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ABSTRACT
In this demonstration, we present BlinkDB, a massively parallel,
sampling-based approximate query processing framework for run-
ning interactive queries on large volumes of data. The key obser-
vation in BlinkDB is that one can make reasonable decisions in the
absence of perfect answers. BlinkDB extends the Hive/HDFS stack
and can handle the same set of SPJA (selection, projection, join
and aggregate) queries as supported by these systems. BlinkDB
provides real-time answers along with statistical error guarantees,
and can scale to petabytes of data and thousands of machines in
a fault-tolerant manner. Our experiments using the TPC-H bench-
mark and on an anonymized real-world video content distribution
workload from Conviva Inc. show that BlinkDB can execute a wide
range of queries up to 150× faster than Hive on MapReduce and
10−150× faster than Shark (Hive on Spark) over tens of terabytes
of data stored across 100 machines, all with an error of 2− 10%.

1. INTRODUCTION
Companies increasingly derive value from analyzing large vol-

umes of collected data. There are cases where analysts benefit from
the ability to run short exploratory queries on this data. Examples
of such exploratory queries include root-cause analysis and prob-
lem diagnosis on logs (such as identifying the cause of long start-up
times on a video streaming website), and queries analyzing the ef-
fectiveness of an ad campaign in real time. For many such queries,
timeliness is more important than perfect accuracy, queries are ad-
hoc (i.e., they are not known in advance), and involve processing
large volumes of data.

Achieving small, bounded response times for queries on large
volumes of data remains a challenge because of limited disk band-
widths, inability to fit many of these datasets in memory, network
communication overhead during large data shuffles, and straggling
processes. For instance, just scanning and processing a few ter-
abytes of data spread across hundreds of machines may take tens
of minutes. This is often accompanied by unpredictable delays due
to stragglers or network congestion during large data shuffles. Such
delays impact an analyst’s ability to carry out exploratory analysis
on data.

In this demonstration, we introduce BlinkDB, a massively par-
allel approximate-query processing framework optimized for inter-
active answers on large volumes of data. BlinkDB supports SPJA-
style SQL queries. Aggregation queries in BlinkDB can be an-
notated with either error or maximum execution time constraints.
As an example, consider a table Sessions, storing the web sessions
of users browsing a media website, with five columns: SessionID,
Genre, OS (running on the user’s device), City, and URL (of the
website visited by the user). The following query in BlinkDB will
return the frequency of sessions looking at media in the “western”
Genre for each OS to within a relative error of ±10% with 95%
confidence.

SELECT COUNT(*)
FROM Sessions
WHERE Genre = ’western’
GROUP BY OS
ERROR 0.1 CONFIDENCE 95%

Similarly, given the query below, BlinkDB returns an approximate
count within 5 seconds along with the estimated relative error at the
95% confidence level.

SELECT COUNT(*), ERROR AT 95% CONFIDENCE
FROM Sessions
WHERE Genre = ’western’
GROUP BY OS
WITHIN 5 SECONDS

BlinkDB accomplishes this by pre-computing and maintaining
a carefully-chosen set of samples from the data, and executing
queries on an appropriate sample to meet the error and time con-
straints of a query. To handle queries over relatively infrequent
sub-groups, BlinkDB maintains a set of uniform samples as well
as several sets of biased samples, each stratified over a subset of
columns.

Maintaining stratified samples over all subsets of columns re-
quires an exponential amount of storage, and is hence impractical.
On the other hand, restricting stratified samples to only those sub-
sets of columns that have appeared in past queries limit applica-
bility for ad-hoc queries. Therefore, we rely on an optimization
framework to determine the set of columns on which to stratify,
where the optimization formulation takes into account the data dis-
tribution, past queries, storage constraints and several other system-
related factors. Using these inputs, BlinkDB chooses a set of sam-
ples which would help answer subsequent queries, while limiting
additional storage used to a user configurable quantity. The sam-
ples themselves are both multi-dimensional (i.e., biased over dif-
ferent columns), and multi-resolution. The latter means that we
maintain samples of a variety of sizes, enabling BlinkDB to effi-
ciently answer queries with varying accuracy (or time) constraints,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78055607?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


while minimizing response time (or error). More details about the
optimization problem formulation can be found in [4].

For backward compatibility, BlinkDB seamlessly integrates with
the HIVE/Hadoop/HDFS [1] stack. BlinkDB can also run on Shark
(Hive on Spark) [6], a framework that is backward compatible with
Hive, both at the storage and language layers, and uses Spark [10]
to reliably cache datasets in memory. As a result, a BlinkDB query
that runs on samples stored in memory can take seconds rather than
minutes. BlinkDB is open source1 and several on-line service com-
panies have already expressed interest in using it.

In this demo, we will show BlinkDB running on 100 Amazon
EC2 nodes, providing interactive query performance over a 10 TB
dataset of browser sessions from an Internet company (similar to
the Sessions table above.) We will show a collection of queries
focused on identifying problems in these log files. We will run
BlinkDB as well as unmodified Hive and Shark and show that our
system can provide bounded, approximate answers in a fraction of
the time of the other systems. We will also allow attendees to issue
their own queries to explore the data and BlinkDB’s performance.

2. SYSTEM OVERVIEW
In this section, we describe the settings and assumptions in which

BlinkDB is designed to operate, and provide an overview of its
design and key components.

2.1 Setting and Assumptions
BlinkDB is designed to operate like a data warehouse, with one

large “fact” table. This table may need to be joined with other “di-
mension” tables using foreign-keys. In practice, dimension tables
are significantly smaller and usually fit in the aggregate memory of
the cluster. BlinkDB only creates stratified samples for the “fact”
table and for the join-columns of larger dimension tables.

Furthermore, since our workload is targeted at ad-hoc queries,
rather than assuming that exact queries are known a priori, we as-
sume that query templates (i.e., the set of columns used in WHERE
and GROUP-BY clauses) remain fairly stable over time. We make
use of this assumption when choosing which samples to create.
This assumption has been empirically observed in a variety of real-
world production workloads [3, 5] and is also true of the query trace
we use for our primary evaluation (a 2-year query trace from Con-
viva Inc). We do not assume any prior knowledge of the specific
values or predicates used in these clauses.

Finally, in this demonstration, we focus on a small set of ag-
gregation operators: COUNT, SUM, MEAN, MEDIAN/QUANTILE.
However, we support closed-form error estimates for any combina-
tion of these basic aggregates as well as any algebraic function that
is mean-like and asymptotically normal, as described in [11].

2.2 Architecture
Fig. 1 shows the overall architecture of BlinkDB, which extends

Hive [1] and Shark [6]. Shark is backwards compatible with Hive,
and runs on Spark, a cluster computing framework that can cache
inputs and intermediate data in memory. BlinkDB adds two major
components: (1) a component to create and maintain samples, (2)
a component for predicting the query response time and accuracy
and selecting a sample that best satisfies given constraints.

2.2.1 Sample Creation and Maintenance
This component is responsible for creating and maintaining a set

of uniform and stratified samples. We use uniform samples over the
entire dataset to handle queries on columns with relatively uniform
1http://blinkdb.cs.berkeley.edu
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Figure 1: BlinkDB architecture.

distributions, and stratified samples (on one or more columns) to
handle queries on columns with less uniform distributions.

Samples are created, and updated based on statistics collected
from the underlying data (e.g., histograms) and historical query
templates. BlinkDB creates, and maintains a set of uniform sam-
ples, and multiple sets of stratified samples. Sets of columns on
which stratified samples should be built are decided using an opti-
mization framework [4], which picks sets of column(s) that (i) are
most useful for evaluating query templates in the workload, and (ii)
exhibit the greatest skew, i.e., have distributions where rare values
are likely to be excluded in a uniform sample. The set of samples
are updated both with the arrival of new data, and when the work-
load changes.

2.2.2 Run-time Sample Selection
To execute a query, we first select an optimal set of sample(s)

that meet its accuracy or response time constraints. Such sample(s)
are chosen using a combination of pre-computed statistics and by
dynamically running the query on smaller samples to estimate the
query’s selectivity and complexity. This estimate helps the query
optimizer pick an execution plan as well as the “best” sample(s)
to run the query on– i.e., one(s) that can satisfy the user’s error or
response time constraints.

2.3 An Example
To illustrate how BlinkDB operates, consider the example,

shown in Figure 2. The table consists of five columns: SessionID,
Genre, OS, City, and URL.

Sess. Genre OS City URL 

Query Templates 

(City) 

(OS, URL) 

TABLE 
Family of 
random  
samples 

Family of 
stratified 
samples 
on  {City} 

Family of 
stratified 
samples 
on  {OS,URL} 

… 

… 

… 

City 
Genre 
Genre AND City 
URL 
OS AND URL 

30% 
25% 
18% 
15% 
12% 

Figure 2: An example showing the samples for a table with five
columns, and a given query workload.

Figure 2 shows a set of query templates and their relative fre-
quencies. Given these templates and a storage budget, BlinkDB
creates several samples based on the query templates and statistics
about the data. These samples are organized in sample families,
where each family contains multiple samples of different granu-
larities. In our example, BlinkDB decides to create two sample
families of stratified samples: one on City, and another one on
(OS,URL).

http://blinkdb.cs.berkeley.edu


For every query, BlinkDB selects an appropriate sample family
and an appropriate sample resolution to answer the query. In gen-
eral, the column(s) in the WHERE/GROUP BY clause(s) of a query
may not exactly match any of the existing stratified samples. To
get around this problem, BlinkDB runs the query on the smallest
resolutions of available sample families, and uses these results to
select the appropriate sample.

3. PERFORMANCE
This section briefly discusses BlinkDB’s performance across a

variety of parameters. A more detailed comparison can be found
in [4]. All our experiments are based on a 17 TB anonymized
real-world video content distribution workload trace from Conviva
Inc [2]. This data is partitioned across 100 EC2 large instances2

and our queries are based on a small subset of their original query
trace. The entire data consists of around 5.5 billion rows in a sin-
gle large fact table with 104 columns (such as, customer ID, city,
media URL etc.)
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Figure 3: A comparison of response times (in log scale) in-
curred by Hive (on Hadoop), Shark (Hive on Spark) – both
with and without full input data caching, and BlinkDB, on sim-
ple aggregation.

3.1 To Sample or Not to Sample?
We compared the performance of BlinkDB versus frameworks

that execute queries on the full-size datasets. In this experiment, we
ran on two subsets of the raw data– of size 7.5 TB and 2.5 TB re-
spectively, spread across 100 machines. Please note that these two
subsets are picked in order to demonstrate some key aspects of the
interaction between data-parallel frameworks and modern clusters
with high-memory servers. While the smaller 2.5 TB dataset can be
be completely cached in memory, datasets larger than 6 TB in size
have to be (at least partially) spilled to disk. To demonstrate the
significance of sampling even for the simplest analytical queries,
we ran a simple query that computed average user session times
with a filtering predicate on the date column (dt) and a GROUP BY
on the city column. We compared the response time of the full
(accurate) execution of this query on Hive [1] on Hadoop MapRe-
duce, Hive on Spark (called Shark [6]) – both with and without in-
put caching, against its (approximate) execution on BlinkDB with
a 1% error bound for each GROUP BY key at 95% confidence and
report the results in Fig. 3. Note that the Y axis is in log scale. In
all cases, BlinkDB significantly outperforms its counterparts (by a
factor of 10−150×), because it is able to read far less data to com-
pute an answer. For both data sizes, BlinkDB returned the answers
in a few seconds as compared to thousands of seconds for others.
In the 2.5 TB run, Shark’s caching capabilities considerably help in

2Amazon EC2 extra large nodes have 8 CPU cores (2.66 GHz),
68.4 GB of RAM, with an instance-attached disk of 800 GB.
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Figure 4: Query latency across 2 different query workloads
(with cached and non-cached samples) as a function of cluster
size

bringing the query runtime down to about 112 seconds. However,
with 7.5 TB data size, a considerable portion of data is spilled to
disk and the overall query is considerably affected due to outliers.

3.2 Scaling Up
In order to evaluate the scalability properties of BlinkDB as a

function of cluster size, we created 2 different sets of query work-
load suites consisting of 40 unique Conviva-like queries each. The
first set (marked as selective) consists of highly selective queries–
i.e., those queries which only operate on a small fraction of input
data. These queries occur frequently in production workloads and
consist of one or more highly selective WHERE clauses. The second
set (marked as bulk) consists of those queries which are intended
to crunch huge amounts of data. While the former set’s input is
generally striped across a small number of machines, the latter set
of queries generally runs on data stored on a large number of ma-
chines thereby incurring a relatively higher communication cost.
Fig. 4 plots the query latency for each of these workloads suites as
a function of cluster size. Each query operates on 100n GB of data
(where n is the cluster size). So for a 10 node cluster, each query
operates on 1 TB of data and for a 100 node cluster, each query
in turn operates on around 10 TB of input data. Further, for each
workload suite, we evaluate the query latency for the case when the
required samples are completely cached in RAM or when they are
stored entirely on disk. Since in any realistic scenario, any sam-
ple may partially lie in both the disk and the memory, these results
indicate the min/max latency bounds for any query.

4. DEMONSTRATION DETAILS
BlinkDB demo will feature an end-to-end implementation of the

system running on 100 Amazon EC2 machines. We will demon-
strate BlinkDB’s effectiveness in successfully supporting a range
of ad-hoc exploratory queries to perform root-cause analysis in a
real-world scenario.

4.1 Setup Details
Our demo setup would consist of an open source implementation

of BlinkDB scaling to a cluster of 100 Amazon EC2 machines. To
demonstrate a real-world root-cause analysis scenario, we will pre-
store approximately 10 TBs of anonymized traces of video sessions
in a de-normalized fact table.

In order to effectively demonstrate the system, our demo will
feature an interactive ajax-based web console as shown in Fig. 5.
Users can leverage this console to rapidly query across a range of
parameters and visualize any particular slice of data. In addition,
we would provide a 100 node Apache Hive cluster running in par-
allel for comparison.



SELECT AVG(time) 
FROM data 
WHERE city=‘Kensington’ 
GROUP BY isp 
WITHIN 2 SECONDS  

SELECT AVG(time) 
FROM data 
WHERE city=‘Kensington’ 
GROUP BY content 
WITHIN 2 SECONDS  

SELECT AVG(time) 
FROM data 
GROUP BY city 
WITHIN 1 SECONDS  

Figure 5: A possible root-cause analysis scenario for detecting
the cause of latency spikes in Kensington.

4.2 Demonstration Scenario
Our demonstration scenario places the attendees in the shoes of a

Quality Assurance Engineer at CalFlix Inc., a popular (and imagi-
nary) video content distribution website experiencing video quality
issues. A certain fraction of their users have reported considerably
long start-up times and high levels of buffering, which affect their
customer retention rate and ad revenues.

Diagnosing this problem needs to be done quickly to avoid lost
revenue. Unfortunately, causes might be many and varied. For
example, an ISP or edge cache in a certain geographic region may
be overloaded, a new software release may be buggy on a certain
OS, or a particular piece of content may be corrupt. Diagnosing
such problems requires slicing and dicing the data across tens of
dimensions to find the particular attributes (e.g., client OS, browser,
firmware, device, geo location, ISP, CDN, content etc.) that best
characterize the users experiencing the problem.

As part of the demo, the attendees would be able to interactively
use the web console to monitor a variety of metrics over the un-
derlying data. While the top level dashboard would feature a set of
aggregate statistics over the entire data, the interactive web inter-
face will allow the users to compute such statistics across a specific
set of dimensions and attribute values.

4.2.1 Data Characteristics
Our 10 TB workload trace would comprise of a de-normalized

table of video session events. This table will consist of 100+ indi-
vidual columns (e.g., session ID, session starting and ending times,
content ID, OS version, ISPs, and CDNs), and it will be stored in
HDFS across 100 machines. Each tuple in the table will correspond
to a video session event, such as video start/stop playing, buffering,
switching the bitrate, showing an ad, etc. The table will contain
billions of such tuples.

4.2.2 Root-cause Analysis Scenarios
In order to demonstrate a few root-cause analysis scenarios, we

would inject a number of synthetic faults in this event stream as
described below:

1. Latency Spikes: In this scenario, ISP ‘XYZ’’s users in
‘Kensington, CA’ experience a latency spike while watching
‘Star Wars Episode I: The Phantom Menace’ due
to high contention on the edge cache.

2. Buggy Video Player: In this scenario, ‘Firefox 11.0’
users experience high-buffering times due to a buggy beta release
of ‘ZPlayer’, an open-source video player.

3. Corrupted Content: In this scenario, a particular copy of a
content in a CDN’s server is corrupted affecting a number of users
accessing that content.

Diagnosing all these faults would involve ad-hoc analysis by in-
teractively grouping or filtering the event table across a number of
dimensions (such as ISPs, City, Content IDs, Browser IDs etc). We
expect that the users would be able to detect the root-cause in all
of these scenarios in a matter of minutes, hence demonstrating the
effectiveness of BlinkDB in supporting interactive query analysis
over very large data.

5. RELATED WORK
Approximate Query Processing (AQP) for decision support in

relational databases has been studied extensively. Such work has
either focused on sampling based approaches on which we build,
or on the use of other data structures; both are described below.

There is a rich history of research into the use of both random
and stratified sampling for providing approximate query responses
in databases. A recent example, is SciBORQ [8, 9], a data-analytics
framework for scientific workloads. SciBORQ uses special struc-
tures, called impressions, which are biased samples with tuples se-
lected based on their distance from past query results. In contrast
to BlinkDB, SciBORQ does not support error constraints, and does
not provides guarantees on the error margins for results.

There has also been a great deal of work on “synopses” for
answering specific types of queries (e.g., wavelets, histograms,
sketches, etc.)3. Similarly materialized views and data cubes can
be constructed to answer specific queries types efficiently. While
offering fast responses, these techniques require specialized struc-
tures to be built for every operator, or in some cases for every
type of query and are hence impractical when processing arbitrary
queries. Furthermore, these techniques are orthogonal to our work,
and BlinkDB could be modified to use any of these techniques
for better accuracy with certain types of queries, while resorting
to samples for others.
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