assumed that A and y are equal. The asymptotic value of system

unavailability is clearly 0.5 since the component will spend equal time in the good and

failed states.

The DYMCAM program computes both instantaneous unavailability of a system to

provide the dynamic output, and it computes the average unavailability. Instantaneous

availability is computed by stopping the simulation (during each Monte Carlo trial) at a

26

user-specified time and checking the system to see if it is in a failed state. A success state
is indicated if the system indicator variable is equal to one, and failure is indicated by a
zero. The system indicator value is summed over all of the Monte Carlo trials for each

selected time point, and divided by the number of trials. The estimate for system

unavailability is obtained by subtracting the availability estimate from one.

Average unavailability is calculated over the duration of a simulation. Consider the

time line of Figure 9. Since the height of the line in Figure 9 is one, the area under the
curve simply equals the total time during the simulation for which the system was

unavailable. By dividing this result by the total simulation time, an estimate of the
average unavailability is obtained. (Note that the ACCUMULATE function provided by
SIMSCRIPT allows easy computation of this result.) For each trial, the unavailability

estimate will be slightly different; DYMCAM computes the estimate mean, variance, and

selected percentiles of the estimator distribution.

To perform the test for proper asymptotic results, the failure and repair rates were

chosen to be 0.01 per hour. Thus after approximately 200 hours the system will have

reached its asymptotic condition. Each simulation run covers 10,000 hours. For the simple

system only 100 Monte Carlo trials were run to give satisfactory results. To show the

fluctuations in unavailability about the asymptotic value, the system instantaneous

unavailability was printed at every 500 hours of the simulation. To see the average system

unavailability the time averaged system unavailability for each trial was printed.

Table 2 shows the fluctuation of the asymptotic system unavailability estimates

about the exact value of 0.5. Over the relatively small number of Monte Carlo trials

performed we see that there is a rather large fluctuation. This can readily be reduced by

increasing the number of trials since the standard deviation of the estimate decreases as

one over the square root of the number of trials.

Figure 10 shows the estimates of the time averaged unavailability for each of the 100
Monte Carlo trials. This figure portrays almost the same information as Table 2. The

difference is that Table 2 provides data that was computed using the instantaneous

unavailability estimation procedure discussed in conjunction with Eq. (1) and Figure 10

shows the distribution of the time averaged unavailability estimator. The exact average

unavailability can be found using (for a specified interval [0,T])

A = f A(t)dt (2)
=T 0

27

and where A(t) is given by Eq. (1). Doing this integration, where T = 10,000 and
A = y = 0.01, the result is 0.4975. This result agrees within less than one percent with the
mean value of the distribution shown in Figure 10. The standard deviation of the

distribution is 0.05. For many applications this deviation is insignificant. Of course, the

standard deviation can be reduced by increasing the number of Monte Carlo trials

performed.

To check the accuracy of the DYMCAM estimates for time dependent unavailability,
another test was run with the same example problem, but over a simulated time period of

200 hours. The number of Monte Carlo trials was increased to 1000. The results are

plotted in Figure 11 with the analytic results obtained from Eq. (1).

Figure 11 shows that the simulation model provides good time dependent results for

this example. At large values of time, however, it is seen that the simulation starts to

deviate from the desired results. For times greater than 200 hours, the simulation

continues to fluctuate above and below the exact unavailability. The fluctuations are

smaller the larger the number of trials used.

It should be pointed out that a major concern with a simulation approach to systems

reliability analysis is the computer time required to perform the analysis. For this simple

one component system, the time required to obtain the above results was approximately 30
minutes on an IBM compatible XT machine running at 7.16 MHz. The average

unavailability test required a large amount of time due to the long simulated time period of

10,000 hours, which allowed for an average of fifty failure and repair cycles per Monte

Carlo trial. (The value of fifty is assumed since if the mean failure and repair times are

both equal to 100 hours, then the component will, on the average, go through a complete

cycle of failure and repair every 200 hours.) The time dependent analysis required 30

minutes to run even though it simulated a shorter time period, because the unavailability

of the system was sampled once every simulated hour (200 points) which slowed down

program execution. The program runs in about one sixth the time on a COMPAQ 386SX

machine. Methods of reducing computer time required are discussed in Section 5.

3.2 Single Component, Dual Repair State

The second example problem is an extension of the first; here, the component is

forced to wait for a random amount of time (exponentially distributed), prior to repair.

This example partially demonstrates the capability of the REPAIR.SUPERVISOR routine

(a subroutine in the DYMCAM program that determines when component repair is

initiated) to treat more complicated repair strategies; a more complete exercise would

28

involve the interaction of multiple components undergoing repair (where one repair process

could interrupt the other). This example also demonstrates the ease at which the

DYMCAM program can be modified to meet specific applications.

In Appendix B the entire program listing for DYMCAM is shown. In the

REPAIR.SUPERVISOR process routine, Line 31 contains the WAIT command used to

simulate delays in the third component state. It has been modeled as a Weibull distributed

variable, but by proper choice of the parameters, the Weibull distribution becomes an

exponential distribution. The Weibull cumulative distribution function is given by:

FT(t) = 1-exp[T] a, (3)

where a and # are the distribution parameters. By letting the parameter a equal 1.0, the

Weibull distribution becomes an exponential distribution with hazard rate equal to 1/#.

Lines 23 and 24 of the REPAIR.SUPERVISOR routine define the exponential distribution

with a mean failure rate of one failure every 100 hours. If, in the future, it is desirable to

enter different delay distributions for various components, the parameters for the Weibull

distribution can be read in the INPUT routine in the same manner as the repair

distribution parameters.

The failure and repair rates for this example were chosen to be the same as for the

first example. Thus, with a mean repair delay time of 100 hours, the component now has

three equal transfer rates from its three states. Thus it is evident that for the asymptotic

case, the component will spend equal time in each of the three states. The component is

only available when it is in its operational state, thus the asymptotic unavailability is

0.6667.

To test the asymptotic unavailability estimates developed by DYMCAM, the

program was run for a simulated component operation of 10,000 hours and 100 Monte

Carlo trials. As in Example 1, the component was modeled as a passive element, although

results would be the same for modeling the component as any of the other four component

types for this simple case. Again the unavailability was sampled at 500 hour intervals to

show the fluctuation of the value around the expected value of 0.6667; Table 3 shows the

results.

For this test the average system unavailability was also printed out for each of the

100 Monte Carlo trials. The range of values was divided into nine bins and the number of

trials in each bin plotted against the central unavailability value for that bin. The results

are shown in Figure 12. The exact result for the average unavailability is found to be

29

0.6634. (This indicates that the first 200 hours of operation do slightly lower the result.)
The simulation result agrees with the exact result within less than one percent difference.

Again the standard deviation of the simulation result is 0.05 which is insignificant for many

analyses.

To compute the time dependent unavailability of this component, the simulation

time was reduced to 200 hours, and the number of trials increased to 1000 to reduce the

variance of the results. Unavailability samples were taken every simulated hour and the

results are plotted in Figure 13. For this example it is also possible to derive the analytic

equations for the probability that the system is in any one of its three states using a

Markov modeling. The three equations are:

S-APO + p2P 2

dP .iP + APo (4)

dP 2 pt= /2P 2 + pIP I

where Pi represents the time-dependent probability that the system, is in the ith state.

Rather than solve these equations using Laplace transforms or matrix exponentiation

techniques, a fourth order Runge-Kutta numerical integration routine taken from Ref. 19

was used. The component unavailability was calculated using 1 - Po(t). This result is

plotted in Figure 13 for comparison with the simulation results.

From Figure 13 it is seen that the simulation program again gives good results for the

time dependent unavailability. As the value of simulated time increases there is a

fluctuation of the simulation results about the desired value, but as explained before this

can be reduced by increasing the number of trials. The computer time required for these

two experiments was comparable with the first example problem (approximately 30

minutes). The addition of the third component state did not significantly alter the time

required to complete the run. The most important contributions to running time appear to

be the length of simulation time for each trial and the number of time samples taken

during each trial (the sampling process interrupts the simulation).

3.3 Two-Out-Of-Three System

The third test case for DYMCAM considers a more complicated system composed of

three pumps connected in parallel. Figure 14 shows a diagram of the system. The output

of the pumps is fed to a common header where the flow then enters a valve. Success of the

system requires at least two pumps to be operating and there to be flow output from the

valve.

30

As discussed in Section 2, the component types in the base DYMCAM program

assume that a satisfactory level of signal input exists as long as a single signal input exists.

For this example, therefore, a slight modification to the program is made in Line 129 of the

VALVE routine. By changing the test to require two input processes, the valve would not

have an output unless at least two of the pumps are providing input to the valve. This

problem, therefore, illustrates another simple way by which the base DYMCAM program

can be modified to suit the needs of a specific problem. Because of the direct

correspondence between program entities and physical entities, the modifications are both

small and limited in scope.

In this problem, all pumps are chosen to be identical and the valve is modeled with

failure and repair rates identical to those of the three pumps. There are four components

which can be in either a failed or operational state which means the system can be in

24= 16 possible states. (Due to symmetry, these states can be grouped into 8; this is not

done in this analysis.) Since all failure and repair rates are equal, in the asymptotic case

each system state has equal probability of occurrence. Only four of the states correspond

to the system being in an available condition, thus twelve states (or three fourths of the

states) contribute to system unavailability. Thus, the asymptotic unavailability should be

0.75.

As in the previous two examples, the program was run for a simulated time period of

10,000 hours and for 100 Monte Carlo trials. Again, the failure and repair distributions

were chosen to be exponential with mean values of 100 hours. Table 4 shows the

fluctuation of unavailability about the exact value of 0.75. The time-dependent analysis

described below indicates that the system reaches its asymptotic state after approximately

200 hours. Thus the actual value for average system unavailability should be slightly less

than the asymptotic value of 0.75.

The average value of unavailability over the 10,000 hour simulation was printed for

each of the 100 trials and the resulting distribution is plotted in Figure 15. This figure

indicates that the mean value of unavailability is 0.7428; the standard deviation of the

distribution is 0.03.

To determine the time dependent performance of this system, a second run was done

over a simulated time period of 200 hours using 1000 Monte Carlo trials. The

unavailability was sampled every hour.

For comparison, the system was modeled as a Markov system. The sixteen possible

states for this system are:

31

0 - All components are good
1 - Pump #1 failed
2 - Pump #2 failed
3 - Pump #3 failed
4 - Valve failed
5 - Pumps #1 and #2 failed
6 - Pumps #1 and #3 failed
7 - Pump #1 and Valve failed
8 - Pumps #2 and #3 failed
9 - Pump #2 and Valve failed
10 - Pump #3 and Valve failed
11 - Pumps #1, #2, and #3 failed
12 - Pumps #1 and #2 and Valve failed
13 - Pumps #1 and #3 and Valve failed
14 - Pumps #2 and #3 and Valve failed
15 - All Components are failed

Figure 16 shows the Markov state transition diagram for this system. All transition time

distributions are exponential with characteristic rates of 0.01 per hour. The Markov

equations for the system were solved using a fourth order Runge-Kutta numerical

integration routine. This exact solution is plotted in Figure 17 along with the simulation

results for comparison.

It is seen from Figure 17 that even for this more complicated system, the DYMCAM

simulation program provides good results for the time dependent unavailability. Again the

fluctuation of the results about the desired result can be seen at larger time values and it is

evident that the accuracy of Monte Carlo analysis is directly related to the number of trials

performed.

For this example problem, the computer time required to run the 10,000 hour

simulation run for estimation of the asymptotic unavailability value was approximately

three hours on an IBM compatible XT running at 7.16 MHz. The second run to determine

time dependent unavailability required four and one half hours. The significant increase

over the time required for the first two tests is due to the fact that this problem is more

complicated (sixteen system states as opposed to two or three) which leads to a far greater

number of calculations to be performed during execution of the program. The difference

between the two times required for the asymptotic run and the time dependent analysis run

reflects the larger number of Monte Carlo trials performed and the larger number of

program interruptions (for time-dependent availability sampling).

3.4 Phased Mission Problem

The fourth example problem considered demonstrates the phased mission capability

of the DYMCAM program. For comparison, this problem is derived from the GO-FLOW

32

example problem discussed in Ref. 7. The solution derived using the methods of Ref. 7 are

used for comparison with the results of the simulation method.

The problem to be solved involves a simple electrical circuit. Figure 18 gives a

diagram of the system. It is composed of a battery, having a demand failure probability of

0.1, which will supply power to two parallel circuits. Each circuit has a switch and a light

bulb. The switches are identical and have a demand failure probability of 0.3. Neither the

battery nor the switches are presumed to experience run time failures. The light bulbs in

the system are considered identical and they have a 0.2 probability of failing on demand

and a run time failure rate with a mean value of one failure every 1,000 hours.

The actual problem solved in Ref. 7 considered that the switches had a probability of

premature closure, however in the DYMCAM model this type of failure would be modeled

as a run time failure and would mean that there is an equal probability that the switch

could open once it is closed. Since the latter condition was not considered in Ref. 7, the

premature failure probability was excluded from the simulation analysis.

The phased mission problem to be solved considers that at time zero the battery is

connected to the circuit and has a 0.9 probability of being good. A fraction of a second

later one of the switches is closed, then ten hours later, the second switch is closed. The

analyst wishes to determine the probability that at least one light is on immediately

following closure of the first switch (call this time t = 0.0), immediately prior to dosing of

the second switch (time t = 9.99 hours), instantly following closure of the second switch

(time t = 10.0), and twenty hours after closure of the first switch (time t = 20.0).

Analysis using the DYMCAM program was done varying the number of Monte Carlo trials

from 1,000 to 10,000 to investigate the sensitivity of the results.

To solve this problem using the DYMCAM program, the external event feature was

used. This capability allows the input file to contain instructions which will cause a signal

to change at an instant of time after the start of the simulation. This function was used to

give the battery a process signal input at time t = 0.0, to give the first switch a command

signal to close at time t = 0.0, and to give the second switch a command to close at time

t = 10.0 hours. This feature allows the DYMCAM program to easily solved phased

mission problems.

Tables 5 and 6 summarize the results of the ten tests run using the DYMCAM

program. Table 5 shows the results using from 1,000 to 5,000 Monte Carlo trials and

Table 6 shows the outcome of tests using 6,000 to 10,000 trials. The tables show the actual

probability of at least one light being on at each of the four designated time points as

calculated using the GO-FLOW method and the corresponding values calculated with the

simulation program. The difference of the simulation value from the actual value is shown

33

and the percent error is calculated as the difference divided by the actual value. For an

indication of the variance, the number of trials which would need to have been changed to

give the actual results are indicated. For example, for the case where t = 20 hours and

N = 1,000 trials, Table 5 indicates that -10 trials would have to be changed. This means

that 10 of the 1,000 trials for which a light was not on at t = 20 would need to have had a

light test on in order for the simulation results to agree with analytic results.

It can be seen in these two tables that the error decreases as the number of trials is

increased and for 10,000 trials the percent difference between the actual availability values

and the estimates from the simulation program are less than one percent for all time

points. As expected, there is very little difference in the error percentages for two cases

separated by only 1,000 trials. For example, there is an average of only a 0.5 percent

difference between the values for the 3,000 trial case and the 4,000 trial case. The amount

of error should decrease with increasing number of trials in proportion to one over the

square root of the number of trials and this is evident by comparing the 1,000 and 10,000

trial cases.

The computer time required for these tests was approximately fifty minutes for every

1,000 trials, thus the 10,000 trial case took about eight and one half hours to run. This

time requirement refers to an IBM compatible XT running at 7.16 MHz. The approximate

time for the 10,000 trial on a 386 personal computer is estimated to be about 1.5 hours.

3.5 Summary

The examples in this section demonstrate the application of the base DYMCAM

model, and simple modifications that can be made to extend to base model to particular

problems. Regarding the latter, the second example indicates how the

REPAIR.SUPERVISOR routine can be expanded to allow more complicated repair

processes; the third example demonstrates an application to m-out-of-n systems. In each

example, the simulation predictions agreed with the exact results, both asymptotic and

time-dependent, quite well. The dependence of simulation accuracy on the number of

trials was also verified.

An important result is that the computing time requirement for a DYMCAM

simulation is significant. This issue is further discussed in Section 5 of this report. The

following section discusses a modification of DYMCAM developed to treat a control system

problem.

34

Table 2

SINGLE COMPONENT, SINGLE REPAIR STATE,
INSTANTANEOUS UNAVAILABILITY

TIME UNAVAILABILITY

0.0
500.0

1000.0
1500.0
2000.0
2500.0
3000.0
3500.0
4000.0
4500.0
5000.0
5500.0
6000.0
6500.0
7000.0
7500.0
8000.0
8500.0
9000.0
9500.0

100000.0

0.0
0.52
0.38
0.51
0.60
0.48
0.48
0.46
0.51
0.47
0.45
0.56
0.41
0.54
0.48
0.45
0.50
0.51
0.57
0.55
0.49

35

Table 3

SINGLE COMPONENT, DUAL REPAIR STATE
INSTANTANEOUS UNAVAILABILITY

TIME

0.0
500.0

1000.0
1500.0
2000.0
2500.0
3000.0
3500.0
4000.0
4500.0
5000.0
5500.0
6000.0
6500.0
7000.0
7500.0
8000.0
8500.0
9000.0
9500.0

10000.0

UNAVAILABILITY

0.0
0.63
0.70
0.70
0.68
0.67
0.65
0.67
0.72
0.69
0.64
0.59
0.63
0.68
0.65
0.68
0.69
0.68
0.61
0.70
0.64

36

Table 4

TWO OUT OF THREE COMPONENT INSTANTANEOUS UNAVAILABILITY

TIME UNAVAILABILITY

0.0
500.0

1000.0
1500.0
2000.0
2500.0
3000.0
3500.0
4000.0
4500.0
5000.0
5500.0
6000.0
6500.0
7000.0
7500.0
8000.0
8500.0
9000.0
9500.0

10000.0

0.0
0.72
0.80
0.76
0.75
0.78
0.78
0.73
0.74
0.66
0.76
0.68
0.66
0.77
0.78
0.71
0.73
0.67
0.77
0.71
0.81

37

Table 5. LIGHT BULB PROBLEM RESULTS (1,000 TO 5,000 TRIALS)

NUMBER OF TRIALS

QUANTITY ACTUAL 1000

TIME 0.0 hours
Result

Difference from
actual value

Equivalent number
of trials

Percent Error

TIME 9.99 hours
Result

Difference from
actual value

Equivalent number
of trials

TIME 10.0 hours
Result

Difference from
actual value

Equivalent number
of trials

Percent Error

TIME 20.0 hours
Result

Difference from
actual value

Equivalent number
of trials

Percent Error

0.5040 0.4910

-0.0130

-13.0

-2.6

0.4990 0.4880

-0.0110
-11.0
-2.2

0.7236 0.7060

-- -0.0176

-- -18.0

-- -2.4

0.7191 0.6980

-0.0211

-21.0

2.9

0.5070

0.0030

6.0

0.6

0.5025

0.0035
7.0
0.7

0.7270

0.0034

7.0

0.5

0.7205

0.0014

3.0

0.2

0.5057 0.5033 0.5020

0.0017 -0.0007 -0.0020

5.0

0.3

0.5010

0.0020
6.0
0.4

0.7320

0.0084

25.0

1.2

0.7257

0.0066

20.0

0.9

-3.0

-0.1

0.4985

-0.0005
-2.0
-0.1

0.7275

0.0039

16.0

0.5

0.7215

0.0024

10.0

0.3

-10.0

-0.4

0.4968

-0.0022
-11.0

-0.4

0.7266

0.0030

15.0

0.4

0.7212

0.0021

10.0

0.3

38

2000 3000 4000 5000

Table 6

LIGHT BULB PROBLEM RESULTS (6,000 TO 10,000 TRIALS)

NUMBER OF TRIALS

QUANTITY ACTUAL 6000

TIME 0.0 hours
Result

Difference from
actual value

Equivalent number
of trials

Percent Error

TIME 9.99 hours
Result

Difference from
actual value

Equivalent number
of trials

Percent Error

TIME 10.0 hours
Result

Difference from
actual value

Equivalent number
of trials

Percent Error

TIME 20.0 hours
Result

Difference from
actual value

Equivalent number
of trials

Percent Error

0.5040 0.4995 0.4950

-0.0045 -0.0090

-27.0

-0.9

0.4990 0.4935

-63.0

-1.8

0.4889

0.4971

-0.0069

-55.0

-1.4

0.4913

0.4998

-0.0042

-38.0

-0.8

0.4939

0.5007

-0.0033

-33.0

-0.7

0.4948

-0.0055 -0.0101 -0.0077 -0.0051 -0.0042

-33.0

-1.1

0.7236

0.7191

0.7238

0.0002

1.0

0.03

0.7185

-71.0

-2.0

0.7204

-0.0032

-22.0

-0.4

0.7143

42.0

-1.5

0.7205

-0.0031

-25.0

-0.4

0.7145

-46.0

-1.0

-42.0

-0.8

0.7214

-0.0022

-20.0

-0.3

0.7154

0.7243

0.0007

7.0

0.1

0.7186

-0.0006 -0.0048 -0.0046 -0.0037 -0.0005
4.0 -34.0 -37.0 -33.0 -5.0

-0.1 -0.7 -0.6 -0.5 -0.1

39

7000 8000 9000 10000

Unavailability

Time

I
Simulation
Duration

First Monte Carlo Trial

- Second Monte Carlo Trial

Figure 9. SIMULATION UNAVAILABILITY TIME LINE

40

1 -4-

SINGLE COMPONENT

SINGLE REPAIR STATE (A=y=0.01)

MEAN = 0.4959

VARIANCE = 0.0026

0.3 0.4 0.5 0.6 0.7

UNAVAILABILITY

Figure 10. SINGLE COMPONENT, SINGLE REPAIR STATE -

AVERAGE UNAVAILABILITY

41

30-

25 -

20 -

15-

10-

5-

z

z

0

0.2

K-
0.8

l IN D. . .

CDF

SINGLE COMPONENT

SINGLE REPAIR STATE (X=y=0.01)

0 50 100 150 200
SIMULATION

- MARKOV

TIME (hours)

Figure 11. SINGLE COMPONENT, SINGLE REPAIR STATE -

TIME DEPENDENT UNAVAILABILITY

42

1.0

0.8

0.6

0.4

0.2

0.0

SINGLE COMPONENT

DUAL REPAIR STATE (\=p -) 2 =0.01)

MEAN = 0.6644

VARIANCE = 0.0023

0.5 0.6 0.7

X
X
X
X

x x
1\ Ix N x

XxX , X
X
v X
N Ix XX. XX X,\ X Nx N N \ \ \X XX N N " "X X X XN N X NX N N XIx N NN \N

KI
0.8 0.9

UNAVAILABILITY

Figure 12. SINGLE COMPONENT, DUAL REPAIR STATE -

AVERAGE UNAVAILABILITY

43

30

z

z

m

z

25-

20-

15-

10-

5

0.4 1.0
0

CDF

SINGLE COMPONENT

DUAL REPAIR STATE (X=y 2=0.01)

0 50 100 150 200
SIMULATION

MARKOV

TIME (hours)

Figure 13. SINGLE COMPONENT, DUAL REPAIR STATE -

TIME DEPENDENT UNAVAILABILITY

44

1.0

0.8

0.6

0.4
z

0.2

0.0

Two Out of Three Pumps

Pump 1

Valve
Pump 2Vav

=jr - (2/3

Pump 3

Flow
Output

Fluid
Supply

Figure 14. TWO OUT OF THREE PUMPS SYSTEM DIAGRAM

45

TWO OUT OF THREE PUMPS & ONE VALVE

1 -= 2 =t1 2 0.01)

MEAN = 0.7428

VARIANCE = 0.0011

0.6 0.7 0.8 0.9

UNAVAILABILITY

Figure 15. TWO OUT OF THREE COMPONENT - AVERAGE UNAVAILABILTY

46

z

z

30

25

20

15

10

5

n
0.5

XN-

X-

XN-

-N

1.0

Note: All Transfer Rates are Equal

Figure 16. MARKOV STA TE TRANSITION DIAGRAM
FOR TWO OUT OF THREE PUMP DIAGRAM

47

CDF

TWO OUT OF THREE PUMPS & ONE VALVE
(X 1 = A 1 t2 = 0.01)

0 50 100 150 200
---- SIMULATION

- MARKOV

TIME (hours)

Figure 17. TWO OUT OF THREE COMPONENT -

TIME DEPENDENT UNAVAILABILTY

48

1.0

0.8

0.6

0.4

0.2

0.0

Switch 1 Light

Battery

-A Switch 2 Light

Figure 18. LIGHT BULB PROBLEM DIAGRAM

49

I

4. CONTINUOUS SIMULATION APPLICATION

Most reliability analysis methods are designed to treat only systems which can be

modeled using a discrete state space. This limitation may be important when analyzing

systems whose behavior depends strongly on continuous variables (e.g., pressure,
temperature, and flow rates). As an exception to this general rule, Refs. 19 and 20 describe

a dynamic methodology based on discrete Markov chains to model process control systems.

The base DYMCAM program discussed in previous sections also does not have the

capability to treat failures of components whose state depends on continuous variables. In

this section the program is modified to include this capability. The purpose of this analysis

is to indicate the magnitude and types of changes required to accomodate this rather large

change in problem type.

The particular problem to be solved is similar to the example treated in Ref. 10. The

basic problem, and differences between this problem and that described in Ref. 10 are

discussed in the following section. The next sections describe the modified program, called

TANK, created for the analysis, the results of the simulation, and a simplified Markov

chain model used to verify the reasonableness of the results.

4.1 Problem Description

The problem to be solved consists of a fluid containing tank which has three separate

level control units. Figure 19 shows a diagram of the system. Each control unit is

independent of the others and has a separate level sensor associated with it. The level

sensors measure the fluid level in the tank (a continuous process variable) and, based on

the information from the level sensors, the operational state of the control units is

determined. Each flow control unit can be thought of as containing a controller which

turns the unit on and off based on the signal from the level sensors, as shown in Figure 19.

Failure of the system occurs when the tank either runs dry or overflows.

The tank has a nominal fluid level at the start of system operation of zero meters.

The maximum level of the tank is 3 meters (point b) and the minimum level of the tank is

-3 meters (point a). If the tank level moves out of this range, failure of the system has

occurred. Within this range there are two set points at -1 meter (set point a1) and +1

meter (set point a2). These set points define three control regions for system operation.

Region 1 is defined from point a to a,, Region 2 is from a, to a2, and Region 3 is from a2
to point b. When the fluid level is in any of the three control region there is a specific

action required of each of the three control units. Each control unit acts independently and

50

is not aware of what the state of the other control units is except through the change

occurring in the process variable. Table ?? shows the control unit states for each control

region.

Unit 1 is an outlet element providing a means for releasing fluid from the tank to

lower the level. As in Ref. 10, Unit 1 is assigned an exponential failure distribution with a

mean failure time of 320 hours. When operating, the unit allows fluid to flow out of the

tank. The associated rate of tank level change is 0.01 meters per minute. Unit 1 receives a

command to turn on (open) command from the level controller when the fluid level is in

Regions 2 and 3, and it receives a signal to turn off (close) when the fluid level is in

Region 1. If the unit is modeled as a valve, it is clear that the valve is normally open

unless the fluid level is below the low level setting for the tank, in which case the valve is

closed. The component routine used to model Unit 1 as a valve is one of the routines

contained in the basic DYMCAM program code.

Unit 2 is a supply unit which provides fluid input to the tank. It too has an

exponentially distributed failure time. The mean failure time used is the same as that used

in Ref. 10: 219 hours. When operating, the unit supplies fluid, leading to a tank level

change rate of 0.01 meters per minute. This unit receives a control signal to turn on (open)

if the fluid level is in Regions 1 and 2, and it receives a signal to turn off (close) if the fluid

level is in Region 3. (Note that the unit can be modeled as a pump or an inlet valve; the

latter is used in this work.)
The third unit is also a fluid supply element. It is identical in nature to Unit 2

except that it has a mean failure time of 175 hours. Two different tank level change rates

are associated with Unit 3: 0.01 meters/minute and 0.005 meters/minute. The former

corresponds to Case A studied in Ref. 10; the latter corresponds to Case F of Ref. 10.

Unit 3 is normally in an off (closed) state unless the fluid level drops into Region 1, in

which case the unit receives a signal to turn on (open). Like Unit 2, this unit is modeled as

an inlet valve.

At the start of system operation the fluid level is in the normal region (Region 2) and

Units 1 and 2 are on while Unit 3 is off. Thus the flow rate into the tank is equal to the

flow rate out of the tank, and the fluid level remains constant. This state will continue

until one of the level control units fails. Then, the fluid level will change either up or down

depending on which unit has failed; when the fluid level enters a new control region the

controller will take action to halt the change. The new system state may or may not be

stable, as is seen later in the section, however failure of the system cannot occur with the

failure of a single control unit. The level will remain in the new control region, or

51

oscillating between two control regions until a second unit fails. The second failure is likely
to cause the system to fail by the tank either running dry or overflowing.

Since component repair is not considered in this problem, all scenarios will end in

system failure. The type of failure experienced is dependent on the sequence in which the

units fail and also upon the timing of failure for certain cases in which the fluid level

oscillates. The purpose of this reliability analysis is to determine the time dependent

probability of each of the two types of failure. The complication which prohibits this type

of problem from being easily solved by other analysis methods is that component states are

dependent on a continuous process variable. For exact results, modeling of the process

variable must be done, and a method must be available by which control units are allowed

to change state at non-deterministic times. In other words the method of the DYMCAM

program, which uses external events to control phased mission problems, is not appropriate

since the time at which a component will be required to change its operating state will not

be known before the simulation is begun.

It should be pointed out that there are differences between the problem treated in

this section and that treated in Ref. 10. In Ref. 10, control units are only allowed to be in

one of two states: "on" or "off". If a failure occurs, the control unit is assumed to transfer

to the wrong state, which depends on the particular control region inhabited by the fluid

level. For example, if the tank level is in Region 1 and Unit 1 fails, it is assumed that

Unit 1 is "on." Thus, Ref. 10 treats the failures as being failures of the control system.

Note that because "failure" is defined in the context of the control region, this means that,
in principle, a unit can change states when the tank level moves from one region to

another, even if the unit is failed.

By contrast, this work allows four states for the components; they can be "on", "off",
"failed on", and "failed off". Once a component fails, it remains in that particular failed

state regardless of any changes that may occur in the rest of the system. Thus, the failure

model used in this work is more component oriented. Note that if the 4-state component

model is used in the discrete Markov chain approach, transitions among the 64 possible

hardware states must be considered explicitly (as opposed to the 8 possible hardware states

treated in the 2-state model).

4.2 The TANK Program - Modifications to DYMCAM

The major change needed in the DYMCAM program in order to solve the tank

problem is to add a routine which models the continuous process variable (tank level).

52

SIMSCRIPT 11.5 has a continuous variable modeling capability, described in Ref. 18, and

this is used to treat the tank level. This new variable requires the addition of several

subroutines to the DYMCAM program and these are described in this section. In addition,

certain subroutines of the original program required minor modification. Table 8 lists all

the new subroutines added and all the old subroutines to which adjustments were made. A

complete listing of the new subroutines is contained in Appendix C. The modified

subroutines are contained in Appendix B. In Appendix B, those subroutines which were

modified for the tank problem contain the message "TANK" at the far right hand side of

the page next to the added or altered lines of code. These commands should be removed or

altered to use the DYMCAM program by itself. It should be emphasized that the sole

purpose of the particular modified program is to demonstrate an application of the

simulation modeling approach to a reliability problem involving continuous process

variables. The modifications made to the DYMCAM program in this demonstration have

been chosen with an eye on rapid implementation rather than programming generality.

The most fundamental addition to the program is the TANK process routine. This is

the continuous process which provides SIMSCRIPT with the capability to solve continuous

variable systems. In pure discrete event simulation, the model advances in time from event

to event using entries in an event queue. It is assumed that the system remains unchanged

between scheduled events and can change only at the designated event times. For a

continuous model, variables are assumed to vary continuously with advancing time. Thus

time is incremented by a small amount and all variables are updated. This is done by

associating a differential equation with each continuous variable which indicates the rate of

change for that variable. Then as time is advanced by discrete time steps, integration is

performed to update the status of the continuous variable at the end of each time step. (Of

course, the "continuous updating" of variables can be viewed as the deterministic

scheduling of events over relatively short time intervals.)

SIMSCRIPT 11.5 allows the use of a variable time step for which the user must

specify the minimum and maximum values. The integration routine can be specified

explicitly, or the Runge-Kutta integration routine which is contained in the SIMSCRIPT

language may be used. Also associated with the integration routine are error parameters

that must be provided to specify the accuracy of integration calculations desired. All of

these initializations are entered in the TANK.INITIALIZE.RUN routine.

Figure 20 shows a flow chart of the operation of the TANK program. Following

through this chart will provide an explanation of the TANK program operation and

methodology. The function of the base DYMCAM routines are described in Section 2.

53

The analysis begins with the TANK.INITIALIZE.RUN routine which creates and

initializes the variables and signals associated with the tank. This is done only once at the

beginning of each computer run. Next, for every trial, the tank output signals, the tank

level, and the initial flow rate are reset by the TANK.INITIALIZE.TRIAL routine. After

all other initialization is completed by the DYMCAM program, the simulation clock is

started. Failure of all three units will be scheduled to occur at discrete times in the

simulation based on their failure rates, and these times are assigned as in DYMCAM.

Unlike DYMCAM, which uses only discrete event simulation, the TANK program

also contains the continuous tank level variable. Thus after the start of the simulation,
control of the time aspect of the program is performed by the TANK process. This

subroutine contains the statement (Line 15):

work continuously evaluating 'water.level' testing 'tank. condition'

This statement updates the tank water level using the WATER.LEVEL routine which

applies the SIMSCRIPT formulation of the simple differential equation governing the tank

level:

d.level(tank) = net.flow.rate(tank)

The time step used in the TANK program is fixed at one hour. If a variable time step were

allowed, then SIMSCRIPT would adjust the step based on how fast the variable is

changing. The integration routine, Runge-Kutta in this case, calculates the water level at

the new time.

Once the new level is determined, the TANK.CONDITION routine is called to verify

that the tank condition is "good." If it is, then the simulation clock is advanced another

time step, and the new water level is calculated. If the TANK.CONDITION routine

determines that: 1) the net.flow.rate(tank) does not equal the flow.rate.in minus the

flow.rate.out, 2) the tank has failed by overflow or dryout, or 3) the control state is not

correct based on the current fluid level; then continuous time steps are stopped and control

continues in the TANK process. The net flow rate for the tank is then updated. The

reason for this is to provide proper synchronization for changing of the flow rate. After

updating the net flow rate, the TANK process calls the TANK.UPDATE routine.

The TANK.UPDATE routine serves two functions. First it checks the water level to

see if overflow or dryout has occurred. If either condition has occurred, then the output

signal from the tank, indicating tank status, is set equal to zero (representing tank failure),
and control is returned to the TANK process. The TANK process then suspends itself.

The rest of the simulation time of the trial passes in discrete event fashion. When the

54

scheduled STOP.TANK and STOP.SIMULATION times are reached, the TANK process

is reset and the next trial begun.

It should be noted that the system indicator variable can have only one of two values

indicating either system success or failure. Since both tank overflow and tank dryout are

failure events, it is necessary to simulate failure in each mode separately. This is done by

altering the computer code to count only failures of one type or the other during a

particular run of the program. To test for the probability of tank overflow, Lines 13

through 17 of the TANK.UPDATE routine were rendered un-executable, and when testing

for tank dryout, Lines 13 to 17 were restored and Lines 24 through 28 of the

TANK.UPDATE routine were removed. In either case, once the tank has run dry or

overflowed, continuous operation of the system is suspended. Of course, an alternate

modification is to revise the SYSTEM.UPDATE and RUN.OUTPUT routines such that

multiple output states are recognized. This was felt to be more complex than the method

adapted.

If the tank has not failed, then the TANK.UPDATE routine checks to see if the unit

control states are correct based on the fluid level of the tank. If not, the TANK.UPDATE

routine creates the proper control signals to send to the three units to change their

operating state to the proper condition. To cause the units to change state, the

SYSTEM.UPDATE routine is called. This is a DYMCAM routine which changes the

states of components based on changes in signals and on changes in other system

component states. A new line added to the SYSTEM.UPDATE routine for the TANK

problem, appears at Line 141. This command causes the FLOW.UPDATE routine to be

called. This routine calculates the flow rate going into the tank and the flow rate coming

out of the tank based on the state of the three control units. It does not directly calculate

the net flow rate into the tank which is used by the WATER.LEVEL routine. This is done

in the TANK process to prevent the flow rate from changing during an integration time

step.

Once the flow rates are updated, control is returned to the SYSTEM.UPDATE

routine. The SYSTEM.UPDATE routine, in turn, returns control to the TANK.UPDATE

routine. Now the tank is in the proper operating condition and thus control is returned to

the TANK process. Since the tank has not yet overflowed or run dry, the TANK process

begins execution of the continuous function again. Time is advanced by the given time

step (one hour), the level of the tank is updated, and the condition of the tank is again

checked. As long as the tank condition is good, operation continues in this fashion. If the

tank condition tests bad, then the continuous operation is again suspended.

55

The failure rates used for the three control units in the tank problem make it highly

likely that the system will fail during the simulated 1,000 hour time period, therefore at

some point the continuous process should stop and the simulation will continue in the

discrete event fashion. In the rare case of no system failure during the 1,000 hour period,
the continuous process will be suspended by the STOP.TANK routine at the 1,000 hour

time point, and the system will be reset for the next trial. Of course, no failure event

would be recorded for such a trial.

Individual control unit failures are controlled by the DYMCAM program. When a

failure occurs, the SYSTEM.UPDATE routine is called which in turn will cause the flow

rate into and out of the tank to be adjusted. This change will affect the TANK program

when the TANK.CONDITION routine detects that the net flow rate to the tank does not

equal the flow rate in minus the net flow rate out, and as described above, the continuous

operation will be interrupted while the net flow rate is changed by the TANK process.

The new routines, TANK.INITIALIZE.RUN and TANK.INITIALIZE.TRIAL

areused to initialize all the parameters associated with the test. Most importantly the

TANK.INITIALIZE.RUN routine creates all of the output signals associated with the

tank. Since the DYMCAM program does not recognize the tank as being a component, it

is not assigned any output signals. Thus one line is added to the DYMCAM

RUN.INITIALIZE routine (Line 51) to add five signals to the total system signal count.

Figure 21 shows all of the signals associated with the TANK program. The five new

signals are indicated by stars. These signals are then initialized by the

TANK.INITIALIZE.RUN routine. Once created, the signals are treated in the same

manner as all other component signals. The five signals concerned are the three control

signals from the tank to each of the three units, the output process flow from the tank to

Unit 1, and a system status signal to indicate system success or failure.

The TANK.INITIALIZE.RUN routine also creates the signal and component files

necessary for clean operation of the program code. The TANK.INITIALIZE.TRIAL

routine, which is executed prior to each trial, resets the net flow rate to zero, sets the tank

fluid level back to zero, turns the flow out of the tank on, resets the system success

indicator to "good," and turns off the command signals to all three control units.

The STOP.TANK process operates in much the same fashion as the

STOP.SCENARIO process. It is used to suspend operation of the tank, if the tank has not

failed during the simulated time period (which has a very low probability of occurrence),
and then to reset the tank so it is ready to be started at the beginning of the next Monte

Carlo trial.

56

Minor modifications were also made to the MAIN routine and the CALL.UPDATE

process of the DYMCAM program. The MAIN routine was modified to include calling the

tank initialization routines and to call the STOP.TANK process. In addition the

availability data structure was modified to print out the desired results in the output file.

The CALL.UPDATE process was revised to include Lines 14 and 15 which simply take the

tank out of its suspended state and cause it to start operation at the beginning of every

trial.

In addition, a number of new lines were added to the PREAMBLE to reflect all of

the new routines, processes, and variables associated with the TANK program. These lines

are indicated in the PREAMBLE listing for the DYMCAM program in Appendix B by the

marker "TANK" which is placed at the far right hand side of each line of code that was

modified or added. The entire TANK program, as a unit, was compiled and kept separate

from the DYMCAM program, since subroutines cannot be compiled separately, and the

two codes are not used together. They do, however, contain the same basic structure and

the TANK program should be viewed as an extension of the DYMCAM program, which

remains almost entirely intact in the TANK code.

The input file necessary to run the program is exactly the same format as the input

file for the DYMCAM program described in Appendix A. The only point to note is that

the three units were modeled as valves in the simulation program. It is also important that

the names of the level control units be entered as unit1, unit2, and unit3 so that they are

recognized by the TANK program as the flow control units. An example input file for this

program is contained in Appendix D. The same input file is used for all tests, and changes

are made in the program to reflect testing for the failure condition of overflow or dryout

and to alter the flow rate provided by Unit 3. The output file generated by the TANK

program is identical in format to the output generated by the DYMCAM program, and an

example print out is shown in Appendix E.

4.3 Simplified Model for Benchmarking

Because of the differences between the problem analyzed and that treated in Ref. 10,
it is expected that there will be some difference in results. To benchmark the TANK

computations, therefore, a simplified model for the system is created. This model is based

on a comparison of the time scales for component failure and for tank level change. The

three control units have mean failure times of 320, 219, and 175 hours respectively. On the

other hand, if the tank fluid level is at zero when a unit fails, then at a level change rate of

0.01 meters per minute it will only take approximately 1.7 hours for the tank to change

57

control regions. If the level is at the edge of Region 1, and must travel to Region 3, the

longest amount of time that will be required is approximately 3.5 hours. These times are

small compared to the mean failure times. In the simplified approach, it is assumed that

after one failure occurs, a second failure does not occur until the system has entered a new

control region. This allows the treatment of the system using a Markov chain.

The two cases considered correspond to Cases A and F described in Ref. 10. The

difference between these two cases lies with the flow rate out of Unit 3. In Case A, the

associated tank level rate of change is 0.01 meters/minute. In Case F, the rate of change is

0.005 meters/minute. This difference leads to different sets of potential accident sequences,
as discussed below.

4.3.1 Analysis of Case A

For Case A, the tank starts at time zero with all units operational (Units 1 and 2 are

turned on, and Unit 3 is turned off). The tank will continue in this state with no change in

the tank level until a failure of a control unit occurs. The sequencing of failure is very

important so each unit failing first will be considered separately. Figure 22 shows the state

transition diagram for this system. All states are defined in Table 9.

The three possible initiating events are Unit 1 or Unit 2 failing closed, or Unit 3

failing open. It can be easily shown that the probability of each individual unit being the

first to fail is given simply by the ratio of the failure rate for that unit divided by the sum

of the failure rates for all three units. To show this, consider the system composed of only

the first four states of Figure 22, states 0, 1, 2, and 3. The four state probability equations

for this system are:

d 3)P
t= -(Ai + A2 +A3)PO

Ft= A PO (6)
dP 2

= A2Po
dP 3

t= A3Po
Since at t = 0, the system is initially in State 0, the time-dependent state probabilities can

be easily found:

P o(t) = exp{-(A I + A2 + A3)t}

Pi(t) = A i + A3 ~ A1 + AA2+ A3)t} (7)Al+A 2 + T A,+A 2 + A p3 A+A+ 3 t
for i = 1,2,3

For t sufficiently large, it is clear that Pi(t) - Aj/(A1 + A2 + A3). Using these results it is

found that Unit 3 will fail first 43% of the time, Unit 2 34%, and Unit 1 23% of the time.

58

The initial failure of Unit 1 is the easiest case to consider since it will always lead

eventually to a tank overflow condition, regardless of the relative flow rates provided by

the three units. Unit 1 failing closed causes the fluid level to rise until it passes into

Region 3, at which time Unit 2 is shut off. The tank remains in this condition until either

Unit 2 or Unit 3 fails open, either of which will lead directly to a tank overflow condition.

The initial failure of Unit 2 poses a more interesting problem. With Unit 2 failing

closed, the fluid level will drop until it reaches Region 1. Then Unit 1 is closed and Unit 3

is opened. This causes the fluid level to rise until the fluid level is in Region 2 again, at

which time Unit 1 is opened and Unit 3 is closed. Thus, the fluid level will continue to

oscillate about the low level set point of -1 meters with Units 1 and 3 being alternately

turned on and off. In this analysis, the time step duration used in the simulation is one

hour. Therefore, for this case, the level of the tank will fluctuate between -0.4 meters and

-1.6 meters, spending equal time in each of the two control regions (1 and 2). This is true

since while the level is rising, the rate of increase is 0.01 meters per minute, and while the

level is falling the rate of level change is also 0.01 meters per minute. Fluctuation occurs

between the same two points since time steps were forced to be constant at one hour

intervals.

From this state there are four possible events that can occur. While the fluid level is

rising, Unit 1 can fail open or Unit 3 can fail closed, or while the fluid level is decreasing

Unit 1 can fail closed or Unit 3 can fail open. It is clear that if either unit fails while the

level is rising the flow rates in and out of the tank will then be equal and the fluid level will

stop changing until the failure of the third level control unit. This third failure will lead

directly to the tank running dry.

If one of the two control units fails while the tank level is dropping then, again, the

tank fluid level will cease to change until the failure of the third unit. This time, the third

unit failing will lead directly to overflow of the tank. Since the tank spends an equal time

in the rising and falling level states, it is equally likely that the tank will fail in an overflow

or dryout state. Thus for the case of unit two being the initial failure event, there is a 50%

probability that the tank will fail in each of its two failure conditions.

For the case of Unit 3 failing first, the solution is as easy as for Unit 1 failing first.

When Unit 3 fails open, the fluid level will begin to rise until the tank level reaches control

region 3, at which time Unit 2 will be closed. Now with both Units 1 and 3 open, the fluid

level will hold constant at 1 meter. The next failure event, either Unit 1 failing closed or

Unit 2 failing open, will lead directly to a tank overflow condition. Thus for all scenarios

where Unit 3 fails first, the tank will fail by overflow.

59

From the above discussion it is evident that all Unit 1 initial failures, all Unit 3

initial failures, and half of the Unit 2 initial failures will eventually lead to an overflow

condition. Thus, using the values quoted above for the probability that each of the three

units will fail first, it is found that the probability that the tank will fail by overflow is:

0.23 + 0.43 + (0.5 * 0.34) = 0.83

The tank will fail by overflowing approximately 83% of the time and fail by running dry

the other 17% of the time.

It is important to note that although the above method simplifies the problem so

that it may be solved with Markov chains without even considering the continuously

variable tank fluid level, this method is only an approximation and is as good as the

assumption that two failures do not occur within a 3.5 hour time period. This, of course,
will not be the case for all continuous variable process control problems. In this example

problem the results obtained using the approximation agree well with the simulation

results, but several possible failure sequences which will occur with low probability are

ignored. For example, consider the case of failure of both Units 2 and 3 within 1.5 hours of

each other. This will leave the fluid level essentially unchanged or, at least, still in control

region 2. The net flow rate from the tank is still zero so the tank will remain in this

condition until Unit 1 fails, at which time the tank will overflow. If it is considered that

Unit 3 fails just prior to Unit 2, then the result is consistent with the approximate analysis.

However if Unit 2 failed first, then the approximate method predicts that half the cases

will experience system failure by overflow and half will be by dryout. This is obviously not

the case for the dual failure example and the approximate solution will be slightly in error.

Other "simultaneous" failures lead to similar conclusions.

4.3.2 Analysis of Case F

For Case F the problem becomes much more complicated. The initial failure

probabilities remain unchanged from Case A, but some of the sequences of events after

initial failure change. One part that remains the same, however, is the scenario following

initial failure of Unit 1. Since Unit 1 is the only way fluid can be removed from the tank,

once it has failed closed the tank is guaranteed to fail by overflow. Thus, as in Case A, if

Unit 1 fails first, all scenarios lead to overflow. The time to overflow, however, could be

different due to the different flow rate from Unit 3.

If Unit 2 fails first, the tank level drops to the low set point and begins to oscillate

above and below this mark as Units 1 and 3 are opened and closed (as in Case A).

However, the amount of time spent in each control region will be different. When the fluid

level is rising, Unit 1 is closed and Unit 3 is open, thus the level is changing at the rate of

60

0.005 meters per minute. When the level is falling, Unit 1 is open and Unit 3 is closed,
thus the level is changing at 0.01 meters per minute. Define the level change rates

associated with the flow from each of the three units as x1, X2, and X3 respectively. For

Case F the normal values are, x 1 = 0.01, x 2 = 0.01, and x 3 = 0.005 meters per minute.

Since Unit 2 has failed closed, then X2= 0.0. Define the net flow rate as Xnet, then while

the water level is in control region 1 (and Unit 1 is closed), xnet is given by:

Xnet = X3 = 0.005

While the water level is in control region 2 (and Unit 3 is closed), xnet is given by:

Xnet = -xi = -0.01

Therefore, if the tank level is considered to vary between the same two levels, the tank

must spend twice as much time in the control region one (with Unit 3 open and Unit 1

closed), than in the control region 2 (with Unit 1 open and Unit 3 closed). This is reflected

in the failure scenarios.

If, while the tank level is increasing, either unit fails, then the tank will immediately

run dry. This is the same result as for Case A except that Case A would not experience

dryout until all three units have failed. If while the tank level is decreasing, Unit 1 fails,
then the tank level will hold constant until Unit 3 fails open. Then the tank will overflow.

This sequence is the same as for Case A; however overflow will occur a few hours later due

to the slower flow rate from Unit 3.

The fourth possible failure sequence resulting from the initial failure of Unit 2 is

entirely different. If Unit 3 fails while the tank level is decreasing, then the level will

continue to decrease until the level reaches control region 1, since the flow through Unit 3

is half the value of the flow through Unit 1. Once in control region 1, Unit 1 is closed and

the level will rise because of the flow from failed Unit 3. Once the level is again in control

region 2, Unit 1 will be opened. Thus the level oscillates about the -1 meter level with

equal time spent while the tank level is rising and falling due to the fact that the flow rate

from Unit 1 is exactly twice that from Unit 3 (so the net rates at which the tank level rises

and falls are equal).

From this condition, Unit 1 can either fail open or closed depending on whether it

fails while the tank level is rising or falling. These failures occur with equal probability.

Therefore, once Units 2 and 3 have failed, there is an equal chance that the tank will run

dry or overflow.

Summarizing the possible sequences following failure of Unit 2, it is seen that the

probability of subsequent failure of Unit 1 or 3 is equal to the ratio of their failure rates to

the sum of the failure rates. Thus there is a 65% chance that the next failure will be of

Unit 3 and a 35% chance that the next failure will be of Unit 1. Of these percentages, two

61

thirds of the Unit 1 failures will be Unit le failing open, which leads directly to dryout, and

the other one third of the Unit 1 failures lead to eventual tank overflow. For the Unit 3

failure cases, two thirds will be Unit 3 failing closed, while the fluid level is rising, and this

leads to the tank failing by dryout. The other one third lead to oscillation in the fluid level

with Unit 1 opening and closing; thus, 50% will lead to eventual system overflow and 50%

will lead to system dryout. Evaluating the probabilities of the scenarios initiated by the

failure of Unit 2, it is found that 77% lead to tank dryout while 23% lead to tank overflow.

Figure 23 shows the state transition diagram for the Case F tank problem.

In Case F it is also no longer true that the initial failure of Unit 3 will eventually lead

to tank overflow. To see this, the scenarios associated with the initial failure of Unit 3 are

analyzed. Following failure of Unit 3 the tank level rises into control region 3 and then

Unit 2 is closed.' Since the flow rate from Unit 1 is greater than the flow rate of Unit 3, the

level drops into control region 2, at which point Unit 2 is turned back on. Thus the fluid

level oscillates about the +1 meter level with Unit 2 being opened and closed. While

Unit 2 is on, the net flow rate into the tank is 0.005 meters per minute, and while Unit 2 is

off the flow rate out of the tank is 0.005 meters per minute. Thus, if the tank level is

assumed to oscillate between the same two levels, the system spends equal time with

Unit 2 open or closed.

The next failure of either Unit 1 or 2 will again be in proportion to the failure rates

associated with each unit. Using these values it is found that subsequent to failure of

Unit 3, there is a 41% chance that the next failure will be of Unit 1 and a 59% chance that

the next failure will be of Unit 2. If Unit 1 fails, it closes, and the tank will go immediately

to the overflow condition. Since Unit 2 spends fifty percent of its time open and fifty

percent of its time closed, it has an equal probability of failing either closed or open.

If while the tank level is decreasing, Unit 2 fails on, the tank will go directly to an

overflow state. If, however, Unit 2 fails closed while the tank level is increasing, then the

tank level will fall until it is in control region 1, at which time Unit 1 will be closed. Then

the level will rise due to flow from Unit 3 until the level is in control region 2, when Unit 1

will be opened again. Thus the level oscillates about the -1 meter level with Unit 1

opening and closing.

The magnitude of the tank level rate of change when the tank level is dropping is the

same as when the fluid level is rising, therefore Unit 1 spends an equal amount of time open

and closed. If Unit 1 fails closed while it is open, then the tank will overflow. If Unit 1

fails open while it is closed, then the tank will run dry. The latter case was not possible in

Case A.

62

Summarizing the scenarios following the initial failure of Unit 3 it is seen that all but

one of the situations leads to a tank overflow condition. If Unit 1 fails second, then

overflow is certain to occur while if Unit 2 fails second only three quarters of the time will

overflow occur. Evaluating numerically, following the initial failure of Unit 3, there is a

85% chance that the tank will fail by overflow and only a 15% chance that the tank will

run dry.

Compiling the results of all initial failure events and evaluating the numerical results

it is found that for Case F, the probability that the tank will fail by running dry is 0.30 and

the probability that the tank will fail by overflowing is 0.70. Thus in Case F the tank is

more likely to fail by running dry than in Case A due to the decreased flow rate from

Unit 3. Table 10 summarizes the possible failure sequences for Case A, their probability of

occurrence, and the end result. Table 11 summarizes the same results for Case F.

4.3.3 Markov Model

From the above scenario analyses, and making the assumption that the time required

for the fluid level to transit between control regions is negligible, it is possible to construct

Markov chains to approximate the time dependent behavior of the system. Figure 22

shows the Markov state transition diagram for Case A and indicates that sixteen states are

required. Figure 23 shows the state transition diagram for Case F, which requires nineteen

states. Table 9 shows the states used for Case A and their corresponding definition. States

11 and 13 correspond to tank dryout while States 4, 5, 10, 12, 14, and 15 correspond to

tank overflow. For Case F, there are nineteen states of interest. These states are listed in

Table 12. States 6, 12, 13, and 17 contribute to tank dryout while States 4, 5, 10, 14, 15,
and 18 contribute to tank failure by overflow.

From the state definitions given in this table, the Markov equations are written in

the usual manner. These equations are solved using a 4th order Runge-Kutta scheme.

The time period of concern is from time zero up until approximately 1,000 hours. The time

dependent results for appropriate states were summed to obtain the time dependent

probability of system failure by overflow or by dryout.

4.4 Simulation Analysis

Each TANK program simulation was run for a simulated time duration of 1,000

hours; 1,000 Monte Carlo trials were performed. The Case A results for tank dryout are

plotted along with the Markov approximation in Figure 24; the analogous results for

overflow are plotted in Figure 25. Both of these figures indicate good agreement between

63

the simulation results and the Markov approximation. The time dependent behavior is

virtually identical and values differ by only a few percent. Good agreement between the

simulation results and the simplified Markov model is expected since the time required for

the tank level to change is small in comparison with the failure times associated with the

individual flow control units.

A quantitative comparison of the simulation and simplified Markov results with the

numerical results provided by Ref. 9's dynamic Markov approach for Case A is shown in

Figure 26. The data for the Ref. 10 curve was provided in Ref. 21, and is the same as the

results presented in Ref. 10. The figure indicates that the simplified Markov results agree

almost exactly with Ref. 9's predictions and the simulation method provides results which

are very similar to both. For this case, the difference between the three methods is very

small and indicates that although the approach to the problem was different for each

method, the results are quite comparable.

As in the case of Case A, the Case F runs involved a simulated period of 1,000 hours

and 1,000 trials. Results of the simulation program are plotted in Figures 27 and 28 along

with the Markov predictions for comparison. The results indicate reasonable agreement

between the two methods. However, these results do not agree as closely as those obtained

from Ref. 21. This is believed to be due to the different treatments of component failures

used. These differences are observed in Case F because the different flow rates for the

control units lead to different failure scenarios. Note that the data plotted for the dynamic

Markov model are obtained from Ref. 21 and are corrected versions of the data presented

in Ref. 10.

It is interesting to observe that in the Monte Carlo trials, it was found that 13 of the

1,000 trials involved failure of two units during the same continuous process integration

time step (i.e., the failures occurred within one hour). Thus approximately 1.3 percent of

the time the assumption made for the initiating event Markov analysis is not valid.

The amount of computer time required to run the simulation is significant. Using an

integration time step of one hour, the program takes two hours and fifty minutes for the

Case A problem. Using the same parameters with the Case F problem, the test takes four

hours and forty-three minutes. The time for Case F is much longer because in this case,
there are many more instances where the level of the tank oscillates about either the low or

the high tank level set points. The time stated above is for runs on a COMPAQ 386SX

personnel computer; times on an IBM XT are estimated to be about six times as long.

Thus the time requirement for using this simulation method may be prohibitive.

64

Certain improvements may be possible to reduce the computer time required. One of

these is to increase the length of the integration time step used by the continuous process

routine. Another is to more efficiently code the portions of the model which lead to

oscillation of a component. Based on the difference in time required for Case A and Case

F, this improvement alone may reduce solution time by 75% or more. Other techniques for

optimizing the computer code may also certainly be possible, as discussed in Section 5.

4.5 Summary

In this section, the use of continuous simulation methods is explored; these methods

are useful for analyzing the reliability of complex process control systems. The specific

problem investigated is the tank level control problem addressed in Ref. 10. The

simulation solution proposed is a modified version of the DYMCAM program discussed in

previous chapters. This new program, called TANK, makes use of the continuous

capability available in the SIMSCRIPT 11.5 simulation language.

The TANK program is constructed from the previously discussed DYMCAM

program; most of the latter was left intact with only minor changes being made to a few

lines of the SIMSCRIPT code. Several routines were added to define the continuous

variable to be used in the simulation. The key new routine is the TANK process, which

models the fluid level as a continuous variable, monitors the level to determine the control

region the system is in, and based on this information, causes the opening and closing of

control valves.

The TANK program was run for a simulated time period of 1,000 hours and for 1,000

Monte Carlo trials to estimate the time dependent probability of dryout and overflow. The

results of the simulation compare well with those from an approximate Markov chain

approach, and from a more general Markov model described in Ref. 10.

The computer time requirements for running the TANK program on a personal

computer are quite large. This is due in large part to the presence of the oscillation of the

fluid level about the upper or lower tank level set points. To reduce computer time

requirements, it is possible to revise the code to reflect a more efficient program, and the

integration time step can be increased. To increase the accuracy of the results, a larger

number of trials must be performed. Since the time required is directly related to the

number of trials performed, variance reduction techniques will probably be required.

65

Table 7

FLOW CONTROL UNIT STATES AS A FUNCTION OF FLUID LEVEL

Control Unit State

Control
Region

1

2

Liquid
Level (x)

x< a,

al<x< a 2

Unit 1

off

on

on

Unit 2

on

on

off

Unit 3

on

off

off

66

3

Table 8

TANK SUBROUTINES

Subroutine Description

Modified DYMCAM Routines

PREAMBLE

MAIN
CALL.UPDATE
RUN.INITIALIZE
SYSTEM.UPDATE

Modified
processes
Modified
Modified
Modified
Modified

New Routines
FLOW.UPDATE

STOP.TANK
TANK
TANK.CONDITION

TANK.INITIALIZE.RUN

TANK.INITIALIZE.TRIAL

TANK.UPDATE

WATER.LEVEL

to reflect new variables and

to
to
to
to

initialize and stop the tank
start tank process
add signals
update flow rates

Routine to calculate flow to and from
Tank
Process to reset tank after each trial
Continuous process to monitor fluid level
Function that checks for proper control
region operation
Routine to initialize all variables and
sets for the Tank
Routine to re-initialize specific variables
for next trial
Routine to track System status and
control all units
Routine providing integration quantity
for continuous routine

67

Table 9

MARKOV STATES FOR TANK CASE A

FAILURE DESCRIPTION

All units goc
Unit 1 failed
Unit 2 failed
Unit 3 failed
Unit 1 failed
failed open (
Unit 1 failed
failed open (
Unit 2 failed
failed closed
Unit 2 failed
failed open
Unit 2 failed
failed open
Unit 2 failed
failed closed
Unit 2 failed
failed closed
(Overflow)
Unit 2 failed

d
closed
closed
open
closed then Unit 2

Overflow)
closed then Unit 3

Overflow)
closed then Unit 1

closed then Unit 1

closed then Unit 3

closed then Unit 3

closed then Unit 1
then Unit 3 failed open

0
1
2
3
4

5

6

7

8

9

10

11

12

13

14

15

failed open then Unit 3 failed closed
(Dryout)
Unit 2 failed closed then Unit 3
failed open then Unit 1 failed closed
(Overflow)
Unit 2 failed closed then Unit 3
failed closed then Unit 1 failed open
(Dryout)
Unit 3 failed open then Unit 1 failed
closed (Overflow)
Unit 3 failed open then Unit 2 failed
open (Overflow)

STATE

losed then Unit 1

68

c

Table 10

CASE A FAILURE SEQUENCE SUMMARY

Failure Sequence Probability Result

#1 closed, #2 open 0.10 overflow
#1 closed, #3 open 0.13 overflow
#2 closed, #1 closed, #3 open 0.06 overflow
#2 closed, #1 open, #3 closed 0.06 dryout
#2 closed, #3 open, #1 closed 0.11 overflow
#2 closed, #3 closed, #1 open 0.11 dryout
#3 open, #1 closed 0.17 overflow
#3 open, #2 open 0.25 overflow

69

Table 11

CASE F FAILURE SEQUENCE SUMMARY

Failure Sequence Probability Result

#1 closed, #2 open 0.10 overflow
#1 closed, #3 open 0.13 overflow
#2 closed, #1 open 0.08 dryout
#2 closed, #1 closed, #3 open 0.04 overflow
2 closed, #3 open, #1 closed 0.04 overflow
#2 dosed, #3 open, #1 open 0.04 dryout
#2 dosed, #3 closed, #1 open 0.15 dryout
#3 open, #1 closed 0.17 overflow
#3 open, #2 open 0.13 overflow
#3 open, #2 closed, #1 open 0.06 dryout
#3 open, #2 closed, #1 closed 0.06 overflow

70

Table 12

MARKOV STATES FOR TANK CASE F

FAILURE DESCRIPTION

0
1
2
3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

closed
Unit 3 failed open
closed then Unit 1
(Dryout)
Unit 3 failed open
closed then Unit 1
(Overflow)

then Unit 2 failed
failed open

then Unit 2 failed
failed closed

STATE

All units good
Unit 1 failed closed
Unit 2 failed closed
Unit 3 failed open
Unit 1 failed closed then Unit 2
failed open (Overflow)
Unit 1 failed closed then Unit 3
failed open (Overflow)
Unit 2 failed closed then Unit 1
failed open (Dryout)
Unit 2 failed closed then Unit 1
failed closed
Unit 2 failed closed then Unit 3
failed open
Unit 2 failed closed then Unit 3
failed closed
Unit 2 failed closed then Unit 1
failed closed then Unit 3 failed open
(Overflow)
Unit 2 failed closed then Unit 3
failed open then Unit 1 failed closed
(Overflow)
Unit 2 failed closed then Unit 3
failed open then Unit 1 failed open
(Dryout)
Unit 2 failed closed then Unit 3
failed closed then Unit 1 failed open
(Dryout)
Unit 3 failed open then Unit 1 failed
closed (Overflow)
Unit 3 failed open then Unit 2 failed
open (Overflow)
Unit 3 failed open then Unit 2 failed

71

Liquid Level
(meters)

+1

-- 1

-3
-- UNIT 1 se

TANK

Outflow

Figure 19. TANK PROBLEM DIAGRAM

72

Initialize for Run
(Tan k.1 n itial ize.Run)

Another NO Print Stop
Trial? Output Run

YES

Initialize for Trial
(Tank.initialize.Trial)

I
Start Simulation

Update Net ondition okay? Advanc
Flow Rate on nko One Ti

(Ta-nk)

YES

Call Update W
Tank.Update (Water

Has NO
Control Region

Has Tank >NO Changed?
Failed?

YES
YES Set Control Signals

Record Type Properly
of Failure (Tank.Update)

Complete Discrete
Event Simulation

(DYMCAM)

Reset Tank
Process

(Stop.Tank)

Change Control
Unit States

(System.Update)

Update Flow in
And Flow out
(Flow.Update)

I
Tank is

Now Okay

e Time
ne Step

ater Level
.Level)

Figure 20. FLOW CHART OF TANK PROBLEM

73

Process Input Signal
(from system)

Power input Signal
(from system)

UNIT 2
yI 3

U N IT 3

*
Con trol
Signal

Process Output

Control Signal

*

*
Status
Signal

Tank Status Signal
(to system)

Process
Output

TANK Process Output

*
Control Signal UNIT 1

Process Output Signal
(to system)

Figure 21. TANK PROGRAM SIGNALS

74

Tank Case A

O.F. D.O. O.F. D.O.

Figure 22. TANK CASE A STATE TRANSITION DIAGRAM

75

Tank Case F

O.F. O.F. D.O. O.F. O.F.

O.F. O.F. D.O. D.O. D.O. O.F.

Figure 23. TANK CASE F STATE TRANSITION DIAGRAM

76

A

TANK PROBLEM

CASE A - DRYOUT

SIMULATION

MARKOV

0 200 400 600 800

TIME(hours)

CASE A - CUMULATIVE DRYOUT PROBABILITY

77

1.0

0.8

0.6

0.4

0.2

m-
mD
0)

E-

01

0.0
1000

Figure 24.

TANK PROBLEM

CASE A - OVERFLOW

10000 200 400 600 800

-- SIMULATION

-MARKOV

TIME(hours)

Figure 25. CASE A - CUMULATIVE OVERFLOW PROBABILITY

78

0

m-

0D

U

1.0

0.8

0.6

0.4

0.2

0.0

TANK PROBLEM

CASE A

SIMULATION

MARKOV

-i I,,'ALDEMIj

f f - I I I I I I II- I II

200 400 600 800 1000

TIME(hours)

Figure 26. COMPARISON WITH REF. 10'S RESULTS FOR CASE A

79

1.0

0.8 -

0.6 -0

OVERFLOW

DRYOUT

0.2 -

0.0
0

0.4 -j

TANK PROBLEM

CASE F - DRYOUT

-- SIMULATION

- MARKOV

0 200 400 600 800

TIME(hours)

Figure 27. CUMULATIVE DRYOUT PROBABILITY

80

1.0

0.8

0.6

0.4

0.2

0

04

0

0

L)

0.0
1000

TANK PROBLEM

CASE F - OVERFLOW

0 200 400 600 800

SIMULATION

MARKOV

TIME(hours)

Figure 28. CUMULATIVE OVERFLOW PROBABILITY

81

1.0

0.8

0.6

0.4

0.2

0

0-

0.0
1000

TANK PROBLEM

CASE F

SIMULATION

- MARKOV

0 200 400 600 800 1000

TIME(hours)

Figure 29. COMPARISON WITH REF. 10'S RESULTS FOR CASE F

82

1.0

0

0.8

0.6

0.4

0.2

0.0

5. SUMMARY AND CONCLUSIONS

In this work, a discrete event simulation program is developed for evaluating the

dynamic availability of complex systems. The DYMCAM program is designed to be a

general analysis tool with applicability to many types of engineering systems. The

language used by the program, SIMSCRIPT 11.5, provides event scheduling, process

interaction, and continuous simulation capabilities, allowing: the treatment of components

as separate objects within the program, the treatment of external events, and the analysis

of process control systems. The latter capability is exploited in the TANK program, which

is a small extension of DYMCAM.

The basic DYMCAM program is designed to allow the user to easily construct a

system model in order to determine the system's time-dependent unavailability. The basic

modeling entities are the components; the user specifies the components in the system, and

the links between the components. Also specified are any external events (which can be

used to perform a phased mission analysis). Five basic component types are presently

available; however, further components can easily be added if called for. Program output

includes instantaneous system unavailability at any number of user specified time points

throughout the course of the simulated time period, and average unavailability information

for the entire simulation.

The TANK code is a modified version of DYMCAM designed to demonstrate the

capability for evaluating the unavailability of systems whose behavior is affected by

continuous process variables. The TANK code provides the ability to model a

continuously variable tank fluid level; it also demonstrates how a simulation program can

be used to model the occurrence of events not scheduled before the start of the simulation.

Applications of the DYMCAM and TANK codes to various test problems indicate

that the approach is reasonably accurate. They also demonstrate that the

component-oriented approach adopted allows easy upgrading of the program to suit

problem needs (e.g., non-exponential failure times, complex repair strategies, m-out-of-n

logic). Even the incorporation of a continuous process variable into the base DYMCAM

program does not require major restructuring of the base program (it does require the

addition of a number of additional subroutines).

83

The major drawback of the discrete event simulation approach, as applied in the

DYMCAM and TANK codes, is the large amount of computer time required to perform the

analysis. This is due to a number of factors. First, the sampling done in these codes is of

the "brute force" sort; a fair number of trials are required to obtain good accuracy. This

problem will be greatly exaggerated when realistic failure rates are used. Second, the codes

have been written to be understandable to the user, perhaps at the sacrifice of execution

efficiency. Efforts to optimize the code are likely to lead to shorter running times, but also

a model that is less easy to maintain and modify. Third, in order to determine the

instantaneous unavailability during a simulation, the codes interrupt the simulation

process. This reduces one of the advantages of discrete simulation - the bypassing of

simulated time where no events are scheduled to occur. Reducing the number of time

points at which the system unavailability will be estimated will speed up the simulation.

Finally, the SIMSCRIPT 11.5 implementation on personal computers is not really designed

for heavy processing; this is because for these machines, the language is processed using an

interpreter, rather than a compiler. Execution of the DYMCAM and TANK programs on

minicomputers, or larger, should lead to much more acceptable run times.

Because of the runtime requirements of discrete event simulation (which will be

significant - even on large computers - when dealing with realistic failure rates), future

work in this area should concentrate on the issue of variance reduction, i.e., how to increase

the accuracy of the unavailability estimates with a small number of samples. Once that is

done, a number of refinements can be made to the programs, including incorporation of

process signal strength between components (allowing a more natural treatment of

m-out-of-n problems), expansion of the REPAIR.SUPERVISOR routine to accomodate

various repair strategies, treatment of common cause failures, and incorporation of

uncertainty analysis.

84

REFERENCES

1) A.E. Green and A.J. Bourne, Reliability Technology, Wiley, New York, 1972.

2) W.E. Vesely et al, Fault Tree Handbook, NUREG-0492, U.S. Nuclear Regulatory
Commission, January 1981.

3) W. V. Gately and R. L. Williams, "GO Methodology - Overview," NP-765 Electric
Power Research Institute, (1978).

4) A. Pages and M. Gondran, System Reliability - Evaluation and Prediction in
Engineering, North Oxford Academic Publishers Ltd., 1986.

5) P.C. Cacciabue and A. Amendola, "Dynamic Logical Analytical Methodology Versus
Fault Tree: The Case Study for the Auxiliary Feedwater System of a Nuclear Power
Plant," Nuclear Technology, 74, 195-208(1986).

6) H. Kumamoto, T. Tanaka, and K. Inoue, "A New Monte Carlo Method for
Evaluating System-Failure Probability," IEEE Transactions on Reliability, R-36,
No. 1, (April 1987).

7) T. Matsuoka and M. Kobayashi, "GO-FLOW: A New Reliability Analysis
Methodology," Nuclear Science and Engineering, 98, No. 1, (January 1988).

8) CACI, SIMSCRIPT 11.5 Programming Language, CACI, Inc.-Federal, Los Angeles,
1987.

9) G. E. Apostolakis, S. L. Salem, and J. S. Wu, "CAT: A Computer Code for the
Automated Construction of Fault Trees," NP-705 Electric Power Research Institute,
(1978).

10) T. Aldemir, "Computer-Assisted Markov Failure Modeling of Process Control
Systems," IEEE Transactions on Reliability, R-36, No. 1, (April 1987).

11) J. Banks and J. S. Carson II, Discrete-Event System Simulation, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1984.

12) J. Banks and J. S. Carson II, "Process-interaction Simulation Languages,"
Simulation, 44, No. 5, (May 1985).

13) D.L. Deoss, "A Simulation Model for Dynamic System Availability Analysis," S.M.
Thesis, Massachusetts Institute of Technology, 1989.

14) T.J. McIntyre and N. Siu, "Electric Power Recovery at TMI-1: A Simulation
Model," Proceedings of the International ANS/ENS Topical Meeting on Thermal
Reactor Safety, San Diego, CA, February 2-6, 1986, pp. VIII.6-1 through VIII.6-7.

15) A. M. Law and C. S. Larmey, An Introduction to Simulation Using SIMSCRIPT 11.5,
CACI, Inc.-Federal, Los Angeles, 1984.

85

16) E. C. Russell, Building Simulation Models with SIMSCRIPT II.5, CACI,
Inc.-Federal, Los Angeles, 1983.

17) CACI, PC SIMSCRIPT 11.5 Introduction and User's Manual, Third Edition, CACI,
Inc.-Federal, Los Angeles, 1987.

18) A. M. Fayek, Introduction to Combined Discrete-Continuous Simulation Using PC
SIMSCRIPT 11.5, CACI, Inc.-Federal, Los Angeles, 1988.

19) W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes, Cambridge University Press, New York, 1986.

20) T. Aldemir, "Quantifying Setpoint Drift Effects in the Failure Analysis of Process
Control Systems," Reliability Engineering and System Safety, 24, No. 1, (1989).

21) T. Aldemir, personal communication to N. Siu, Massachusetts Institute of
Technology, April 10, 1989.

86

Appendix A

DYMCAM INPUT FILE DESCRIPTION

Figure A.1 shows an example listing of an input file for the DYMCAM program.

Line numbers are indicated to aid in describing the setup of an input file for a specific

problem, since different problems will require different numbers of input data file lines.

Any text editor can be used to create the input file, and the file can be given any name

acceptable by DOS requirements.

Line 1 is the title line and can be up to 80 characters long. If the title is less than 80

characters long, it will be necessary to enter spaces to extend the line to the full length.

The read statements in the Input routine are formatted reads, and therefore, if 80

characters are not found on the first line, the program will look on the next line for the

remaining characters of the title, thus misreading the desired input data contained in later

lines. Some text editors, such as K-EDIT, do not save the trailing blank spaces and thus

could cause a problem if attempts are made to use them to create input files. One trick

that can be used if the title is short, is simply to enter spaces out to column 80 of line 1,
and then enter a character in column 81. K-EDIT will save the entire line, but DYMCAM

will only read the first 80 characters of the line, thus printing only the title desired.

Line 2 contains the number of simulated hours for which the program is to be run.

The format is d(10,2) which means the program is looking for a decimal number with two

digits after the decimal point, and that the number will be found in the first ten columns of

line 2. For this particular format specification it is not necessary to have the value right

justified in the ten column field of interest. The value can be entered left justified, if

desired, and the program will read all digits to the left of the decimal point as an integer

value and then read the next two digits following the decimal and ignore any other

characters which may be in the first ten columns. It is critical only that the decimal

appear somewhere in the first 10 columns so that format specifications are satisfied. If the

decimal appears in columns 9 or 10, then the one or two digits following the decimal for

which values have not been assigned will be recorded as being zero. This is true for any

number read with a d(x,y) format. Regardless of the value of y, as long as a decimal is

somewhere in the x columns specified, then y characters will be assigned following the

decimal. If y characters are present in the input field, then they will be entered, if not,
then zeroes will be entered for the remaining digits. For the example shown, the input

value of simulation time is 1000 hours.

87

Line 3 is an integer value and must be entered in column 10. The value which may

be entered is either a 0 or a 1. The 0 entry signifies that the run is to be a normal run.

The 1 entry indicates that the run will be a test run to see if proper program operation is

occurring. Entering a 1 will cause all components to fail at their mean failure time (one

over the failure rate) and all repairs to occur at their mean repair time. Thus by entering a

1, it is possible to check and make sure that all components are failing and being repaired

as expected. The example shown in Figure A.1 has a 0 entered indicating the run will be a

normal run.

Line 4 indicates the number of Monte Carlo trials to be performed. The number is

entered as an integer value and must be right justified so that the right most character of

the number is entered in column 10 of line 4. The example shows a value of 1000.

Line 5 specifies the number of time points for which dynamic system unavailability

data is required. This number is also an integer value and must also be right justified with

the one's digit falling in column 10. There is no requirement as to the number of time

points to be entered. If desired, a zero can be entered and no dynamic information will be

calculated for the system. For the example problem, 11 time points will be used for the

dynamic unavailability analysis.

Line 6 is an integer value referring to the manner of specifying the time points at

which the instantaneous system unavailability will be estimated. The integer numbers 0,
1, or 2 must be entered in column 10 of line 6. Entering a 0 indicates that the next lines of

the input file will contain the desired time points. For the example of Figure A.1, a value

of 0 is specified, indicating that the next 11 (number of time points specified in line 5) lines

of the input line will contain the time points of interest. If a 1 had been entered, then the

11 time points would have been chosen as uniformly distributed between time zero and the

value specified in line 2. If a value of 2 is entered in column 10 of line 6, then the program

will choose values for the time points which are logarithmically distributed between the

zero time and the end of simulation time specified in line 2. This feature may be useful for

evaluating the unavailability of a system which is suspected of having an exponentially

distributed result. Since the time required to run the simulation program is directly

related to the number of time the program is interrupted to take another time dependent

unavailability sample, it is desireable to keep the number of time points specified in the

input file to a minimum, while still providing sufficient data to properly evaluate the

dynamic behavior of the system.

88

Line 18 of the input file specifies the number of components contained in the system.

For the example the number of components is 2. This value will always be an integer value

and must be entered right justified with the right most digit falling in column 10. For

every component indicated by this number, there will be a minimum of five line of data in

the input file. For the example of Figure A.1, the first component is described in lines 19

through 23 and the second component is described in lines 24 through 30.

Each component must have a first line entered in the format of lines 19 and 24. The

first 10 columns are reserved for the components name. The name can contain any

characters desired, but must not contain spaces. It need not be left or right justified. It

need only be less than or equal to 10 characters in length. The SIMSCRIPT language

distinguishes between small and capital letters; therefore it is important that if capital

letters are used for component names, that this is done consistently every where a specific

component name is mentioned. All other text, other than component names, must be

entered in lower case letters, since this is what the DYMCAM program has been

programmed to recognize.

Columns 11 through 20 for the first line of each component must contain the

component type designation. This, as all text, need not be justified, but must be in lower

case letters. Columns 21 through 30 should contain the component's initial state upon

execution of the simulation. This information must also be in lower case letters. Also on

this line, the number of input and output signals used by the component should be

specified. Any number of input and output signals can be assigned to a given component.

However, for all components, at least one input and one output signal must exist. The

number of inputs is an integer value and must be right justified in the column 31 to 35

field, while the number of output signals must be entered as an integer value right justified

in the 36 to 40 column field. Line 19 of the example refers to a passive element named

BATTERY which is initially in standby at time zero and has one input and one output

signal. Line 24 indicates a switch named SWITCH which is initially open and has three

inputs and one output signal.

The second line of each component data field (lines 20 and 25 of the example)

contains the failure data for the component. The first 10 columns contain the demand

failure probability. The format for reading this value is d(10,5). The second data field of

this line is from column 11 to column 20. This will contain the failure rate (A) for the

component. The format for this value is also d(10,5).

The third line for each component (lines 21 and 26) must contain the repair

information. Three data values are entered and each is read in the d(10,5) format. The

89

first value is the a-parameter for the Weibull distribution and it must be found in columns
1 through 10. The second value is the #--parameter and must be entered in columns 11
through 20. The third value is the probability the component is repairable once it has
failed. This number is entered in columns 21 through 30. If exponentially distributed
repair is to be considered, this can be accomplished by entering a 0 for the value of a and
using a # equal to the mean repair time for the component (one over I, the exponential
repair rate). For cases when a 1 is entered in line 3 of the input file, the mean time to
repair is treated as being equal to the Weibull parameter, #, regardless of the value of the
a. For the example shown, repair is not considered, thus the values entered in lines 21 and
26 do not have physical significance, except for the zeros, which simply indicate that once

the component fails, it stays failed since it is not repairable.

For every signal in the system, a line like lines 22, 23, and 27 through 30 must be
specified. Since signals must be associated with the components they link, they will always
be listed following the component. The number of signals described following any
component will equal the sum of the number of input and output signals specified for the
given component. For the example shown, the BATTERY has one input and one output,
thus two signals are specified. For the SWITCH, there are three inputs and one output,
thus four signals are specified. The input signals for a component must always be specified
first and the output components last. The order of specifying several input or output files
for a given component, however, is not important as long as the above rule is obeyed.
Every signal which does not originate from, or terminate at the system level, must be
contained in two component listings, since each signal must have an origin and a
destination.

Information concerning signals must always begin in the column 11 to 20 field. The
first 10 columns are blank for ease in viewing. The first field (columns 11 to 20) attaches
the signal to another component. For input signals, this field contains the name of where
the signal came from (either the system or an other component), and for output signals the
data field contains the destination of the signal (either the system or an other component).

The second data field for each component is contained in columns 21 through 30 and
indicates the type of signal (either command, power, or process). The third piece of data
concerning each signal is its strength at the start of the simulation. For power and process
signals the strength is 0 if power is not available or the process variable is not present, and
the strength is 1 if power is available or the process variable exists. For command signals,
a value of 0 indicates no command, while a value of 1 indicates a signal to open the switch
or valve (or start the active component). A value of -1 indicates a signal to close the valve

90

or switch (or to stop the active component). These values are entered as integers and are

right justified in column 35.

For the example of Figure A.1, the BATTERY has one input and one output signal.

The input is a process signal coming from the system and is initially off, while the output

signal is a process signal going to the SWITCH and is also initially off. The SWITCH has

three inputs and one output. Two of the inputs are from the system and reflect the power

and command signals to the SWITCH. Initially the switch has power but no command

signal. The other input to the switch is the process signal which comes from the

BATTERY. The output signal is a process signal which goes to the system.

Line 31 provides information about the initial state of the system. The program does

not calculate the system state until time 0+, which is slightly greater than time zero.

Thus, to artificially set the system to its desired initial operating state, it is necessary to

set it at the beginning of the run. For the system to be available at time zero, the system

status is set to operating or standby. Thus the value entered for initial system state is

either operating, standby, or failed. This data is entered in the first 10 columns of the

input file line. Line 31 of the example indicates the system initially starts in the standby

condition.

The next required line in the input file is the system success criteria. This is the

number of output signals directed to the system which must be on in order for the system

to be considered available. It is entered as an integer value and must be right justified in

column 10 of the data line. For the example, the value entered in line 32 is one, specifying

that at least one output signal to the system must be on in order for the system to be

available. For this example, there is only one output signal to the system (the output

process signal from the switch), and so the system is only available if the switch is closed

and an output process signal is being generated, i.e. the BATTERY must also be operating.

Next, the number of external events to be included in the problem scenario must be

entered. This value will be an integer and is read right justified from column 10 of the

data file line. This value may be zero if the problem to be analyzed is not a phased mission

one; if this is the case, this will be the last line of the input file. For the example of Figure

A.1, line 33 indicates that there are 3 external events for this problem.

For each external event, at least four lines of data must be entered. The first line

contains the time at which the event is scheduled to occur. This information is contained

in columns 1 to 10 and is read in the d(10,2) format. Following this, in columns 11 to 20,
the number of components affected by the external event are given. This is an integer

value and must be entered right justified in column 20. Every external event must affect

91

at least one component or signal, but not necessarily both, therefore this value may often

be 0 as it is in lines 34 and 38 of the example. If the value is 1 or greater, then the next

lines will list the components effected by the external event. Each line, like line 43 of the

example, simply lists the name of the affected component. The name must be found in the

first 10 columns of the data file line. For the example, the external event changes the

state of the SWITCH. The program is written such that all components changed by a

given external event, are affected in the same manner. Thus the next data file line

following the component names gives the new state of these components. For the example,
the external event opens the SWITCH at 900.00 hours into the simulation. Thus line 44

contains the instruction to open. This component change of state must be entered in the

first 10 columns of the data line.

The next line of an external event specifies the number of signals affected by the

event. This will be an integer value and must be entered right justified in column 10 of the

data line. For the example of Figure A.1, the third external event does not change any

signals as is indicated by the 0 in line 45. The first two external events change one signal

each. This is indicated in lines 35 and 39 of the example input file. If a signal is changed,
then two lines must be entered for each signal changed by the external event. The first line

contains the origin of the signal, the destination of the signal, and the type of signal. These

three data entries are text information and are entered in columns 1 to 10, 11 to 20, and 21

to 30 respectively. The next input data line contains the new strength of the signal. This

will be an integer value and is entered right justified in column 10 of the data file line. For

the example of Figure A. 1, the first external event changes the process signal from the

system to the BATTERY (line 36). The new strength (line 37) specifies that the signal is

to be turned on so that the BATTERY may now supply current. The second external

event of the example affects the command signal from the system to the SWITCH. It

causes the command signal to change to -1 at the 500.00 hour time point which will cause

the switch to close (provided it does not experience a demand failure). Line 40 of the

example specifies the signal, while line 41 gives the new value.

With the current program structure, it is possible to change many signals with a

single external event, and to change each to a different signal strength. These same signals

may be changed again at a later time in the simulation by another external event.

Components, on the other hand, can only be changed once by an external event. This

means that if an external event is used at the 500.00 hour time point to open a switch, the

same switch can not be closed with an external event at a later time in the simulation

(although it may have its input command signal changed). This is because of the way

92

external events were treated in development of this basic demonstration program. It would

be possible to modify the program to allow multiple state changes of a given component, if

such a capability were desireable.

Also with the current structure, all components changed by a given external event

must be changed to the same new state. This is not such a problem since any number of

external events can be scheduled to occur at exactly the same time. In fact, the motivating

idea for the external event was that each event would effect only a single component or

type of component. If it is desireable, the EXTERNAL.EVENT routine could certainly be

modified to allow multiple component changes during a single external event.

This appendix should supply all the information necessary for writing input files for

the DYMCAM program. Care must be taken to ensure that all information is properly

formatted. For further examples of input files, Appendix D can be consulted which

contains several input files used for the various test runs performed in Sections 3 and 4.

Also note in Appendix D that all data file lines (with the exception of the title line)

contain data only up through column 40. Since SIMSCRIPT will not look beyond this

point for any data, it is possible to use this "blank space" to include comments concerning

the input file data for future reference and ease of understanding. This has been done for

all test cases run.

93

LINE NUMBER
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

INFORMATION
Test Simulation Program

1000.00
0.00

1000.00
11.00

0.00
0.00

100.00
200.00
300.00
400.00
500.00
600.00
700.00
800.00
900.00

1000.00
2.00

BATTERY passive
0.1
1.0

system
SWITCH

SWITCH

standby

system

54

0.3
1.0

1.0
3.0

00.00
1.0

1.0
)0.00
1.0

system

900.00
SWITCH
open

0.00

switch

system
system
BATTERY
system

0.0
1.0

0.0
1.0

0.0

BATTERY

0.0

SWITCH
-1.0

1.0

Figure A.1 - Example DYMCAM Input File

94

operating

process
process
open

command
power
process
process

0.0

1

0.0

1 1

0

3

0
1
0
0

process

command

Appendix B

DYMCAM Program Listing

1 preamble
2 ''
3 '' RISK - Test program to simulate system behavior
4 ''
5 '' 03/28/89
6 ''
7 permanent entities
8
9 every component.record

10 has a component-name,
11 a component-type,
12 a number inputs,
13 a numberoutputs,
14 a response_function,
15 an initial-state,
16 a demandfailure frequency,
17 a runfailure frequency,
18 a repair_probability,
19 a repair function shape, and
20 a repair function-scale
21
22 every external.event.record
23 has an occurrencetime,
24 a number components,
25 a new state,
26 a number.signals, and
27 a newstrength
28
29 define response-function as a subprogram variable
30 define componentname, component-type, initialstate,
31 and newstate as text variables
32 define demand failurefrequency, runfailure-frequency,
33 repairprobability, repair functionshape,
34 and repair function scale as real variables
35 define number inputs, number-outputs, number-components,
36 numiber-signals, and new strength as integer variables
37
38 ' 2-d arrays associated with permanent entities.
39
40 define input.name, output.name, input.signal.type,
41 output.signal.type, extevnt.component, extevnt.origin,
42 extevnt.destination, and extevnt.stype
43 as 2-dimensional text arrays
44 define input.signal.strength and output.signal.strength
45 as 2-dimensional integer arrays
46 define test as a 1-dimensional text array
47 define signal.status as a 1-dimensional integer array
48
49 processes include call.update, schedule.avail.samples,
50 schedule.external.events, repair.supervisor,
51 stop.tank, and stop.scenario ''TANK
52
53 every component
54 has a name,
55 a component.type,

0'Z

56 a response.function,
57 an old.state,
58 a state,
59 a demand.failure.frequency,
60 a run.failure.frequency,
61 a repair.probability,
62 a repair.function.shape,
63 a repair.function.scale,
64 a failure.time,
65 a status,
66 and owns an input.sset and
67 an output.sset
68 and may belong to a system.cset,
69 a tank.input.cset, ''TANK
70 a tank.output.cset, "TANK
71 and an extevnt.cset
72
73 every tank "TANK
74 has a high.level, ''TANK
75 a low.level, ''TANK
76 a high.set, ''TANK
77 a low.set, ''TANK
78 a level, ''TANK
79 a flow.rate.in, ''TANK
80 a flow.rate.out, ''TANK
81 a net.flow.rate, ''TANK
82 and owns a tank.input.cset, ''TANK
83 a tank.output.cset, ''TANK
84 a tank.input.sset, and ''TANK
85 a tank.output.sset ''TANK
86 and belongs to a system.tset ''TANK
87
88 every external.event
89 has an occurrence.time,
90 a new.state,
91 a number.signals,
92 a signal.origin,
93 a signal.destination,
94 a signal.typee, and
95 a new.strength
96 and owns an extevnt.cset
97 and belongs to a system.eset
98
99 every availability
100 has a time.avail, and
101 a time.avail.data
102
103 define timeavail as a 1-dimensional real array
104 define time.avail and time.avail.data as real variables
105 define tank.condition as an integer function ''TANK
106 define response.function as a subprogram variable
107 define name, component.type, old.state, state, new.state,
108 signal.origin, signal.destination, and signal.typee
109 as text variables
110 define demand.failure.frequency, run.failure.frequency,

96

111 repair.probability, repair.function.shape,
112 repair.function.scale, failure.time, occurrence.time,
113 high.level, low.level, high.set, low.set, 'TANK
114 flow.rate.in, flow.rate.out, net.flow.rate, ''TANK
115 and number.signals as real variables
116 define status and new.strength as integer variables
117 define level as a continuous double variable ''TANK
118
119 '' Later versions may define signals as processes (so time delays
120 ' can be built in).
121
122 temporary entities
123
124 every signal
125 has a signal.type,
126 an origin,
127 a destination,
128 an old.strength, and
129 a strength
130 and may belong to an output.sset,
131 an input.sset,
132 a tank.input.sset, ''TANK
133 a tank.output.sset, ''TANK
134 a system.boundary.sset,
135 a system.success.sset, and
136 a system.sset
137
138 define cptr, sptr, eptr, aptr, and tptr ''TANK
139 as 1-dimensional pointer arrays
140
141 define signal.type, origin, and destination as text variables
142 define old.strength and strength as integer variables
143 ''
144 '' System characteristics.
145
146 the system owns a system.boundary.sset,
147 a system.success.sset,
148 a system.cset,
149 a system.sset,
150 a system.eset, and
151 a system.tset ''TANK
152
153 define failure.translation as a text function
154 define job.title, initial.system.state, and system.state
155 as text variables
156 define system.ind.var and simulation.time as real variables
157 define ntrial, system.success.criterion, ntimes,
158 distribution.type, run.type, and total.signal.count
159 as integer variables
160 define unavailability.dist as a 1-dimensional real array'
161 define trial.unavail as a real variable
162
163 accumulate trial.availability as the mean of system.ind.var
164 tally average.unavailability as the mean,
165 variance.unavailability as the variance,

97

166 maximum.unavailability as the maximum,
167 and minimum.unavailability as the minimum of
168 trial.unavail
169
170 define .off to mean 0
171 define .on to mean 1
172 define .no to mean 0
173 define .yes to mean 1
174 define .working to mean 1
175 define resetting to mean 2
176 define .awaiting.repair to mean 3
177 define .under.repair to mean 4
178 define .not.repairable to mean 5
179 define .reset.run to mean 6
180
181 end ''preamble

98

1 main
2 define trial as an integer variable
3 ''
4 '" Problem input
5 ''
6 call input
7 call run.initialize
8 call tank.initialize.run
9 add .003 to simulation.time

10 for trial - 1 to ntrial
11 do
12 call trial.initialize
13 call tank.initialize.trial
14 activate a call.update now
15 activate a schedule.avail.samples now
16 activate a schedule.external.events now
17 activate a stop.tank in simulation.time hours
18 activate a stop.scenario in simulation.time hours
19 start simulation
20 let unavailability.dist(trial) - 1 - trial.availability
21 let trial.unavail - trial.availability
22 let time.v - 0
23 reset totals of system.ind.var
24 loop
25
26 call run.output
27
28 end ''main

99

routine active given component
''
''0 Develops output signals f
'' using explicit command si
'' has one or more command s
'' process inputs:
to
'' input command ---

pinut power ---
input process ----

Condensed decision table:

Command Power Pr
Case Input Input I
---- ------- ----- -
1 - -
2 - no
3 stop yes
4 none yes
5 start yes

6 start

7 -

a stop

9 stop

10
11
12
13
14
15
16
17

define
define
define

none
none
start
start

yes

no
yes

yes

yes
yes
yes
yes

no
yes
yes

or an active component
gnals. Assumes that the component
ignal inputs, power inputs, and

--- output process

ocess Initial
nput State
----- -----

Final
State

P
0

- failed failed
- standby standby
- standby standby
- standby standby

no standby standby*
failed

yes standby standby*
operating

- operating standby
no operating failed

standby
yes operating operating*

standby
no operating failed
yes operating operating
no operating failed
yes operating operating

- standby* standby*
- operating* operating*

no operating* failed
yes operating* operating*

rocess
.tput

no
no
no
no
no
no
no
yes
no
no
no
yes
no
no
yes
no
yes
no
no
no
yes

rule as a saved 2-dimensional text array
component as a pointer variable
index.command, total.command, number.power, total.power,

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

''

'' Enter decision table.
''

if later.case eq .no
reserve rule as 17 by 4
let rule(l,l) = "
let rule(1,3) =
let rule(2,1) =
let rule(2,3) -

let rule(3,1) - "stop"
let rule(3,3) = ""s

let rule(1,2) = ""
let rule(1,4) = "failed"
let rule(2,2) = "no"
let rule(2,4) - "standby"
let rule(3,2) - "yes"
let rule(3,4) - "standby"

100

'I

I,

I,

ID

I,

'I

I,

'I

I,

'I

ID

I,

ID

I,

I,

DI

DI

ID

II

I,

I,

DI

ID

I,

DI

ID

1
2
3
4
5
6
7
8
9

10 ''
11
12

number.process, total.process, output.strength, ruletype,
success, and j as integer variables

define later.case as a saved integer variable

rule(4,1) -
rule(4,3) =
rule(5,1) -
rule(5,3) =
rule (6, 1) =
rule (6, 3) =
rule(7,1) -
rule(7,3) a
rule(8,l) -
rule(8,3) -
rule(9, 1) a
rule(9,3) a
rule(10,1)
rule (10, 3)
rule (11, 1)
rule(11,3)
rule (12,1)
rule(12, 3)
rule(13,1)
rule(13,3)
rule(14, 1)
rule(14,3)
rule(15,1)
rule(15,3)
rule(16, 1)
rule(16,3)
rule(17,1)
rule(17,3)
later.case

"none"
i t

"start"
"no"$
"start"
"yes"
""

""

"stop"
"no"
"stop"
"yes"

= "none"
="no"

= "none"
= "yes"
= "start"
= "no"
= "start"
= "yes"

= ""

= N"

- "no"

= "yes"
- .yes

let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let

rule(4,2)
rule(4,4)
rule(5,2)
rule(5,4)
rule(6,2)
rule(6,4)
rule(7,2)
rule(7,4)
rule(8,2)
rule(8,4)
rule(9,2)
rule(9,4)
rule(10,2)
rule(10,4)
rule(11,2)
rule(11,4)
rule(12,2)
rule(12,4)
rule(13,2)
rule(13,4)
rule(14,2)
rule(14,4)
rule(15,2)
rule(15,4)
rule(16,2)
rule(16,4)
rule(17,2)
rule(17,4)

"yes"
"standby"
"yes"
"standby"
"yes"
"standby"
"no"
"operating"
"yes"
"operating"
"yes"
"operating"
"yes"
"operating"
"yes"

I "operating"
* "yes"
"operating"
"yes"
1"operating"
l t
"standby*"
"no"
"operating*"
"yes"
$"operating*"
"yes"
= "operating*"

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

101

let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let

always

Determine input signal status. Assume that "start" and "stop"
commands cancel each other out (respective values of 1 and -1).

for every signal in input.sset(component)
do

if signal.type(signal) eq "process"
add 1 to total.process
if strength(signal) eq .on

add 1 to number.process
always

else
if signal.type(signal) eq "power"

add 1 to total.power
if strength(signal) eq .on

add 1 to number.power
always

else
add 1 to total.command
add strength(signal) to index.command

always
always

loop

Develop test vector for comparison with rules. Assume that

''

'',

''

''

''

''

111 ' a single process signal is sufficient, and that a single power

112 '' signal is sufficient (i.e., OR gates).
113
114 if index.command eq -1
115 let test(l) - "stop"
116 else
117 if index.command eq 0
118 let test(1) - "none"
119 else
120 let test(1) - "start"
121 always
122 always
123 if number.power ge 1
124 let test(2) - "yes"
125 else
126 let test(2) - "no"
127 always
128 if number.process ge 1
129 let test(3) = "yes"
130 else
131 let test(3) - "no"
132 always
133 let test(4) - state(component)
134
135 ' Determine appropriate rule.
136
137 for ruletype - 1 to 17
138 do
139 for j = 1 to 4
140 do
141 if rule(ruletype,j) ne "" and rule(ruletype,j) ne test(j)
142 go to 'next'
143 always
144 loop
145 go to 'fdund'
146 'next'
147 loop
148 '
149 " Select rule.
150 ''
151 'found'
152 select case ruletype
153
154 case 1, 16
155 let state(component) - "failed"
156 let output.strength = .no
157
158 case 2, 3, 4, 7
159 let state(component) - "standby"
160 let output.strength - .no
161
162 case 5
163 call demand.test giving component yielding success
164 if success eq .no
165 let state(component) - "standby*"

102

166 let output.strength = .no
167 else
168 let state(component) = "failed"
169 let output.strength = .no
170 always
171
172 case 6
173 call demand.test giving component yielding success
174 if success eq .no
175 let state(component) = "standby*"
176 let output.strength - .no
177 else
178 let state(component) = "operating"
179 let output.strength = .yes
180 always
181
182 case 8
183 call demand.test giving component yielding success
184 if success eq .no
185 let state(component) = "failed"
186 let output.strength - .no
187 else
188 let state(component) = "standby"
189 let output.strength = .no
190 always
191
192 case 9
193 call demand.test giving component yielding success
194 if success eq .no
195 let state(component) - "operating*"
196 let output.strength - .yes
197 else
198 let state(component) - "standby"
199 let output.strength - .no
200 always
201
202 case 10, 12
203 let state(component) - "failed"
204 let output.strength = .no
205
206 case 11, 13
207 let state(component) - "operating"
208 let output.strength - .yes
209
210 case 14
211 let state(component) - "standby*"
212 let output.strength = .no
213
214 case 15
215 let state(component) - "operating*"
216 let output.strength = .no
217
218 case 17
219 let state(component) - "operating*"
220 let output.strength = .yes

103

221
222 default
223 ''
224 "' Error messages can be put here if rule not matched.
225 '
226 endselect
227 ''
228 ' Update output signals.
229
230 for every signal in output.sset(component)
231 let strength(signal) = output.strength
232
233 return
234
235 end ''active

104

1 pro
2
3 ''
4 ''
5 '
6
7 ''
8
9

10
11

cess availabili

This process totals the sum of the system indicator
variable at the specified time points. At the completion
of all trials the totals are divided by the number of
trials to determine the time dependent system availability.

while time.v lt (simulation.time + 10)
do

suspend
add system.ind.var to time.avail.data(availability)

12. loop
13
14 suspend
15
16 end ''availability

105

ty

.1 process call.update
2 ''
3 '' This should be a process to keep the process component
4 '' from destroying itself when it tries to call a system
5 '' update.
6
7 while time.v lt .000004
8 do
9 wait .000005 hours

10 for every component in system.cset
11 do
12 resume the component
13 loop
14 for every tank in system.tset ''TANK
15 resume the tank ''TANK
16 wait .0005 hours
17 for i - 1 to dim.f(cptr(*))
18 do
19 if component.type(cptr(i)) eq "active"
20 or component.type(cptr(i)) eq "passive"
21 if state(cptr(i)) ne "operating"
22 interrupt the component called cptr(i)
23 always
24 always.
25 loop
26 loop
27 call system.update
28
29 return
30
31 end ''call.update

106

routine check.valve given component
''

'' Develops output signals for a
''

''

input process

''

'' condensed decision table:

Case

1
2
3

4
5
6

Process
Input

no
yes

no
yes
no

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Initial
State

failedclosed
closed
closed

failedopen
failedopen

open

open

check valve.

--- output process

Final
State

failedclosed
closed

failedclosed
open

failedopen
failedopen
failed open
closed
open

Process
Output

no
no
no
yes
no
yes
no
no
yes

define rule as a saved 2-dimensional text array
define component as a pointer variable
define number.process, total.process, output.strength,

ruletype, success and j as integer variables
define later.case as a saved integer variable

Enter decision table.

if later.case eq .no
reserve rule as 7 by 2
let rule(l,l) - "
let rule(2,1) - "no"
let rule(3,1) - "yes"
let rule(4,1) - "no"
let rule(5,1) - "yes"
let rule(6,1) - "no"
let rule(7,1) - "yes"
let later.case - .yes

always

let
let
let
let
let
let
let

rule(1,2)
rule(2,2)
rule(3,2)
rule(4,2)
rule (5, 2)
rule (6,2)
rule(7,2)

"failed closed"
"closed"
"closed"
"failed open"
"failed-open"
"open"
"open"

Determine input signal status.

for every signal in input.sset(component)
do

if signal.type(signal) eq "process"
add 1 to total.process
if strength(signal) eq .on

add 1 to number.process
always

always
loop

107

7 yes

=
=
=
=
=
=
=

56 '' Develop test vector for comparison with rules. Assume that
57 '' a single process signal is sufficient (i.e., an OR gate).
58
59 if number.process ge 1
60 let test(l) - "yes"
61 else
62 let test(1) - "no"
63 always
.64 let test(2) = state(component)
65
66 ' Determine appropriate rule.
67
68 for ruletype - 1 to 7
69 do
70 for j = 1 to 2
71 do
72 if rule(ruletype,j) ne "" and rule(ruletype,j) ne test(j)
73 go to 'next'
74 always
75 loop
76 go to 'found'
77 'next'
78 loop
79 '
80 " Select rule.
81
82 'found'
83 select case ruletype
84
85 case 1
86 let state(component) - "failed-closed"
87 let output.strength = .no
88
89 case 2
90 let state(component) - "closed"
91 let output.strength - .no
92
93 case 3
94 call demand.test giving component yielding success
95 if success eq .no
96 let state(component) - "failedclosed"
97 let output.strength = .no
98 else
99 let state(component) - "open"
100 let output.strength - .yes
101 always
102
103 case 4
104 let state(component) = "failedopen"
105 let output.strength = .no
106
107 case 5
108 let state(component) - "failedopen"
109 let output.strength = .yes
110

108

111 case 6
112 call demand.test giving component yielding success
113 if success eq .no
114 let state(component) - "failedopen"
115 let output.strength - .no
116 else
117 let state(component) - "closed"
118 let output.strength = .no
119 always
120
121 case 7
122 let state(component) - "open"
123 let output.strength - .yes
124
125 default
126
127 '' Error messages can be put here if rule not matched.
128
129 endselect
130
131 '' Update output signals.
132
133 for every signal in output.sset(component)
134 let strength(signal) - output.strength
135
136 return
137
138 end ''check.valve

109

1 process component
2 ''
3 '' Tracks behavior of all components after initial demand (change).
4 ' Includes repair. Uses exponential failure time model.
5 'i
6 define mean.failure.time, default.time, el, and
7 e2 as real variables
8
9 'term'

10 suspend
11 while time.v lt (simulation.time + 10)
12 do
13 'reset'
14 let status(component) = .working
15 if run.failure.frequency(component) gt 0
16 let mean.failure.time - 1./run.failure.frequency(component)
17 if run.type eq 1
18 wait mean.failure.time hours
19 go to 'repair'
20 otherwise
21 wait exponential.f(mean.failure.time,1) hours
22 'repair'
23 if status(component) eq .resetting
24 go to 'reset'
25 always
26 if status(component) eq .reset.run
27 go to 'term'
28 always
29 if state(component) eq "open" or
30 state(component) eq "closed" or
31 state(component) eq "operating"
32 let old.state(component) - state(component)
33 let state (component) - failure. translation (component)
34 activate a call.update now
35 always
36 else
37 let default.time - simulation.time + 10.0
38 wait default.time hours
39 if status(component) eq .resetting
40 go to 'reset'
41 always
42 if status(component) eq .reset.run
43 go to 'term'
44 always
45 always
46 let status(component) - .awaiting.repair
47 let failure.time(component) - time.v
48 activate a repair.supervisor now
49 suspend
50 if status(component) eq .reset.run
51 go to 'term'
52 always
53
54 '' REPAIR
55

110

56 let status(component) = .under.repair
57 let el - repair.function.shape(component)
58 let e2 - repair.function.scale(component)
59 if run.type eq 1
60 wait e2 hours
61 go to 'good'
62 otherwise
63 wait weibull.f(el,e2,1) hours
64 'good'
65 if status(component) eq .reset.run
66 go to 'term'
67. always
68 let old.state(component) - state(component)
69 select case component.type(component)
70
71 case "active", "passive"
72 let state(component) - "standby"
73
74 case "switch"
75 let state(component) - "open"
76
77 case "valve", "check.valve"
78 let state(component) - "closed"
79
80 default
81 print 1 line thus
82 The component type was not matched in the repair routine.
83
84 endselect
85 activate a call.update now
86 loop
87
88 suspend
89
90 end ''component

111

1 routine demand.test given component yielding success
2 ''
3 ' Determines if given component succeeds or fails on demand,
4 ' using the demand.failure.frequency for the component.
5
6 define component as a pointer variable
7 define success as an integer variable
8 if random. f (1) le demand. failure. frequency(component)
9 let success - .no

10 else
11 let success - .yes
12 always
13
14 return
15
16 end 'demand.test

112

1 process external.event
2 ''
3 '' Schedules a change in the system (either to component status
4 '' or signal strength) occurrence.time hours into the simulation.
5 ''
6 while time.v it (simulation.time + 10)
7 do
8 suspend
9 for every component in extevnt.cset(external.event)

10 do
11 let old.state(component) - state(component)
12 let state(component) - new.state(external.event)
13 loop
14
15 if number.signals(external.event) eq 1
16 for j - 1 to number.signals(external.event)
17 do
18 for every signal in system.sset
19 with origin(signal) eq signal.origin(external.event)
20 and destination(signal) eq
21 signal.destination(external.event)
22 and signal.type(signal) eq signal.typee(external.event)
23 find the first case
24 if found
25 let old.strength(signal) - strength(signal)
26 let strength(signal) - new. strength(external. event)
27 always
28 loop
29 else
30 if number.signals(external.event) ne 0
31 print 1 line thus
32 An external event was entered with more than one signal change.
33 always
34 always
35 call system.update
36 loop
37
38 suspend
39
40 end ''external.event

113

1 function failure.translation(component)
2 ''
3 ' Determines status of "failed" component.
4 ''
5 define component as an integer variable
6 define mode as a text variable
7
8 select case component.type(component)
9

10 case "active", "passive"
11 let mode - "failed"
12
13 case "check.valve", "valve", "switch"
14 if state(component) eq "open"
15 let mode - "failed-closed"
16 always
17 if state(component) eq "closed"
18 let mode - "failedopen"
19 always
20 if state(component) ne "open" and
21 state(component) ne "closed"
22 print 1 line thus
23 Failure translation didn't function properly!
24 always
25
26 default
27 print 1- line thus
28 Failure translation routine rule not matched!
29
30 endselect
31
32 return with mode
33
34 end ''failure.translation

114

1 routine input
2 ''
3 '' Problem input routine.
4 ''
5 define infile and outfile as text variables
6
7 write as /, "Enter DOS input file name -> ",+
8 read infile
9 write as /, "Enter DOS output file name -> ",+

10 read outfile
11 open 7 for input, file name - infile
12 use 7 for input
13 open 8 for output, file name - outfile
14 use 8 for output
15 ''
16 '' Title, general characteristics.
17 ''
18 read job.title as t 80, /
19 write job.title as t 80, /
20 read simulation.time as d(10,2), /
21 write simulation.time as d(10,2), /
22 read run.type as i 10, /
23 write run.type as i 10, /
24 read ntrial as i 10, /
25 write ntrial as i 10, /
26 read ntimes as i 10, /
27 write ntimes as i 10, /
28 read distribution.type as i 10, /
29 write distribution.type as i 10, /
30 reserve time-avail(*) as ntimes
31 if distribution.type eq 0
32 for i - 1 to ntimes
33 do
34 read time avail(i) as d(10,2), /
35 write time-avail(i) as d(10,2), /
36 loop
37 always
38 ''
39 ' Component characteristics.
40
41 read n.component.record as i 10, /
42 write n.component.record as i 10, /
43 create every component.record
44 reserve input.name(*,*), output.name(*,*), input.signal.type(*,*),
45 output.signal.type(*,*), input.signal.strength(*,*), and
46 output.signal.strength(*,*) as n.component.record by *
47 for i - 1 to n.component.record
48 do
49 read componentname(i),
.50 component type(i),
51 initial state(i),
52 number inputs(i), and
53 number outputs(i)
54 as 3 t 10, 2 i 5, /
55 write componentname(i),

115

56 componenttype(i),
57 initialstate(i),
58 numberinputs(i), and
59 numberoutputs(i)
60 as 3 t 10, 2 i 5, /
61 read demandfailurefrequency(i) and
62 runfailure frequency(i)
63 as 2 d(10,5), /
64 write demandfailurefrequency(i) and
65 runfailure frequency(i)
66 as 2 d(10,5), /
67 read repair-functionshape(i),
68 repair-function-scale(i), and
69 repair_probability(i)
70 as 3 d(10,5), /
71 write repair function_shape(i),
72 repair-functionscale(i), and
73 repairprobability(i)
74 as 3 d(10,5), /
75 ''
76 '' Input signals for component.
77 ''
78 reserve input.name(i,*),
79 input.signal.type(i,*), and
80 input.signal.strength(i,*)
81 as number inputs(i)
82 for j - 1 to numberinputs(i)
83 do
84 read input.name(i,j),
85 input.signal.type(i,j), and
86 input.signal.strength(i,j)
87 as b 11, 2 t 10, i 5, /
88 write input.name(i,j),
89 input.signal.type(i,j), and
90 input.signal.strength(i,j)
91 as b 11, 2 t 10, i 5, /
92 if trim.f(input.name(i,j),O) eq "system"
93 add 1 to total.signal.count
94 always
95 loop
96
97 ' Output signals for components.
98
99 reserve output.name(i,*),

100 output.signal.type(i,*), and
101 output.signal.strength(i,*)
102 as number outputs(i)
103 for j - 1 to numberoutputs(i)
104 do
105 read output.name(i,j),
106 output.signal.type(i,j), and
107 output.signal.strength(i,j)
108 as b 11, 2 t 10, i 5, /
109 write output.name(ij),
110 output.signal.type(i,j), and

116

111 output.signal.strength(i,j)
112 as b 11, 2 t 10, i 5, /
113 loop
114 add number outputs(i) to total.signal.count
115 loop
116 ''
117 '' System characteristics.
118
119 read initial.system.state as t 10, /
120 write initial.system.state as t 10, /
121 read system.success.criterion as i 10, /
122 write system.success.criterion as i 10, /
123
124 '' External event records.
125
126 read n.external.event.record as i 10, /
127 write n.external.event.record as i 10, /
128 if n.external.event.record gt 0
129 create every external.event.record
130- reserve extevnt.component(*,*), extevnt.origin(*,*), and
131 extevnt.destination(*,*), extevnt.stype(*,*)
132 as n.external.event.record by *
133
134 for i - 1 to n.external.event.record
135 do
136 read occurrence time(i) as d(10,2)
137 write occurrence time(i) as d(10,2)
138 read numbercomponents(i) as i 10, /
139 write number components(i) as i 10, /
140 if numbercomponents(i) gt 0
141 reserve extevnt.component(i,*) as numbercomponents(i)
142 for j - 1 to number components(i)
143 do
144 read extevnt.component(i,j) as t 10
145 write extevnt.component(i,j) as t 10
146 loop
147 read new state(i) as /, t 10, /
148 write new state(i) as /, t 10, /
149 always
150 read numbersignals(i) as i 10, /
151 write number signals(i) as i 10, /
152 if number signals(i) gt 0
153 reserve extevnt.origin(i,*), extevnt.destination(i,*),
154 extevnt.stype(i,*) as number signals(i)
155 for j - 1 to number signals(i)
156 do
157 read extevnt.origin(i,j),
158 extevnt.destination(i,j),
159 extevnt.stype(i,j)
160 as 3 t 10, /
161 write extevnt.origin(i,j),
162 extevnt.destination(i,j),
163 extevnt.stype(i,j)
164 as 3 t 10, /
165 loop

117

166 read new strength(i) as i 10,
167 write newstrength(i) as 1 10, /
168 always
169 loop
170 always
171
172 end "input

118

1 routine passive given component
2 '
3 '' Develops output signals for a passive component (no explicit
4 '' command signals or power source).
5 ''
6 ''
7'' input process ------ output process

.8 '
9 ''

10 '' Condensed decision table:
11
12 '' Process Initial Final Process
13 '' Case Input State State Output
14 '' ---- ------- ----- ------

15 '' 1 - failed failed no
16 '' 2 no standby standby no
17 '' 3 yes standby failed no
18 '' operating yes
19 '' 4 no operating standby no
20 '' 5 yes operating operating yes
21
22 define rule as a saved 2-dimensional text array
23 define component as a pointer variable
24 define number.process, total.process, output.strength,
25 ruletype, success, and j as integer variables
26 define later.case as a saved integer variable
27 ''
28 ' Enter decision table.
29
30 if later.case eq .no
31 reserve rule as 5 by 2
32 let rule(l,l) - "" let rule(1,2) - "failed"
33 let rule(2,1) - "no" let rule(2,2) - "standby"
34 let rul'e(3,1) - "yes" let rule(3,2) - "standby"
35 let rule(4,1) - "no" let rule(4,2) - "operating"
36 let rule(5,1) - "yes" let rule(5,2) - "operating"
37 let later.case - .yes
38 always
39 ''
40 ' Determine input signal status.
41
42 for every signal in input.sset(component)
43 do
44 if signal.type(signal) eq "process"
45 add 1 to total.process
46 if strength(signal) eq .on
47 add 1 to number.process
48 always
49 always
50 loop
51 ''
52 '' Develop test vector for comparison with rules. Assume that
53 '' a single process signal is sufficient (i.e., an OR gate).
54 '
55 if number.process ge 1

119

56 let test(l) - "yes"
57 else
58 let test(l) - "no"
59 always
60 let test(2) - state(component)
61 '
62 '' Determine appropriate rule.
63
64 for ruletype - 1 to 5
65 do
66 for jl-w1 to 2
67 do
68 if rule(ruletype,j) ne "" and rule(ruletype,j) ne test(j)
69 go to 'next'
70 always
71 loop
72 go to 'found'
73 'next'
74 loop
75 ''
76 '' Select rule.
77 '
78 'found'
79 select case ruletype
80
81 case 1
82 let state(component) = "failed"
83 let output.strength = .no
84
85 case 2
86 let state(component) = "standby"
87 let output.strength - .no
88
89 case 3
90 call demand.test giving component yielding success
91 if success eq .no
92 let state(component) - "failed"
93 let output.strength - .no
94 else
95 let state(component) - "operating"
96 let output.strength - .yes
97 always
98
99 case 4

100 let state(component) - "standby"
101 let output.strength - .no
102
103 case 5
104 let state(component) - "operating"
105 let output.strength - .yes
106
107 default
108 ''
109 ' Error messages can be put here if rule not matched.
110

120

111 endselect
112 '
113 ' Update output signals.
114 ''
115 for every signal in output.sset(component)
116 let strength(signal) - output.strength
117
118 return
119
120 end ''passive

121

1 process repair.supervisor
2 ''
3 '' This process can be modified in the future to determine
4 ' when a failed component should begin the repair process.
5 '' Time delays can be inserted (repair delays) and if repair
6 '' resources are limited the number of components under
7 '' repair at any given time can be controlled here.
8 ''
9 ' Currently this routine will be called from the system.update

10 ' routine every time a new failure is detected. This routine
11 ' uses the repair.probability for the failed component to
12 ' determine if the component is repairable or not. If the
13 '' component is repairable a repair is then begun immediately.
14 '' To determine what the current status of each component is
15 '' the status variable can be checked. The status will be
16 '' working, resetting, awaiting repair, under repair, or not
17 '' repairable.
18 ''
19 '' This portion is for defining a repair delay.
20
21 define component as a pointer variable
22 define a, b, and x as real variables
23 let a - 1.0
24 let b - 100.0
25 let x - time.v
26 if run.type eq 1
27 wait b hours
28 let a - 0.0
29 go to 'good'
30 otherwise
31 '' wait weibull.f(a,b,l) hours
32 'good'
33 ''
34 '' If it is desireable to use various repair delays on a frequent
35 ' basis, the program could be modified to read in the repair
36 ' delay distribution parameters. The above delay is a weibull
37 ' distribution, but with the parameters chosen, it is actually
38 '' an exponential distribution.
39
40 for every 'component in system.cset
41 with failure.time(component) eq x
42 find the first case
43 if found
44 if status(component) - .awaiting.repair
45 if random.f(1) le repair.probability(component)
46 resume the component
47 else
48 let status(component) - .not.repairable
49 always
50 always
51 let failure.time(component) - -1.0
52 else
53 print 1 line thus
54 In repair supervisor routine the component to repair was not IDed.
55 always

122

56
57 return
58
59 end "repair.supervisor

123

1 routine run.initialize
2 ''
3 '" initialization of components, signals, and external events
4 O'
5 define i, j, k, and signal.count as integer variables
6 define x, y, and z as real variables
7 ''
8 '' Component initialization.

-g of

10 reserve cptr(*) as n.component.record
11 for i - 1 to n.component.record
12 do
13 activate a component called cptr(i) now
14 file cptr(i) in system.cset
15 let name(cptr(i)) - trim.f(component name(i),0)
16 let component.type(cptr(i)) - trim.f(component type(i),O)
17 let n.input.sset(cptr(i)) = numberjinputs(i)
18 let n.output.sset(cptr(i)) = number_outputs(i)
19 let demand. failure.frequency(cptr(i))
20 demandfailure_frequency(i)
21 let run.failure.frequency(cptr(i)) - runfailure-frequency(i)
22 let repair.probability(cptr(i)) - repairprobability(i)
23 let repair. function. shape(cptr(i)) - repair functionshape(i)
24 let repair.function.scale(cptr(i)) - repair function scale(i)
25
26 select case component.type(cptr(i))
27
28 case "active"
29 let response.function(cptr(i)) = 'active'
30
31 case "passive"
32 let response.function(cptr(i)) - 'passive'
33
34 case "valve"
35 let response.function(cptr(i)) - 'valve'
36
37 case "check valve"
38 let response. function(cptr(i)) - 'check.valve'
39
40 case "switch", "breaker"
41 let response.function(cptr(i)) - 'switch'
42
43 default
44 let response.function(cptr(i)) - 'active'
45 print 1 line with name(cptr(i)) thus
46 In initialize routine response function not matched to *********
47
48 endselect
49
50 loop
51 add 5 to total.signal.count ''TANK
52 reserve sptr(*) as total.signal.count
53 '
54 " Initialize and file boundary condition signals.
55

124

56 for j - 1 to n.component.record
57 do
58 for k - 1 to number inputs(j)
59 do
60 if trim.f(input.name(j,k),0) eq "system"
61 add 1 to signal.count
62 create a signal called sptr(signal.count)
63 let signal.type(sptr(signal.count)) -
64 trim.f(input.signal.type(j,k),0)
65 let origin(sptr(signal.count)) - "system"
66 let destination(sptr(signal.count)) -
67 trim.f(component name(j),0)
68 file sptr(signal.count) in input.sset(cptr(j))
69 file sptr(signal.count) in system.boundary.sset
70 file sptr(signal.count) in system.sset
71 always
72 loop
73 loop
74 ''
75 '' Initialize and file component output signals.
76
77 for j - 1 to n.component.record
78 do
79 for k - 1 to number outputs(j)
80 do
81 add 1 to signal.count
82 create a signal called sptr(signal.count)
83 let signal.type(sptr(signal.count)) -
84 trim.f(output.signal.type(j,k),0)
85 let origin(sptr(signal.count)) - trim.f(component name(j) ,0)
86 let destination(sptr(signal.count)) -
87 trim.f(output.name(j,k),0)
88 for every component in system.cset
89 with name(component) eq destination (sptr(signal. count))
90 find the first case
91 if found
92 file sptr(signal.count) in input.sset(component)
93 else
94 if destination(sptr(signal.count)) eq "system"
95 file sptr(signal.count) in system.success.sset
96 always
97 always
98 file sptr(signal.count) in output.sset(cptr(j))
99 file sptr(signal.count) in system.sset

100 loop
101 loop
102 ''
103 ' Create and initialize external events, using
104 '' permanent entity external.event.record.
105
106 if n.external.event.record gt 0 -
107 reserve eptr(*) as n.external.event.record
108 for i - 1 to n.external.event.record
109 do
110 activate an external.event called eptr(i) now

125

111 let occurrence.time(eptr(i)) - occurrencetime(i)
112 add .001 to occurrence.time(eptr(i))
113 let new.state(eptr(i)) - trim.f(new-state(i) ,0)
114 for j - 1 to number-components(i)
115 do
116 for every component in system.cset
117 with name (component) eq trim. f (extevnt. component(i, j) , 0)
118 find the first case
119 if found
120 file component in extevnt.cset(eptr(i))
121 always
122 loop
123 let new.strength(eptr(i)) - new-strength(i)
124 let number.signals(eptr(i)) - number-signals(i)
125 if number.signals(eptr(i)) eq 1
126 let signal.origin(eptr(i)) - trim.f(extevnt.origin(i,1),0)
127 let signal.destination(eptr(i)) -
128 trim.f(extevnt.destination(i,1),O)
129 let signal.typee(eptr(i)) - trim.f(extevnt.stype(i,1),0)
130 always
131 file eptr(i) in system.eset
132 loop
133 always
134
135 reserve test as 4
136 reserve signal.status(*) as dim.f(sptr(*))
137 reserve unavailability.dist(*) as ntrial
138 reserve aptr(*) as ntimes
139 if distribution.type eq 1
140 let x - simulation.time / (ntimes - 1)
141 let timeavail(1) - 0.
142 for i - 2 to ntimes
143 do
144 let timeavail(i) - (i - 1) * x
145 loop
146 always
147 if distribution.type eq 2
148 let y - log.1o.f(simulation.time)
149 let x - y / (ntimes - 1)
150 let time-avail(1) - 0.
151 for i - 2 to ntimes
152 do
153 let z = (j - 1) * x
154 let timeavail(i) = 10 ** z
155 loop
156 always
157 for i - 1 to ntimes
158 do
159 activate an availability called aptr(i) now
160 let time.avail(aptr(i)) = time avail(i)
161 loop
162
163 return
164
165 end ''run.initialize

126

1 routine run.output
2 ''
3 '' This routine will print the output report at the end of the
4 ' run. It prints the time dependent unavailability data and the
5 ' average unavailability distribution data.
6
7 define x as a real variable
8
9 for i - 1 to ntimes

10 do
11 let x - time.avail.data(aptr(i))
12 let time.avail.data(aptr(i)) - x / ntrial
13 let x - 1 - time.avail.data(aptr(i))
14 let time.avail.data(aptr(i)) - x
15 loop
16
17 write as *,/,/
18 print 6 lines with ntrial thus
19 AFTER **** TRIALS
20
21 THE TIME DEPENDENT UNAVAILABILITY IS AS FOLLOWS
22
23 TIME UNAVAILABILITY
24 ---
25 for i -i1 to ntimes
26 do
27 print 2 lines with time.avail(aptr(i))
28 and time.avail.data(aptr(i)) thus
29
30 *****.**
31 loop
32 '
33 " Sort the average unavailability distribution data.
34
35 define 1, a, n, 1, k, and im as integer variables
36 define xp as a real variable
37
38 let a - ntrial
39 'sortl'
40 let 1 - m
41 let m - div.f(1,2)
42 if M gt 0
43 let k - ntrial - m
44 for j -1to k
45 do
46 let n-j
47 'sort2'
48 let im - n + m
49 if unavailability.dist(n) gt unavailability.dist(im)
50 let xp - unavailability.dist(n)
51 let unavailability.dist(n) - unavailability.dist(im)
52 let unavailability.dist(im) = xp
53 let 1 - n
54 let n - 1 - m
55 if n gt0

127

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

The minimum is:

The 1st percentile is:

The 5th percentile is:

* *

* *

* *

go to 'sort2'
otherwise

always
loop
if m gt 0

go to 'sorti'
otherwise

always

write as *
print 6 lines with ntrial and simulation.tiue thus

AFTER **** TRIALS
AND

OVER A TIME PERIOD OF ***** HOURS
THE AVERAGE SYSTEM UNAVAILABILITY IS AS FOLLOWS

------------------ ---------------------------------

define xi, x5, x25, x40, x50, x60, x75, x95, and x99
as integer variables

let x1 - div.f(ntrial,100)
let x - 5 * ntrial
let x5 - div.f(x,100)
let x - 25 * ntrial
let x25 - div.f(x,100)
let x - 40 * ntrial
let x40 = div.f(x,100)
let x5O = div.f(ntrial,2)
let x - 60 * ntrial
let x60 - div.f(x,100)
let x - 75 * ntrial
let x75 - div.f(x,100)
let x - 95 * ntrial
let x95 w div.f(x,100)
let x - 99'* ntrial
let x99 a div.f(x,100)
if xi eq 0

let x1 - 1
always
if x5 eq 0

let x5 - 1
always
print 27 lines with minimum.unavailability, unavailability.dist(x1),

unavailability.dist(x5), unavailability.dist(x25),
unavailability.dist(x40), unavailability.dist(x50),
unavailability.dist(x60),unavailability.dist(x75),
unavailability.dist(x95), unavailability.dist(x99),
maximum.unavailability, average.unavailability,
and variance.unavailability thus

111 The 25th percentile is: *.***
112
113 The 40th percentile is: *.****
114
115 The 50th percentile is: *.***
116
117 The 60th percentile is: *.***
118
119 The 75th percentile is: *.***
120
121 The 95th percentile is: *.***
122
123 The 99th percentile is: *.***
124
125 The maximum is:
126
127 The mean is:
128
129 The variance is:
130
131
132 ' Use this portion to print out all of the average system
133 '' unavailability values, one for every trial. These are the
134 ' values on which the above percentiles are based.
135
136 ' write as *,1
137 '' for i - 1 to ntrial
138 '' do
139 ' print 1 line with i and unavailability.dist(i) thus
140 '' point **** is *.****
141 '' loop
142
143 end "run.output

129

1 process schedule.avail.samples
2 ''
3 '' This process will cause samples to be taken at the designated
4 ' times during each trial to compute the time dependent
5 " availability of the system.
6 ''
7 define x as a real variable
8
9 wait .002 hours

10 resume the availability called aptr(1)
11 for i - 2 to ntimes
12 do
13 let x w time.avail(aptr(i)) - time.avail(aptr(i - 1))
14 wait x hours
15 resume the availability called aptr(i)
16 loop
17
18 return
19
20.end ''schedule.avail.samples

130

1 process schedule.external.events
2 '
3 '" Schedules external events.
4 Of
5 define i as an integer variable
6 define x as a real variable
7
8 if n.external.event.record gt 0
9 wait occurrence.time(eptr(l)) hours

10 resume the external.event called eptr(l)
11 for i - 2 to dim.f(eptr(*))
12 do
13 let x - occurrence.time(eptr(i)) - occurrence.time(eptr(i - 1))
14 wait x hours
15 resume the external.event called eptr(i)
16 loop
17 always
18
19 return
20
21 end ''schedule.external.events

131

1 process stop.scenario
2 ''
3 '" This process will interrupt any external events or components
4 "' still scheduled to occur later in time. It then resets all
5 '' components so they can begin operation again in the next trial.
6 ''
7 call system.update
8
9 for every external.event in ev.s(i.external.event)

10 interrupt external.event
11
12 for every component in ev.s(i.component)
13 do
14 interrupt component
15 let time.a(component) - 0.0
16 loop
17
18 for every component in system.cset
19 do
20 let status(component) - .reset.run
21 resume component
22 loop
23
24 return
25
26 end ''stop.scenario

132

routine switch given component
''
'' Develops output signals fc

using explicit command sic
'' has one or more command s
'' process inputs:
''

input command ---
input power ---
input process ---

''
'' Condensed decision table:
''

Command Power Process
Input Input Input

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

no

yes

yes

no
no
yes

yes

no

yes

no
yes
no
yes
no

yes

no
yes
no
yes

or a switch or breaker
gnals. Assumes that the component
ignal inputs, power inputs, and

output process

Initial
State

failed-open
open
open
open
open

open

failed closed
failed closed

closed
closed
closed

closed

closed
closed
closed
closed

38 define rule as a saved 2-dimensional text array
define component as a pointer variable
define index.command, total.command, number.power,

number.process, total.process, output.strength,
success and j as integer variables

define later.case as a saved integer variable

Enter decision table.

if later.case eq .no
reserve rule as 16 by 4
let rule(l,l) -
let rule(1,3) -
let rule(2,1) -
let rule(2,3) -
let rule(3,1) = "open"
let rule(3,3) -""l
let rule(4,1) = "none"

let
let
let
let
let
let
let

rule(1,2)
rule(1, 4)
rule(2,2)
rule(2,4)
rule(3,2)
rule(3,4)
rule(4,2)

Final
State

failed-open
open
open
open

failedopen
closed

failed open
closed

failed closed
failedclosed

closed
closed

failed closed
open

failedclosed
open

closed
closed
closed
closed

Process
Output

no
no
no
no
no
no
no
yes
no
yes
no
yes
no
no
yes
no
no
yes
no
yes

total.power,
ruletype,

"It

"failed-open"
"no"'
"open"

"open"
""ll

133

open
none
close

close

open

open

none
none
close
close

''Case

'' 1
2

.' 3
'' 4
'' 5
''

'' 6

' 7
'' 73

'' 9
10
11

'' 12

'' 13
'' 14
'' 15
'' 16
''

''

''

''

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

=
=
=
=
=
=
=

rule(4,3) a
rule(5,1) =
rule(5,3) =
rule(6,1) =
rule(6,3) =
rule(7,1) =
rule(7,3) x
rule(8,1) =
rule(8,3) a
rule(9,l) a
rule(9,3) a
rule(10,1)
rule(10,3)
rule(11,1)
rule(11,3)
rule(12, 1)
rule(12,3)
rule(13, 1)
rule(13,3)
rule(14, 1)
rule(14,3)
rule(15,1)
rule(15,3)
rule(16,1)
rule(16,3)
later.case

"" to

"close"
"no"
"close,,
"yes"

"no"
""
"yes"
""
"no"

Is ""S
"yes"
"open"

= "no"
- "open"
" "yes"
= "none"
- "no"
= "none"
= "yes"
= "close"
= "no"
= "close"
= "yes"
- .yes

let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let

rule(4,4) - "open"
rule(5,2) - "yes"
rule(5,4) - "open"
rule(6,2) - "yes"
rule(6,4) - "open"
rule(7,2) - ""
rule(7,4) - "failedclosed"
rule(8,2) - ""
rule(8,4) - "failed-closed"
rule(9,2) - "no"
rule(9,4) - "closed"
rule(10,2) - "no"
rule(10,4) - "closed"
rule(11,2) - "yes"
rule(11,4) - "closed"
rule(12,2) - "yes"
rule(12,4) - "closed"
rule(13,2) - ""
rule(13,4) - "closed"
rule(14,2) - ""
rule(14,4) - "closed"
rule(15,2) - ""
rule(15,4) - "closed"
rule(16,2) - ""
rule(16,4) - "closed"

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

134

let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let

always

Determine input signal status. Assume that "open" and "close"
commands cancel each other out (respective values of 1 and -1).

for every signal in input.sset(component)
do

if signal.type(signal) eq "process"
add 1 to total.process
if strenqth(signal) eq .on

add 1 to number.process
always

else
if signal.type(signal) eq "power"

add 1 to total.power
if strength(signal) eq .on

add 1 to number.power
always

else
add 1 to total.command
add strength(signal) to index.command

always
always

loop

Develop test vector for comparison with rules. Assume that
a single process signal is sufficient, and that a single power
signal is sufficient (i.e., OR gates).

I

''

''

''

''

''

''

''

111 if index.command eq -1
112 let test(l) - "close"
113 else
114 if index.command eq 0
115 let test(1) = "none"
116 else
117 let test(l) - "open"
118 always
119 always
120 if number.power ge 1
121 let test(2) - "yes"
122 else
123 let test(2) - "no"
124 always
125 if number.process ge 1
126 let test(3) - "yes"
127 else
128 let test(3) - "no"
129 always
130 let test(4) - state(component)
131 ''
132 '' Determine appropriate rule.
133
134 for ruletype - 1 to 16
135 do
136 for j - 1 to 4
137 do
138 if rule(ruletype,j) ne "" and rule(ruletype,j) ne test(j)
139 go to 'next'
140 always
141 loop
142 go to 'found'
143 .'next'
144 loop
145
146 ' Select rule.
147
148 'found'
149 select case ruletype
150
151 case 1
152 let state(component) = "failed_open"
153 let output.strength - .no
154
155 case 2, 3, 4
156 let state(component) - "open"
157 let output.strength = .no
158
159 case 5
160 call demand.test giving component yielding success
161 if success eq .no
162 let state(component) - "failedopen"
163 let output.strength - .no
164 else
165 let state(component) - "closed"

135

166 let output.strength - .no
167 always
168
169 case 6
170 call demand.test giving component yielding success
171 if success eq .no
172 let state(component) = "failedopen"
173 let output.strength = .no
174 else
175 let state(component) - "closed"
176 let output.strength - .yes
177 always
178
179 case 7
180 let state(component) = "failedclosed"
181 let output.strength = .no
182
183 case 8
184 let state(component) = "failed-closed"
185 let output.strength = .yes
186
187 case 9, 13, 15
188 let state(component) - "closed"
189 let output.strength - .no
190
191 case 10, 14, 16
192 let state(component) - "closed"
193 let output.strength - .yes
194
195 case 11
196 call demand.test giving component yielding success
197 if success eq .no
198 let state(component) - "failedclosed"
199 let output.strength - .no
200 else
201 let state(component) - "open"
202 let output.strength - no
203 always
204
205 case 12
206 call demand.test giving component yielding success
207 if success eq .no
208 let state(component) - "failedclosed"
209 let output.strength - .yes
210 else
211 let state(component) = "open"
212 let output.strength = .no
213 always
214
215 default
216
217 '' Error messages can be put here if rule not matched.
218
219 endselect
220

136

221 '' Update output signals.
222
223 for every signal in output.sset((component)
224 let strength(signal) = output.strength
225
226 return
227
228 end ''switch

137

1 routine system.update
2 ''
3 '' Updates status of signals in system, given status of all components
4 '' Performs iterations until signals stabilize or number of iterations
5 ' is exceeded.
6
7 ' Notes:
8 '' 1) Currently, maximum is set by number of signals. Later
9 '' versions might make use of digraph/Petri net results.

10 ' 2) Current version re-analyzes every component. Later versions
11 ' might only re-analyze components whose input changes.
12
13 define rf as a subprogram variable
14 define i, itr, max.itr and number.success
15 as integer variables
16
17 for i - 1 to dim.f(sptr(*))
18 let signal.status(i) - strength(sptr(i))
19
20 let max.itr - dim.f(sptr(*))
21 for itr - 1 to max.itr
22 do
23
24 '' 1) Check for changed component states and changed input
25 '' signals.
26 ' 2) If found, place a demand on the component, and determine
27 '' component response. (Later versions may activate signals
28 '' here). Note that since output signals are updated
29 ' in routine response.function, input signals for
30 ' downstream components are also updated.
31
32 for every component in system.cset
33 do
34 if state(component) ne old.state(component)
35 let rf - response.function(component)
36 call rf giving component
37 always
38 for every signal in input.sset(component)
39 with strength(signal) ne old.strength(signal)
40 find the first case
41 if found
42 let rf - response.function(component)
43 call rf giving component
44 always
45 loop
46
47 ' Quit iteration if no changes to entire set of signals.
48
49 for i - 1 to dim.f(sptr(*))
50 with strength(sptr(i)) ne signal.status(i)
51 find the first case
52 if found
53 for i = 1 to dim.f(sptr(*))
54 let signal.status(i) - strength(sptr(i))
55 else

I ?,Q

56 go to 'update'
57 always
58 loop
59 print 2 lines with 24*time.v thus
60 !!1 Error: Iteration maximum exceeded in routine system.update
61 time = ****.*** hours.

62
63 '' Activate newly started components, interrupt newly stopped
64 '' components.
65
66 'update'
67 for every component in system.cset
68 do
69 if status(component) eq .working
70 if state(component) ne old.state(component)
71 select case component.type(component)
72
73 case "active", "passive"
74 if state(component) eq "failed"
75 or state(component) eq "standby*"
76 or state(component) eq "operating*"
77 if old.state(component) eq "operating"
78 interrupt the component
79 always
80 let time.a(component) - 0.0
81 resume the component
82 always
83 if state(component) eq "standby"
84 and old.state(component) eq "operating"
85 interrupt the component
86 always
87 if state(component) eq "operating"
88 and old.state(component) eq "standby"
89 let time.a(component) = 0.0
90 let status(component) =.resetting
91 resume the component
92 always
93
94 case "check.valve", "switch", "valve"
95 if state(component) eq "closed"
96 and old.state(component) eq "open"
97 let status(component) - .resetting
98 interrupt the component
99 let time.a(component) - 0.0

100 resume the component
101 always
102 if state(component) eq "open"
103 and old.state(component) eq "closed"
104 let status(component) = .resetting
105 interrupt the component
106 let time.a(component) = 0.0
107 resume the component
108 always
109 if state(component) eq "failedopen"
110 or state(component) eq "failed-closed"

139

111 interrupt the component
112 let time.a(component) = 0.0
113 resume the component
114 always
115
116 default
117 print 1 line thus
118 When performing the system.update, no matching case!
119
120 endselect
121 always
122 always
123 loop
124
125 ' Update status of system, components and signals.
126
127 for every signal in system.success.sset
128 do
129 if strength(signal) eq .on
130 add 1 to number.success
131 always
132 loop
133 if number.success ge system.success.criterion
134 let system.state = "good"
135 let system.ind.var = 1
136 else
137 let system.state - "failed"
138 let system.ind.var - 0
139 always
140
141 call flow.update giving tptr(1) 'TANK
142
143 for every component in system.cset
144 let old.state(component) - state(component)
145
146 for every signal in system.sset
147 let old.strength(signal) - strength(signal)
148
149 return
150
151 end ''system.update

140

1 routine trial.initialize
2 ''
3 '' This routine initializes the state of each component
4 '' and the strength of each signal at the beginning of
5 '' a trial.
6
7 define i, j, and k as integer variables
8
9 let system.state - trim.f(initial.system.state,0)

10 if system.state eq "operating"
11 let system.ind.var - 1
12 else
13 let system.ind.var - 0
14 always
15
16 '' Component state initialization.
17
18 for i - 1 to n.component.record
19 do
20 let old.state(cptr(i)) = trim.f(initialstate(i),0)
21 let state(cptr(i)) - old.state(cptr(i))
22 loop
23 ''
24 '' Signal strength initialization.
25
26 for i - 1 to n.component.record
27 do
28 for j - 1 to number-inputs(i)
29 do
30 for every signal in system.sset
31 with origin(signal) eq "system"
32 and destination(signal) eq trim.f(component name(i) ,0)
33 and signal.type(signal) eq trim.f(input.signal.type(i,j),o)
34 find the first case
35 if found
36 let strength(signal) - input.signal.strength(i,j)
37 always
38 loop
39 for k - 1 to number_outputs(i)
40 do
41 for every signal in system.sset
42 with origin(signal) eq trim.f(component_name(i),0)
43 and destination(signal) eq trim.f(output.name(i,k) ,0)
44 and signal.type(signal) eq trim.f(output.signal.type(i,k),o)
45 find the first case
46 if found
47 let strength(signal) - output.signal.strength(i,k)
48 always
49 loop
50 loop
51
52 return
53
54 end ''trial.initialize

141

routine valve given component
''

Develops output signals for an MOV or manual valve
using explicit command signals. Assumes that the component

'' has one or more command signal inputs, power inputs, and
'' process inputs:

input command
input power output process
input process

Condensed decision table:

. Command
Case Input
---- -------

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

I,

I,

I,

I,

I,

I,

I,

I,

'I

I,

I,

I,

'I

I,

I,

I,

I,

I,

'S

I'

'S

I,

'S

I,

'I

'I

I,

'S

'S

I'

5'

Power Process
Input Input
----- -------

no

yes

yes

no
no
yes

no

yes

no
yes
no
yes
no

yes yes

- no
- yes
- no
- yes

Initial
State

failedclosed
closed
closed
closed
closed

closed

failedopen
failedopen

open
open
open

open

open
open
open
open

saved 2-dimensional text array
component as a pointer variable
index.command, total.command, number.power,

number.process, total.process, output. strength,
success and j as integer variables

define later.case as a saved integer variable
''
'' Enter decision table.
''

if later.case eq .no
reserve rule as 16 by 4
let rule(1,l) -
let rule(1,3) -
let rule(2,1) -
let rule(2,3) -
let rule(3,1) - "close"
let rule(3,3) - ""'
let rule(4,1) - "none"

let rule(1,2)
let rule(1,4)
let rule(2,2)
let rule(2,4)
let rule(3,2)
let rule(3,4)
let rule(4,2)

Final Process
State Output
----- ------

failedclosed no
closed no
closed no
closed no

failed closed no
open no

failed-closed no
open yes

failedopen no
failedopen yes

open no
open yes

failed-open no
closed no

failed open yes
closed no
open ho
open yes
open no
open yes

total.power,
ruletype,

of""
"failed-closed"
"no"
"closed"
""ee
"closed"
s""

142

1
2
3
4
5

close
none
open

12 close

6 open

none
none
open
open

rule as a

7
8
9

10
11 close

13
14
15
16

define
define
define

rule(4,3) = ""'
rule(5,1) = "open"
rule(5,3) = "no".
rule(6,1) = "open"
rule(6,3) = "yes"
rule(7,1) = ""l
rule(7,3) = "no"
rule(8,1) =""i
rule(8,3) = "yes"
rule(9,1) = ""l
rule(9,3) = "no"
rule(10,1) = ""l
rule(10,3) = "yes"
rule(11,1) = "close"
rule(11,3) =-"no"
rule(12,1) - "close"
rule(12,3) - "yes"
rule(13,1) - "none"
rule(13,3) = "no"
rule(14,1) = "none"
rule(14,3) = "yes"
rule(15,1) - "open"
rule(15,3) = "no"
rule(16,1) = "open"
rule(16,3) = "yes"
later.case = .yes

let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let

rule(4,4)
rule (5, 2)
rule(5,4)
rule(6,2)a
rule(6,4)
rule(7,2)=
rule(7,4)a
rule(8,2)a
rule(8,4)a
rule(9,2)m
rule(9,4)a
rule(10,2)
rule(10,4)
rule(11,2)
rule(11, 4)
rule(12,2)
rule(12,4)
rule(13,2)
rule(13,4)
rule(14,2)
rule(14,4)
rule(15,2)
rule(15,4)
rule(16,2)
rule(16,4)

"closed"
"yes"
"closed"
"yes"
"closed"
""

"failed-open"
""o
"failed-open"
"no"
"open"
"no"
"open"
"yes"
"open"

" "yes"
" "open"

S""

t"open"
of""
"open"

I"open"
o "

: "open"t

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

143

let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let
let

always

Determine input signal status. Assume that "open" and "close"
commands cancel each other out (respective values of 1 and -1).

for every signal in input.sset(component)
do

if signal.type(signal) eq "process"
add 1 to total.process
if strength(signal) eq .on

add 1 to number.process
always

else
if signal.type(signal) eq "power"

add 1 to total.power
if strength(signal) eq .on

add 1 to number.power
always

else
add 1 to total.command
add strength(signal) to index.command

always
always

loop

Develop test vector for comparison with rules. Assume that
a single process signal is sufficient, and that a single power
signal is sufficient (i.e., OR gates).

''

''

''

''

''

''

''

''

''

111 if index.command eq -1
112 let test(l) = "close"
113 else
114 if index.command eq 0
115 let test(l) = "none"
116 else
117 let test(l) = "open"
118 always
119 always
120 if number.power ge 1
121 let test(2) - "yes"
122 else
123 let test(2) - "no"
124 always
125
126 " By changing the test for number of process inputs, it is
127 '' possible to simulate k-out-of-n components.
128
129 if number.process ge 1
130 let test(3) - "yes"
131 else
132 let test(3) - "no"
133 always
134 let test(4) - state(component)
135
136 ' Determine appropriate rule.
137
138 for ruletype = 1 to 16
139 do
140 for j - 1 to 4
141 do
142 if rule(ruletype,j) ne "" and rule(ruletype,j) ne test(j)
143 go to 'next'
144 always
145 loop
146 go to 'found'
147 'next'
148 loop
149 ''
150 '' Select rule.
151 '
152 'found'
153 select case ruletype
154
155 case 1
156 let state(component) - "failed-closed"
157 let output.strength - .no
158
159 case 2, 3, 4
160 let state(component) - "closed"
161 let output.strength = .no
162
163 case 5
164 call demand.test giving component yielding success
165 if success eq .no

144

166 let state(component) = "failedclosed"
167 let output.strength = .no
168 else
169 let state(component) = "open"
170 let output.strength = .no
171 always
172
173 case 6
174 call demand.test giving component yielding success
175 if success eq .no
176 let state(component) = "failedclosed"
177 let output.strength = .no
178 else
179 let state(component) = "open"
180 let output.strength = .yes
181 always
182
183 case 7
184 let state(component) = "failedopen"
185 let output.strength = .no
186
187 case 8
188 let state(component) - "failedopen"
189 let output.strength = .yes
190
191 case 9, 13, 15
192 let state(component) - "open"
193 let output.strength = .no
194
195 case 10, 14, 16
196 let state(component) = "open"
197 let output.strength - .yes
198
199 case 11
200 call demand.test giving component yielding success
201 if succea3 eq .no
202 let state(component) - "failedopen"
203 let output.strength - .no
204 else
205 let state(component) - "closed"
206 let output.strength - .no
207 always
208
209 case 12
210 call demand.test giving component yielding success
211 if success eq .no
212 let state(component) - "failedopen"
213 let output.strength = .yes
214 else
215 let state(component) = "closed"
216 let output.strength = .no
217 always
218
219 default
220

145

221 '' Error messages can be put here if rule not matched.
222
223 endselect
224
225 ' Update output signals.
226
227 for every signal in output.sset(component)
228 let strength(signal) - output.strength
229
230 return
231
232 end ''valve

146

Appendix C

TANK Program Listing

1 routine flow.update given tank
-2
3 '' Determine the new flow rate if it has changed.
4 ''
5 define tank as a pointer variable
6 let flow.rate.in(tank) = 0
7 let flow.rate.out(tank) = 0
8 for every component in tank.input.cset(tank)
9 do

10 if name(component) eq "unit2"
11 if state(component) eq "open"
12 or state(component) eq "failed open"
13 add 0.01 to flow.rate.in(tank)
14 always
15 else
16 if name(component) eq "unit3"
17 if state(component) eq "open"
18 or- state(component) eq "failed open"
19 add 0.005 to flow.rate.in(tank)
20 always
21 always
22 always
23 loop
24 for every component in tank.output.cset(tank)
25 do
26 if state(component) eq "open"
27 or state(component) eq "failedopen"
28 add 0.01 to flow.rate.out(tank)
29 always
30 loop
31
32 return
33
34 end ''flow.update

147

1 process stop.tank
2 ''
3 '' This process will reset the tank process so it is ready
4 ' for the execution of another trial.
5
6 for every tank in ev.s(i.tank)
7 do
8 interrupt the tank
9 loop
10
11 for every tank in system.tset
12 do
13 let level(tank) = 100.0
14 let time.a(tank) - 0.0
15 resume the tank
16 loop
17
18 return
19
20 end ''stop.tank

148

1 process tank
2 ''
3 ' This routine will continuously monitor the water level
4 '' in a tank.
5 ''
6 'tankreset'
7 suspend
8 while time.v it (simulation.time + 10)
9 do

10 ''
11 '' This portion of the routine determines if the tank is in the
12 '' proper control region and calls the tank update routine to
13 '' make changes if necessary.
14
15 work continuously evaluating 'water.level' testing 'tank.condition'
16 let net.flow.rate(tank) = flow.rate.in(tank) - flow.rate.out(tank)
17 if level(tank) gt 90.0
18 go to 'tankreset'
19 otherwise
20 call tank.update giving tank
21 if level(tank) gt high.level(tank)
22 or level(tank) lt low.level(tank)
23 suspend
24 go to 'tankreset'
25 always
26
27 loop
28
29 suspend
30
31 end "tank

149

1 function tank.condition(tank)
2 ''
3 " This function will cause calling of the tank update
4 '' routine if the tank status is not satisfactory.
5 ''
6 define tank as a pointer variable
7 ''
8 '' Use this method to adjust tank flow rate only at the
9 '' end of integration time steps.

10 ''
11 define x as a real variable
12 let x - flow.rate.in(tank) - flow.rate.out(tank)
13 if net.flow.rate(tank) ne x
14 return with 1
15 otherwise
16 ''
17 '' Is the tank too full?
18 '
19 if level(tank) gt high.level(tank)
20 return with 1
21 otherwise
22
23 ' Is the tank too empty?
24
25 if level(tank) lt low.level(tank)
26 return with 1
27 otherwise
28 ''
29 ' Is the tank level high and the control state wrong?
30
31 if level(tank) gt high.set(tank)
32 for every component in system.cset
33 do
34 if name(component) eq "uniti"
35 and state(component) eq "closed"
36 return with 1
37 otherwise
38 if name(component) eq "unit2"
39 and state(component) eq "open"
40 return with 1
41 otherwise
42 if name(component) eq "unit3"
43 and state(component) eq "open"
44 return with 1
45 otherwise
46 loop
47 always
48
49 ' Is the tank level low and the control state wrong?
50
51 if level(tank) lt low.set(tank)
52 for every component in system.cset
53 do
54 if name(component) eq "unitl"
55 and state(component) eq "open"

150

56 return with 1
57 otherwise
58 if name(component) eq "unit2"
59 and state(component) eq "closed"
60 return with 1
61 otherwise
62 if name(component) eq "unit3"
63 and state(component) eq "closed"
64 return with 1
65 otherwise
66 loop
67 always
68 '''

69 '' Is the tank level satisfactory and the control state wrong?
70
71 if level(tank) le high.set(tank)
72 and level(tank) ge lov.set(tank)
73 for every component in system.cset
74 do
75 if name(component) eq "unitl"
76 and state(component) eq "closed"
77 return with 1
78 otherwise
79 if name(component) eq "unit2"
80 and state(component) eq "closed"
81 return with 1
82 otherwise
83 if name(component) eq "unit3"
84 and state(component) eq "open"
85 return with 1
86 otherwise
87 loop
88 always
89 return with 0
90
91 end "tank.condition

151

1 routine tank.initialize.run
2 ''
3 '' This routine initializes all of the variables associated
4 '' with the Aldemir Tank Problem. Initializes for the number
5 '" of trials to be performed.
6
7 define signal.count as an integer variable
8 let integrator.v = 'runge.kutta.r'
9 let max.step.v - 0.04166666666667 ' Approximately 1 hour

10 let min.step.v - 0.04166666666667 '' Approximately 1 hour
11 let abs.err.v - 0.001
12 let rel.err.v - 0.1
13
14 ' Create a tank.
15
16 reserve tptr(*) as 1
17 activate a tank called tptr(1) now
18 file tptr(1) in system.tset
19 let high.level(tptr(l)) = 3.0
20 let low.level(tptr(l)) = -3.0
21 let high.set(tptr(l)) = 1.0
22 let low.set(tptr(l)) = -1.0
23 ''
24 ' Must create all of the Tank output signals since the base
25 ' program does not recognize the tank as a component. These
26 ' signals include three command signals (one to each valve),
27 '' the tank process output to the outlet valve, and the process
28 '' output signal to the system for system status checking.
29
30 let signal.count = 9
31 create a signal called sptr(signal.count)
32 let signal.type(sptr(signal.count)) - "command"
33 let origin(sptr(signal.count)) - "tank"
34 let destination(sptr(signal.count)) - "unitl"
35 for every component in system.cset
36 with name(component) eq "unitl"
37 find the first case
38 if found
39 file sptr(signal.count) in input.sset(component)
40 always
41 file sptr(signal.count) in tank.output.sset(tptr(1))
42 file sptr(signal.count) in system.sset
43
44 add 1 to signal.count
45 create a signal called sptr(signal.count)
46 let signal.type(sptr(signal.count)) - "command"
47 let origin(sptr(signal.count)) - "tank"
48 let destination(sptr(signal.count)) - "unit2"
49 for every component in system.cset
50 with name(component) eq "unit2"
51 find the first case
52 if found
53 file sptr(signal.count) in input.sset(component)
54 always
55 file sptr(signal.count) in tank.output.sset(tptr(l))

152

56 file sptr(signal.count) in system.sset
57 ''
58 add 1 to signal.count
59 create a signal called sptr(signal.count)
60 let signal.type(sptr(signal.count)) - "command"
61 let origin(sptr(signal.count)) - "tank"
62 let destination(sptr(signal.count)) - "unit3"
63 for every component in system.cset
64 with name(component) eq "unit3"
65 find the first case
66 if found
67 file sptr(signal.count) in input.sset(component)
68 always
69 file sptr(signal.count) in tank.output.sset(tptr(1))
70 file sptr(signal.count) in system.sset
71
72 add.1 to signal.count
73 create a signal called sptr(signal.count)
74 let signal.type(sptr(signal.count)) - "process"
75 let origin(sptr(signal.count)) - "tank"
76 let destination(sptr(signal.count)) - "unitl"
77 for every component in system.cset
78 with name(component) eq "unitl"
79 find the first case
80 if found
81 file sptr(signal.count) in input.sset(component)
82 always
83 file sptr(signal.count) in tank.output.sset(tptr(1))
84 file sptr(signal.count) in system.sset
85 ''
86 add 1 to signal.count
87 create a signal called sptr(signal.count)
88 let signal.type(sptr(signal.count)) - "process"
89 let origin(sptr(signal.count)) = "tank"
90 let destination(sptr(signal.count)) = "system"
91 file sptr(signal.count) in tank.output.sset(tptr(1))
92 file sptr(signal.count) in system.sset
93 file sptr (signal. count) in system. success. sset
94 for every component in system.cset
95 do
96 for every signal in output.sset(component)
97 do
98 if destination(signal) eq "tank"
99 file signal in tank.input.sset(tptr(l))
100 file component in tank.input.cset(tptr(l))
101 always
102 loop
103 for every signal in input.sset(component)
104 with signal.type(signal) eq "process"
105 do
106 if origin(signal) eq "tank"
107 file component in tank.output.cset(tptr(1))
108 always
109 loop
110 loop

153

111
112 return
113
114 end "tank.initialize.run

154

1 routine tank.initialize.trial
2 ''
3 1' This routine will reset the appropriate values to begin
4 ' a new trial with the tank operating correctly.
5 ''
6 let level(tptr(l)) - 0.0
7 let net.flow.rate(tptr(1)) - 0.0
8 for every signal in tank.output.sset(tptr(l))
9 do

10 ''
11 '' Turn on the flow output and test signal from the tank.
12
13 if signal.type(signal) - "process"
14 let strength(signal) - .on
15 always
16
17 ' Turn off the command signals for the valves to change position.
18
19 if signal.type(signal) - "command"
20 let strength(signal) - .off
21 always
22 loop
23
24 return
25
26 end ''tank.initialize.trial

155

1 routine tank.update given tank
2 ''
3 '' This routine determines the flow going in and out of the
4 ' tank and controls the opening and closing of the inlet and
5 '' outlet valves. If the tank should happen to dryout or over
6 '' flow this routine will suspend the tank routine.
7 ''
8 define tank as a pointer variable

.9 ''
10 '' This is to track dryout.
11 ''
12 if level(tank) lt low.level(tank)
13 '' for every signal in tank.output.sset(tank)
14 '' with signal.type(signal) eq "process"
15 '' do
16 '' let strength(signal) = .no
17 '' loop
18 go to 'leave'
19 otherwise
20
21 '' This is to track overflow.
22
23 if level(tank) gt high.level(tank)
24 for every signal in tank.output.sset(tank)
25 with destination(signal) eq "system"
26 do
27 let strength(signal) = .no
28 loop
29 go to 'leave'
30 otherwise
31 if level(tank) lt low.set(tank)
32
33 ' Close the outlet valve and open both inlet valves.
34
35 for every component in tank.output.cset(tank)
36 do
37 for every signal in input.sset(component)
38 with signal.type(signal) eq "command"
39 do
40 let strength(signal) - -1
41 loop
42 loop
43 for every component in tank.input.cset(tank)
44 do
45 for every signal in input.sset(component)
46 with signal.type(signal) eq "command"
47 do
48 let strength(signal) - 1
49 loop
50 loop
51 go to 'leave'
52 otherwise
53 if level(tank) gt high.set(tank)
54
55 '' Open the outlet valve and close both inlet valves.

156

56
57 for every component in tank.output.cset(tank)
58 do
59 for every signal in input.sset(component)
60 with signal.type(signal) eq "command"
61 do
62 let strength(signal) - 1
63 loop
64 loop
65 for every component in tank.input.cset(tank)
66 do
67 for every signal in input.sset(component)
68 with signal.type(signal) eq "command"
69 do
70 let strength(signal) - -1
71 loop
72 loop
73 go to 'leave'
74 otherwise
75.''
76 '' If the level of the tank is in the operating range,
77 '' open the outlet valve(unitl) and the inlet valve from
78 '' unit2, but close the inlet valve from unit3.
79 ''
80 for every component in tank.output.cset(tank)
81 do
82 for every signal in input.sset(component)
83 with signal.type(signal) eq "command"
84 do
85 let strength(signal) = 1
86 loop
87 loop
88 for every component in tank.input.cset(tank)
89 do
90 if name(component) eq "unit2"
91 for every signal in input.aset(component)
92 with signal.type(signal) eq "command"
93 do
94 let strength(signal) - 1
95 loop
96 else
97 if name(component) eq "unit3"
98 for every signal in input.sset(component)
99 with signal.type(signal) eq "command"

100 do
101 let strength(signal) = -1
102 loop
103 always
104 always
105 loop
106 'leave'
107 call system.update
108 return
109
110 end ''tank.update

157

1 routine water.level(tank)
-2 '

8
9

10
11
12 end

This routine supplies the integration rule for the continuous
variable level of the tank.

define tank as a pointer variable
let d.level(tank) = net.flow.rate(tank)*1440.0

We have left the time step as days and are reading flow rates
as meter level change per minute thus the factor of 1440 above.

water.level

158

3 ''
4 ''
5 ''
6
7

Appendix D

Sample Input Files

SINGLE COMPONENT, EXP REPAIR AND F
10000.00

0
100
21
1
1

COMPONENT passive operating
0.0
1.0

standby

0.01
100.0

system process
system process

0

1.0

AILURE, DUAL REPAIR STATES
Time of simulation
Type of run (0 for normal)
Number of trials
Number of time points
Type of time distribution
Number of components

1 1 Component one
Failure data
Repair data

1 Input signal
1 Output signal

Initial system state
System success criteria
Number of external events

159

TWO OUT OF THREE PUMPS, EXPONENTIAL FAILURE AND REPAIR.
10000.00

0
100
21
1
4

PUMP1 active
0.0 0.01
1.0 100.0

system
system
system
VALVE

PUMP2 active
0.0 0.01
1.0 100.0

system
system
system
VALVE

PUMP3 active

VALVE

standby

0.0
1.0

1.0

0.01
100.0

operating

1.0
power
command
process
process
operating

1.0
power
command
process
process
operating

1.0
system power
system command
system process
VALVE process
valve open

0.01
100.0

system power
system command
PUMP1 process
PUMP2 process
PUMP3 process
system process

1.0

1
0

Time of simulation
Type of run (0 for normal)
Number of trials
Number of time points
Type of time distribution
Number of components

3 1 Component one
Failure data
Repair data

1 Input signal
1 Input signal
1 Input signal
1 Output signal
3 1 Component two

Failure data
Repair data

1 Input signal
1 Input signal
1 Input signal
1 Output signal
3 1 Component three

Failure data
Repair data

1 Input signal
1 Input signal
1 Input signal
1 Output signal
5 1 Component four

Failure data
Repair data

1 Input signal
1 Input signal
1 Input signal
1 Input signal
1 Input signal
1 Output signal

Initial system state
System success criteria
Number of external events

160

SIMULATION OF GO-FLOW LIGHT BULB PROBLEM
20.00

0
1000

7
0

0.00
1.00
9.99

10.00
11.00
15.00
20.00

5
BATTERY passive

0.1 0
1.0

system
SWITCH1
SWITCH2

SWITCH1 switch
0.3
1.0

system
system
BATTERY
LIGHT1

SWITCH2 switch
0.3
1.0

system1
system
BATTERY
LIGHT2

LIGHT1 passive
0.2 0.001

1.0
process
process
process
open

0.0
1.0

0.0

standby

command
power
process
process
open

command
power
process
process
standby

0.0

0.0

0.0

1.0 1.0 0.0
SWITCH1 process
system process

LIGHT2 passive standby
0.2 *0.001
1.0 1.0 0.0

SWITCH2 process
system process

standby
1
3

0.00
1

0

system BATTERY process

system

1
0.00

1

10.0

system

0

SWITCH1 command
1
0 0
1
SWITCH2 command

1

.0

Time of simulation
Type of run (0 for normal)
Number of trials
Number of time points
Type of time distribution

Time points

Number of components
1 2 Component number one

Failure data
Repair data

0 Input signal
0 Output signal
0 Output signal
3 1 Component number two

Failure data
Repair data

0 Input signal
1 Input signal
0 Input signal
0 Output signal
3 1 Component number three

Failure data
Repair data

0 Input signal
1 Input signal
0 Input signal
0 Output signal
1 1 Component number four

Failure data
Repair data

0 Input signal
0 Output signal
1 1 Component number five

Failure data
Repair data

0 Input signal
0 Output signal

Initial system state
System success criteria
Number of external events
External event #1, Time,
Number signals
Signal
New strength
External event #2, Time,
Number signals
Signal
New strength
External event #3, Time,
Number signals
Signal
New strength

#Comps.

#Comps.

#Comps.

TEST OF THE TANK PORTION OF THE PROGRAM
1000.00

0
1000
201

1
3
valve

0.0 0.00312
1.0 1.0

system
tank
tank
nowhere
valve

0.0 0.00456
1.0 1.0

system
system
tank
tank
valve

0.0057

system
system
tank
tank

open

0.0
power
process
command
process
open

power
process
command
process
closed

0.0

1.0 0.0
power
process
command
process

3

1
1
1
1
31

1
1
1
1
3 1

1
1

-1
0

162

unit1

unit2

unit3
0.0
1.0

standby
1
0

Appendix E

Sample Output Files

SINGLE COMPONENT, EXP REPAIR AND FAILURE, DUAL REPAIR STATES
10000.00

0
100
21

1
1

COMPONENT passive
0. .01000
1.00000 100.00000

standby

system
system

operating

1.00000
process
process

1 1

1
1

1
0

163

AFTER 100 TRIALS
AND

OVER A TIME PERIOD OF 10000 HOURS
THE AVERAGE SYSTEM UNAVAILABILITY IS AS FOLLOWS

------- ---------------------------------------

The minimum is: .5510

The 1st percentile is: .5510

The 5th percentile is: .5804

The 25th percentile is: .6343

The 40th percentile is: .6538

The 50th percentile is: .6618

The 60th percentile is: .6740

The 75th percentile is: .7002

The 95th percentile is: .7440

The 99th percentile is: .7579

The maximum is: .7732

The mean is: .6644

The variance is: .0023

164

AFTER 100 TRIALS

THE TIME DEPENDENT UNAVAILABILITY IS AS FOLLOWS

TIME UNAVAILABILITY

0. 0.
500.00 .6300
1000.00 .7000
1500.00 .7000
2000.00 .6800
2500.00 .6700
3000.00 .6500
3500.00 .6700
4000.00 .7200
4500.00 .6900
5000.00 .6400
5500.00 .5900
6000.00 .6300
6500.00 .6800
7000.00 .6500
7500.00 .6800
8000.00 .6900
8500.00 .6800
9000.00 .6100
9500.00 .7000
10000.00 .6400

o
o
o
o
o
o
o
o
o
o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

W
)

H
O

0
W

D
-

%
L

tb

W

O

4M

H

W
W

-
O

H

O
0

W

4
H

O

W
M

4

0
w

(%

)
W

H
W

W
W

W
W

W
W

W
W

W
W

A
A

A
A

A
A

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
M

(I
M

IM
M

U
)M

P
P

H

uM

M
 W

N
tO

M

tA

W

N
(

O

M

M

lW
M

M

O

m
m

m

m
 m

 m
m

m
t

tm
m

 m
m

m
t

t
M

m
y

m
 m

m
m

m

 m
n

m
m

m
m

m
 %

i m

m
m

 im
m

nm
%

;im
%

%

 m

n
m

i m

 Z
 Z

 Z
 Z

 m
 m

 e

.%
 .%

 .N

.N

.
.%

 .n

.i

.
.n

.n

.l

.n

.

.h

.
.

4

.
.

.
.

.i
w

L

i
w

.

w

W

N

H

-
H

H

e

e
e

e
*o

*

*
*

*
*

*
*

*m
 *

m

m
a

m
 -

-
4
m

w

0
-4

0b

 0
w

m

m
0
 0

\
15

50
,

0-

0
Pb

0
4a

m
lb

0\

0

m
 0

0-
U

4U
m

m

m
m

U

0U

r-
H

 rq
O

oO

N
 m

 M
oO

0 w

0 0q
NcNt

C
A

 N m
 O

 0L
r M

 w
 w

 m
 m

m
 CO

 m
1A

O
w

O

 N
 m

O

fON
\O

r (Nr
w

m
C

O
0w

<
th

0
N

 V
M

 W
&

m

N
M

 0
 N

 w
 01m

O
 N

W
<

4
0

\O
w

w

C
m

 o0
m

 V
C

O
M

V
W

4

N
t

N
vr

t

vh
Lo D

C

 co
O

n o
N

i 4 cn
i
m
 to

-
C

w
 0m o

H N
 m

 v
m

\O
 r- C

w
 0m

 o
H

 N
 m

w
 Lo %

o -
oo CA o4 H

 -
N

 fn -w
 t

\D
 r-c CA 01o

tn
 i tn

in in 10
tD

 %
O

 W
O

 \O
 %

O
 WO

 %
O

 %D
 %

0 %
D

 r-
r-

r-
r-

r-
r-

r-
r-

r-
r-

CO
C

0 C
0

C
0 CO C

0 C
0 C

0
C

0 CO M
1 M

%

0h 0M
 0N

 0

0
0)

0)
01

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

P
4
0

a
0

4
0

4

0

4
0

4
0

4
p

4
0

4
0

4
0

4
0

4
P

4
0

4
0

4
0

4
0

4
a

4
0

4

p

4
0

4
0

4
0

40

SIMULATION OF
20.00

0
1000

7
0

0.
1.00
9.99

10.00
11.00
15.00
20.00

5
BATTERY

.10000
1.00000

SWITCH1
.30000

1.00000

SWITCH2
.30000

GO-FLOW LIGHT BULB PROBLEM

passive
0.
1.00000

system
SWITCH1
SWITCH2
switch

0.
1.00000

system
system
BATTERY
LIGHT1
switch

0.

standby

0.
process
process
process
open

0.
command
power
process
process
open

1.00000 1.00000 0.
system command
system power
BATTERY process
LIGHT2 process

LIGHT1 passive standby
-.20000 .00100
1.00000 , 1.00000 0.

SWITCH1 process
system process

LIGHT2 passive- standby
.20000 .00100

1.00000 1.00000 0.
SWITCH2 process
system process

standby
1
3

0.

system

0.

0
1
BATTERY process

0
1

168

1 2

0
0
0
3 1

1

0
1
0
0
3

0
1
0
0
1

0
0
1

0
0

1

1

system

system

SWITCH1
-1

10.00
1

command

0

SWITCH2 command
-1

169

AFTER 1000 TRIALS

THE TIME DEPENDENT UNAVAILABILITY IS AS FOLLOWS

TIME UNAVAILABILITY

0. .5090
1.00 .5090
9.99 .5120

10.00 .2940
11.00 .2940
15.00 .2990
20.00 .3020

170

AFTER 1000 TRIALS
AND

OVER A TIME PERIOD OF 20 HOURS
THE AVERAGE SYSTEM UNAVAILABILITY IS AS FOLLOWS

The minimum is: .0000

The 1st percentile is: .0000

The 5th percentile is: .0000

The 25th percentile is: .0000

The 40th percentile is: .0000

The 50th percentile is: .0044

The 60th percentile is: .0492

The 75th percentile is: 1.0000

The 95th percentile is: 1.0000

The 99th percentile is: 1.0000

The maximum is: 1.0000

The mean is: .3416

The variance is: .2024

171

SIMULATION
20.00

0
10000

7
0

0.
1.00
9.99

10.00
11.00
15.00
20.00

5
BATTERY

. 1000C
1.0000C

SWITCH1
.3000C

1.0000c

SWITCH2
.30000

OF GO-FLOW LIGHT BULB PROBLEM

passive
0.

standby

1.00000 0.
system
SWITCH1
SWITCH2
switch

0.
1.0000C

system
system
BATTERY
LIGHT1
switch

0.
1.00000 1.00000

system
system
BATTERY
LIGHT2

LIGHT1 passive
.20000 .00100

1.00000 1.00000
SWITCH1
system

LIGHT2 passive
.20000 .00100

1.00000 1.00000
SWITCH2
system

standby

0.

system

0.

1
3

1
BATTERY

1

1

process
process
process
open

0.
command
power
process
process
open

0.
command
power
process
process
standby

0.
process
process
standby

0.
process
process

0

process

0

172

1 2

1

1

0
0
0
3

0
1
0
0
3

0
1
0
0
1

0
0
1

1

1

0
0

SWITCH1 command
-1

10.00
1

m
-1

0

SWITCH2 command

173

syste

system

AFTER10000 TRIALS

THE TIME DEPENDENT UNAVAILABILITY IS AS FOLLOWS

TIME UNAVAILABILITY

0. .4993
1.00 .4999
9.99 .5052

10.00 .2757
11.00 .2763
15.00 .2787
20.00 .2814

174

AFTER10000 TRIALS
AND

OVER A TIME PERIOD OF 20 HOURS
THE AVERAGE .SYSTEM UNAVAILABILITY IS AS FOLLOWS

The minimum is: .0000

The 1st percentile is: .0000

The 5th percentile is: .0000

The 25th percentile is: .0000

The 40th percentile is: .0000

The 50th percentile is: .0033

The 60th percentile is: .0289

The 75th percentile is: 1.0000

The 95th percentile is: 1.0000

The 99th percentile is: 1.0000

The maximum is: 1.0000

The mean is: .3225

The variance is: .1944

175

TEST OF THE TANK PORTION OF THE PROGRAM
1000.00

0
1000
201

1
3
valve

0.0 0.00312
1.0 1.0

system
tank
tank
nowhere
valve

0.0 0.00456
1.0 1.0

unit1

unit2

unit3

system
system
tank
tank

1.0
0.0
1.0

standby
1
0

open

0.0
power
process
command
process
open

power
process
command
process
closed

power
process
command
process

0.0

0.0

3

1
1
1
1
31

1
1
1
1
3 1

1
1

-1
0

176

system
system
tank
tank
valve

0.0057

AFTER 1000 TRIALS

THE TIME DEPENDENT UNAVAILABILITY ANALYSIS

TIME

IS AS FOLLOWS

UNAVAILABILITY

0.
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00
65.00
70.00
75.00
80.00
85.00
90.00
95.00

100.00
105.00
110.00
115.00
120.00
125.00
130.00
135.00
140.00
145.00
150.00
155.00
160.00
165.00
170.00
175.00
180.00
185.00
190.00
195.00
200.00
205.00
210.00
215.00
220.00
225.00
230.00
235.00
240.00
245.00
250.00

0.
0.
0.
0.
0.

.0010

.0010

.0040

.0060
.0090
.0120
.0130
.0140
.0160
.0170
.0200
.0230
.0240
.0270
.0300
.0320
.0330
.0370
.0400
.0430
.0460
.0510
.0580
.0640
.0690
.0720
.0740
.0740
.0760
.0780
.0830
.0870
.0870
.0880
.0920
.0940
.0950
.1010
.1020
.1120
.1160
.1180
.1210
.1230
.1260
.1300

177

255.00 .1350
260.00 .1390
265.00 .1430
270.00 .1440
275.00 .1500
280.00 .1560
285.00 .1570
290.00 .1590
295.00 .1630
300.00 .1650
305.00 .1670
310.00 .1730
315.00 .1770
320.00 .1790
325.00 .1800
330.00 .1810
335.00 .1830
340.00 .1850
345.00 .1850
350.00 .1860
355.00 .1890
360.00 .1900
365.00 .1920
370.00 .1940
375.00 .1970
380.00 .2010
385.00 .2020
390.00 .2070
395.00 .2100
400.00 .2100
405.00 .2100
410.00 .2120
415.00 .2140
420.00 .2150
425.00 .2170
430.00 .2190
435.00 .2210
440.00 .2220
445.00 .2240
450.00 .2280
455.00 .2290
460.00 .2300
465.00 .2340
470.00 .2370
475.00 .2370
480.00 .2370
485.00 .2400
490.00 .2420
495.00 .2420
500.00 .2430
505.00 .2470
510.00 .2480
515.00 .2500
520.00 .2560
525.00 .2570

178

530.00 .2580
535.00 .2600
540.00 .2630
545.00 .2630
550.00 .2640
555.00 .2640
560.00 .2660
565.00 .2670
570.00 .2700
575.00 .2720
580.00 .2740
585.00 .2750
590.00 .2780
595.00 .2790
600.00 .2800
605.00 .2800
610.00 .2810
615.00 .2820
620.00 .2840
625.00 .2850
630.00 .2860
635.00 .2880
640.00 .2890
645.00 .2900
650.00 .2920
655.00 .2930
660.00 .2940
665.00 .2940
670.00 .2950
675.00 .2970
680.00 .2990
685.00 .3010
690.00 .3020
695.00 .3060
700.00 .3070
705.00 .3090
710.00 .3090
715.00 .3090
720.00 .3090
725.00 .3100
730.00 .3100
735.00 .3110
740.00 .3130
745.00 .3160
750.00 .3170
755.00 .3180
760.00 .3180
765.00 .3200
770.00 .3210
775.00 .3210
780.00 .3210
785.00 .3210
790.00 .3220
795.00 .3220
800.00 .3220

179

805.00 .3230
810.00 .3240
815.00 .3240
820.00 .3250
825.00 .3250
830.00 .3250
835.00 .3250
840.00 .3260
845.00 .3260
850.00 .3260
855.00 .3260
860.00 .3260
865.00 .3260
870.00 .3270
875.00 .3270
880.00 .3270
885.00 .3270
890.00 .3270
895.00 .3290
900.00 .3300
905.00 .3310
910.00 .3320
915.00 .3330
920.00 .3330
925.00 .3340
930.00 .3340
935.00 .3350
940.00 .3350
945.00 .3350
950.00 .3350
955.00 .3360
960.00 .3360
965.00 .3360
970.00 .3360
975.00 .3360
980.00 .3360
985.00 .3370
990.00 .3370
995.00 .3380

1000.00 .3380

180

AFTER 1000 TRIALS

THE UNAVAILABILITY DISTRIBUTION DATA IS AS FOLLOWS

------------- --

The minimum is: .0000

The 1st percentile is: .0000

The 5th percentile is: .0000

The 25th percentile is: .0000

The 40th percentile is: .0000

The median is: .0000

The mean is: .2155

The 60th percentile is: .0000

The 75th percentile is: .4840

The 95th percentile is: .8701

The 99th percentile is: .9540

The maximum is: .9790

The variance is: .1085

I III ,

-,fl

