
1

Efficient Versioning for Scientific Array Databases
Adam Seering1, Philippe Cudre-Mauroux1,2, Samuel Madden1, and Michael Stonebraker1

1MIT CSAIL – USA
aseering@mit.edu, {pcm,madden,stonebraker}@csail.mit.edu

2U. of Fribourg – Switzerland
pcm@unifr.ch

Abstract— In this paper, we describe a versioned database
storage manager we are developing for the SciDB scientific
database. The system is designed to efficiently store and retrieve
array-oriented data, exposing a “no-overwrite” storage model
in which each update creates a new “version” of an array. This
makes it possible to perform comparisons of versions produced at
different times or by different algorithms, and to create complex
chains and trees of versions.

We present algorithms to efficiently encode these versions,
minimizing storage space or IO cost while still providing efficient
access to the data. Additionally, we present an optimal algorithm
that, given a long sequence of versions, determines which versions
to encode in terms of each other (using delta compression) to min-
imize total storage space. We compare the performance of these
algorithms on real world data sets from the National Oceanic
and Atmospheric Administration (NOAA), OpenStreetMaps, and
several other sources. We show that our algorithms provide better
performance than existing version control systems not optimized
for array data, both in terms of storage size and access time, and
that our delta-compression algorithms are able to substantially
reduce the total storage space when versions exist with a high
degree of similarity.

I. INTRODUCTION

In the SciDB project (http://scidb.org), we are
building a new database system designed to manage very large
array-oriented data, which arises in many scientific applications.
Rather than trying to represent such arrays inside of a relational
model (which we found to be inefficient in our previous
work [1]), the key idea in SciDB is to build a database from the
ground-up using arrays as the primary storage representation,
with a query language for manipulating those arrays. Such
an array-oriented data model and query language is useful in
many scientific applications, such as astronomy and biology
settings, where the raw data consists of large collections of
imagery or sequence data that needs to be filtered, subsetted,
and processed.

As a part of the SciDB project, we have spent a large
amount of time talking to scientists about their requirements
from a data management system (see the “Use Cases” section
of the scidb.org website), and one of the features that is
consistently cited is the need to be able to access historical
versions of data, representing, for example, previous sensor
readings, or derived data from historical raw data (and implying
the need for a no overwrite storage model.)

In this paper, we present the design of the no-overwrite
storage manager we have developed for SciDB based on the

concept of named versions. Versions allow a scientist to engage
in “what-if” analyses. Consider, for example, an astronomer
with a collection of raw telescope imagery. Imagery must
be processed by a “cooking” algorithm that identifies and
classifies celestial objects of interest and rejects sensor noise
(which, in digital imagery, often appears as bright pixels on a
dark background, and is quite easy to confuse for a star!) An
astronomer might want to use a different cooking algorithm
on a particular study area to focus on his objects of interest.
Further cooking could well be in order, depending on the result
of the initial processing. Hence, there may be a tree of versions
resulting from the same raw data, and it would be helpful for a
DBMS to keep track of the relationships between these objects.

In this paper, we focus on the problem of how to best store
a time-oriented collection of versions of a single large array
on disk, with the goal of minimizing the storage overhead
(devices like space telescopes can produce terabytes of data
a day, often representing successive versions of the same
portion of the sky) and the time to access the most commonly
read historical versions. Our system supports a tree of named
versions branching off from a single ancestor, and provides
queries that read a “slice” (a hyper-rectangle) of one or a
collection of versions. Our system includes algorithms to
minimize the storage space requirements of a series of versions
by encoding arrays as deltas off of other arrays.

Specifically, our contributions include:
• New optimal and approximate algorithms for choosing

which versions to materialize, given the distribution of access
frequencies to historical versions.

• Chunking mechanisms to reduce the time taken to retrieve
frequently co-accessed array portions.

• Experiments with our system on a range of dense and
sparse arrays, including weather simulation data from NOAA,
renderings of road maps from OpenStreetMaps, video imagery,
and a linguistic term-document frequency matrix.

• Comparisons of our system to conventional version-control
systems, which attempt to efficiently store chains of arbitrary
binary data, but do not include sophisticated optimization
algorithms or array-specific delta operations. We show that our
algorithms are able to use 8 times less space and provide up
to 45 times faster access to stored data.

• Comparisons of the performance of a variety of different
delta algorithms for minimizing the storage space of a collection
of versions from our scientific data sets.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78055604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The results we present come from a stand-alone prototype,
which we used to refine our ideas and architecture. We
are currently adding our code to the open-source SciDB
production system. In the rest of this document, we describe
the architecture and interface of the system we have built in
Section II. We detail our delta-algorithm for differencing two
or more arrays in Section III and our optimization algorithms
for choosing versions to materialize in Section IV. Finally, we
present the performance of our system in Section V, describe
related work in Section VI, and conclude in Section VII.

II. SYSTEM OVERVIEW

The basic architecture of our versioning system is shown in
Figure 1. Our goal is to prototype options for SciDB; hence,
our storage system mimics as much as possible the SciDB
system. In fact, we are now adding the functionality described
herein to the open source and publicly available code line (see
Appendix A for examples of how the SciDB query system is
being extended to support access to versions.)

The query processor receives a declarative query or update
from a front end that references a specific version(s) of a named
array or arrays. The query processor translates this command
into a collection of commands to update or query specific
versions in the storage system.

Each array may be partitioned across several storage system
nodes, and each machine runs its own instance of the storage
system. Each node thereby separately encodes the versions
of each partition on its local storage system. In this paper
we focus on the storage system for a single-node, since each
node will be doing identical operations. The reader is referred
to other SciDB research on the partitioning of data across
nodes [2].

Our storage system deals with named arrays, each of which
may have a tree of versions, uniquely identified by an id. We
support five basic array and version operations: allocate a new
array, delete an array, create a new version of an array, delete
a version of an array, and query a version of an array.

Note that our prototype is a no-overwrite storage system.
Hence, it is never possible to update an existing version once
it has been created – instead, all updates are performed by
creating a new version in the system. The goal of the versioning
system is to efficiently encode updates so as to minimize the
space required on disk.

In the rest of this section, we describe the two major access
methods for the versioning system: new version insertion, and
query for a version.

A. Version Manipulation Operations

Before a version can be added, the query processor must
issue a Create command which initializes an array with a
specific name and schema. Arrays have typed and fixed-sized
dimensions (e.g., X and Y are integer coordinates ranging
between 0 and 100) that define the cells of the array, as well
as typed attributes that define the data stored in each cell (e.g.,
temperature and humidity are floating point values).

Query Processor

Node 2 Node n...

Versioned Storage System - Node 1

Requests for specific versions
Commits of new versions

Chunking, 
Co-location

Compression

Delta 
Encoding

Ve
rs

io
n 

M
et

ad
at

a

Declarative queries

Decompression

Chunk 
Selection

Delta 
Decoding

Insert Path Select Path

Fig. 1. SciDB version system architecture, showing steps for inserting a new
version and selecting a version.

To add a version, the query processor uses the Insert
operation, which supplies the contents of the new version,
and the name of the array to append to, and then adds it as a
new version to the database. The payload of the insert operation
takes one of three forms:

1) A dense representation, where the value of every attribute
in every cell is explicitly specified in a row major order. In
this case, the dimension values can be omitted.

2) A sparse representation, in which a list of (dimension,
attribute) value pairs are supplied, along with a default-value
which is used to populate the attribute values for unspecified
dimension values.

3) A delta-list representation, in which a list of (dimension,
attribute) value pairs are supplied along with a base-version
from which the new version inherits. The new version has
identical contents to the old version except in the specified
dimension values.

The versioning system also supports a Branch operation that
accepts an explicit parent array as an argument, which must
already exist in the database. Branch operates identically to
Insert except that a new named version is created instead of a
new temporal version of the existing array.

Finally, the versioning system also includes a Merge
operation that is the inverse of Branch. It takes a collection of
two or more parent versions and combines them into a new
sequence of arrays (it does not attempt to combine data from
two arrays into one array.) Note that the existence of merge
allows the version hierarchy to be a graph and not strictly a
tree.

An insert or branch command is processed in three steps,
as shown in Figure 1. First, the payload is analyzed so it can
be encoded as a delta off of an existing version. Delta-ing
is performed automatically by comparing the new version to
versions already in the system, and the user is not required
to load the version using the delta-list representation to take
advantage of this feature.

Second, the new version is “chunked”, meaning that it is
split into a collection of storage containers, by defining a fixed



stride in each of the dimensions. Fixed-size chunks have been
shown in [2] to have the best query performance and have
been adopted both in our prototype and in SciDB.

Third, each chunk is optionally compressed and written to
disk. Data is added to the Version Metadata indicating the
location on disk of each chunk in the new version, as well
as the coordinates of the chunks and the timestamp of the
version, as well as the versions against which this new version
was delta’ed (if any). Since chunks have a regular structure,
there is a straight-forward mapping of chunk locations to disk
containers, and no indexing is required.

We describe the details of our delta-encoding and delta-
version query algorithms in Section III and Section IV.

B. Version Selection and Querying
Our query processor implements four Select primitives. In

its first form, it takes an array name and a version ID, and
returns the contents of the specified version. In its second form,
it takes an array name, a version ID, and two coordinates in the
array representing two opposite corners of a hyper-rectangle
within the specified array.

In its third form, select accepts an array name and an ordered
list of version IDs. Given that the specified arrays are N -
dimensional, it returns an N + 1-dimensional array that is
effectively a stack of the specified versions. So, for example,
if array A were returned, A(1, :) would be the first version
selected; A(2, :) would be the second version selected, etc.

The fourth form is a combination of the previous two: It
takes an array name, an ordered list of version IDs, and two
coordinates specifying a hyper-rectangle. It queries the specified
ranges from each of the specified versions, then stacks the
resulting arrays into a single N + 1-dimensional array and
returns it.

These operations are handled by a series of processing steps.
First, the chunks that are needed to answer the query are
looked up in the Version Metadata. Since each version chunk
is likely delta-ed off of another version, in general, a chain
of versions must be accessed, starting from one that is stored
in native form. This process is illustrated in Figure 2. Here,
there are three versions of an array, each of which are stored
as four chunks. Version 3 is delta-ed against Version 2, which
is delta-ed against Version 1. The user performs a query asking
for a rectangular region in Version 3. To access this data, the
system needs to read 6 chunks, corresponding to the chunks
that overlap the queried region in all three versions.

The required chunks are read from disk and decompressed.
If the accessed version is delta-ed against other versions, the
delta-ing must be unwound. Finally, a new array containing
the result of the query is generated in memory and returned to
the user.

C. Querying Schema and Metadata
Besides operations to create and delete versions, the version-

ing system supports the ability to query metadata. It includes
a List operation, that returns the name of each array currently
stored in the system. Second, it supports a Get Versions

Version 3
(Delta'd against V2)

Version 2
(Delta'd against V1)

Version 1

Chunks read query region

Fig. 2. Diagram illustrating a chain of versions, with a query over one of
the versions. The answer the query, the 6 highlighted chunks must be read
from disk.

operation, that accepts an array name as an argument, and
returns an ordered list of all versions in that array. It also
provides facilities to look up versions that exist at a specific
date and time, and methods to retrieve properties (e.g., size,
sparsity, etc.) of the arrays.

D. Integration into SciDB Prototype
We are now in the process of integrating our versioning

system into the SciDB engine. In essence, we are gluing the
SciDB query engine onto the top of the interfaces described in
the previous two sections. Detailed syntax examples are given
in Appendix A.

III. STORING AND COMPRESSING ARRAYS

In this section we introduce a few definitions and describe
how arrays are stored and compressed on disk in our prototype.

A. Definitions
An array Ai is a bounded rectangular structure of arbitrary

dimensionality. Each combination of dimension values defines
a cell in the array. Every cell either holds a data value of a
fixed data type, or a NULL value. The cells of a given array
are homogeneous, in the sense that they all hold the same data
type. We say that an array is dense if all its cells hold a data
value, and is sparse otherwise.

The versioning problem arises in settings where application-
specific processes (e.g., data collections from sensors, scientific
simulations) iteratively produce sequences of related arrays,
or versions that each captures one state of some observed or
simulated phenomenon over time. The other way the versioning
problem arises is when an array is subject to update, for
example to correct errors. In either case, we denote the versions
0 . . . T of array Ai as A0

i , . . . , A
T
i .

B. Storing Array Versions
There exist many different ways of storing array versions.

The most common way is to store and compress each array
version independently (the sources we took our data from
all use this technique to store their arrays, see Section V).
However, if consecutive array versions are similar, it may be
advantageous to store the differences between the versions
instead of repeating all common values. We describe below
the various storage mechanisms we consider to store array
versions.



1) Full Materialization: The simplest way to store a series
of array versions A0, . . . , AT is to store each version separately.
For dense arrays, we store all the cell values belonging to a
given version contiguously without any prefix or header to
minimize the storage space. For sparse arrays, we have two
options: either we store the values as a dense array and write a
special NULL value for the missing cells, or we write a series
of values preceded by their position in the array and store the
NULL values implicitly.

Recall that arrays are “chunked” into fixed sized sub-arrays.
The size of an uncompressed chunk (in bytes) is defined by a
compile-time parameter in the storage system; by default we use
10 Mbyte chunks (see Section V-B). The storage manager com-
putes the number of cells that can fit into a single chunk, and
divides the dimensions evenly amongst chunks. For example, in
a 2D array with 8 byte cells and 1 Mbyte chunks, the system
would store 1 Mbyte / 8 bytes = 128 kcells/chunk. Hence
each chunk would have dimensionality dim = d

√
128Ke =

358 units on a side. Each chunk of each array is stored
in a separate file in the file system, named by the range
of cells in the chunk (e.g., chunk-0-0-357-357.dat,
chunk-0-357-357-714.dat, ...). To look up the file
containing cell X, Y the system computes

fX = bX/dimc × dim, fY = bY/dimc × dim

and reads the file chunk-fX-fY-fX+1-fY+1.dat.
Every version of a given array is chunked identically. In

our prototype, compressing and delta-ing chunks is done on
a chunk-by-chunk basis (in the SciDB project as a whole we
are exploring more flexible chunking schemes.)

2) Chunk Compression: Our system is able to compress
individual versions using popular compression schemes. We
took advantage of the SciDB compression library [3] to
efficiently compress individual chunks. This library includes
various compression schemes such as Run-Length encoding,
Null Suppression, and Lempel-Ziv compression. Additionally,
we added compression methods based on the JPEG2000 and
PNG compressors, which were developed explicitly for images.

3) Delta Encoding: A delta is simply the cell-wise differ-
ence between two versions: Given two versions Ai and Aj ,
each cell value in Aj is subtracted from the corresponding cell
value in Ai to produce the delta. Deltas can only be created
between arrays of the same dimensionality. In this section, we
discuss how we compute deltas; the problem of choosing which
arrays to actually delta against each other is more complex
and is the subject of Section IV.

If versions Ai and Aj are similar, their delta will tend to
be small. As a result, the delta can be stored using fewer bits
per cell than either Ai or Aj . Our algorithm stores the delta
as a dense collection of values of length D bits. We compute
the smallest value of D that can encode all of the deltas in
Ai[n]−Aj [n]. We write the delta array δij

A to disk, such that
cell n of this array contains Ai[n]−Aj [n].

As an additional optimization, if more than a fraction F of
cells in δij

A can be encoded using D′ > D bits per cell, we
create a separate matrix and store cells that require D′ bits per

cell separately (either as a sparse or dense array, depending
on which is better.)

The system also supports bit depths of 0, and empty sparse
arrays. Hence, if Ai and Aj are identical, the delta data will
use negligible space on disk. Furthermore, if an array would
use less space on disk if stored without delta compression, the
system will choose not to use it. Disk space usage is calculated
by trying both methods and choosing the more economical
one.

Finally, we implemented two different ways of storing the
deltas on disk: the first method stores all the deltas belonging
to a given version together in one file, while the second method
co-locates chains of deltas belonging to different versions but
all corresponding to the same chunk. Unless stated otherwise,
we consider co-located chains of deltas in the following, since
they are more efficient.

IV. VERSION MATERIALIZATION

In the following, we propose an efficient algorithms to decide
how to encode the versions of an array. The challenge in doing
this is that we have to choose whether or not to materialize
(e.g., physically store) each array, or to delta it against some
other array. If we consider a series of n versions, we have
for each version n possible choices for its encoding (since
we either materialize the version or delta it against one of
the n− 1 other versions), and (in the worst case) the optimal
choice will depend on how every other version was encoded;
hence a naive algorithm may end up considering nn possible
materialization choices.

For cases where the workload is heavily biased towards
the latest version, the optimal algorithm boils downt to
materializing the latest version and to delta all previous ones.
While this is a frequent case in practice, other workloads
(returning for example arbitrary ranges of versions, or returning
small portions of arbitrary versions) are from our experience
also very frequent in science. In many cases in astronomy or
remote sensing, for instance, following objects in time and
space requires to perform subqueries returning subregions of
the arrays for relatively long ranges of versions.

We describe below an efficient algorithm to determine
optimal encodings for an arbitrary number of versions and
arbitrary workloads, without exploring all materialization
options. Before running the algorithms described below, we first
compute whether, from a space-perspective, delta-compression
is valuable for this array. We do this using a sample series
of consecutive versions (A1, . . . , An). We also decide if the
array should be stored using a dense or a sparse representation
and what compression algorithm should be used.

If delta compression is determined to be effective, we
perform a search for the optimal delta encoding as described
below.

A. Materialization Matrix
The algorithm starts by constructing a data structure, called

the Materialization Matrix, to determine the value of delta-
encoding for the versions at hand. The Materialization Matrix



MM is a n × n matrix derived from series of versions (all
versions are of the same dimensionality). The values MM(i, i)
on the diagonal of this matrix give the space required to
materialize a given version V i: MM(i, i) ≡ M i. The values
off the diagonal MM(i, j) represent the space taken by a delta
∆i,j between two versions V i and V j . Note that this matrix is
symmetric. This matrix can be constructed in O(n2) pairwise
comparisons.

We have implemented several ways of efficiently constructing
this matrix. In particular, we have found that computing the
space S to store the deltas based on a random sample of R of
the total of N cells for a pair of matrices and then computing
S×R/N yields a fairly approximate estimate of the actual delta
size, even for S/N values of .1% or less. We are also exploring
the use of transformations (e.g., using harmonic analyses) of
large versions in order to work on smaller representations.

B. Layouts

After having computed the materialization matrix, our
versioning system determines the most compact delta encoding
for the series of versions. For each V i in a collection of n
versions (V 1, . . . , V n) we can:

1) materialize the compressed representation, which requires
MM(i, i) bytes, or

2) delta V i against any other version, requiring ∆i,j bytes.
Thus, there are n different ways of storing each version.
However, not all encodings lead to collections of versions
that can be retrieved by the system. Suppose for example that
we encode three versions V 1, V 2, V 3 through three deltas—
storing V 1 as a delta ∆1,2 against V 2, V 2 as a delta ∆2,3

against V 3, and V 3 as a delta ∆3,1 against V 1. In this case,
none of the versions can be reconstructed because the sequence
of deltas forms a loop. To be able to reconstruct a version, one
must either materialize that version, or link it through a series
of deltas to a materialized version. We call an encoding of a
collection of versions where all versions can be reconstructed
a valid layout.

In the following, we use a graph representation to model
the way versions are stored. In this representation, a layout
is a collection of nodes (representing versions) and edges
(representing delta encoding or materialized versions). A
materialized version is represented as an arc with the same
source and destination node. If a version is delta encoded, then
it is represented as an arc from the source to the destination.
We do not consider replication of versions, so each node has
exactly one incoming arc. Figure 3 gives an illustration of a
valid and an invalid layout. We draw a few observations from
those definitions (we omit the simplest proofs due to space
constraints):

Observation 1: A layout of n versions always contains n
edges.

Observation 2: A layout containing at least one cycle of
length > 1 is invalid.

V1 V2 V3
Δ1,2 Δ2,3

Δ3,1

V1 V2 V3
Δ1,2 Δ2,3

M3

Fig. 3. Two ways of storing three versions (V 1, . . . , V 3); The first (left) is
invalid since the series of deltas creates a cycle; The second (right) is valid
since every version can be retrieved by following series of deltas from V 3,
which is materialized .

(Note that we use an undirected version of the graphs when
detecting cycles, since our system can reconstruct the versions
in both directions, by adding or subtracting the delta).
Proof: Consider a layout containing a cycle connecting C
versions (with 1 < C ≤ n). This cycle contains C edges,
and a total of n − C nodes and edges remain outside the
cycle. At least one edge must be used to materialize one
version (a layout without any materialization is never valid).
If one of the versions along the cycle is materialized, then
n − C − 1 edges remain to connect n − C versions, which
can never produce a valid layout (since each node must have
one outgoing edge). If none of the versions along the cycle is
materialized, then at least one version outside of the cycle
must be materialized. Let us assume that M versions (with
1 < M ≤ n− C) are materialized. n− C −M versions must
then be connected directly or indirectly to the materialized
nodes, taking n − C − M edges and leaving the nodes
belonging to the cycle invalid.

Observation 3: a layout containing a set of connected
components where each component has one and exactly one
materialized version is valid.

Observation 4: a layout without any (undirected) cycle of
length > 1 is always valid; hence, without considering the
materialization edges, a valid layout graph is actually a polytree.

Proof: The layout contains n edges. There is at least one
materialized version in this case (a tree connecting all the
nodes takes n− 1 edges; any additional edge creates a loop).
Let us assume that there are M materialized versions. Thus,
there are n−M edges interconnecting the n nodes. Since there
is no cycle, those n−M edges and n nodes form a forest (i.e.,
a disjoint union of trees) composed of M trees. Each of the
trees contains exactly one materialized version (since we have
exactly one outgoing edge per node), and hence the layout is
valid.

C. Space Optimal Layouts

We now describe how to efficiently determine the most
compact representation of a collection of versions by using
the Materialization Matrix. We first consider the case where
we assume materializing a version always takes more space
than delta’ing it from another version (i.e., MM(i, i) >
MM(i, j) ∀j 6= i), which should be true in most cases, and
then briefly discuss how to relax this assumption. When this
assumption is true, the minimal layout is composed of n deltas



connected to one materialized version. The optimal layout can
in this case be derived from the minimum spanning tree of the
collection of versions.
[Sketch of] Proof: since materializations are always more
expensive than deltas, the minimal layout must be composed
of a minimum number of materializations, namely one, and
a series of deltas interlinking all versions. The delta arcs
must form a tree since loops are not allowed (see above).
By definition, the cheapest subgraph connecting all the vertices
together is the minimum weight spanning tree, where the weight
of an edge between vertex Vi encoded in terms of vertex Vj

is ∆i,j .

Algorithm 1 finds the space-optimal layout by considering
an undirected materialization graph and its minimum spanning
tree. The output Λ contains an encoding strategy for every
version (either materializing it or encoding it in terms of some
other version.) The minimum spanning tree can be found in
linear time using a randomized algorithm [4].

/* Create The Undirected Materialization
Graph */

Create Graph G
foreach version V i ∈ {V 1, . . . , V N} do

Add Node V i, G
foreach version V i ∈ {V 1, . . . , V N} do

foreach MM(i, j) | j < i do
Add Edge V i, V j , MM(i, j), G

/* Find Minimal Spanning Tree on Undirected
Graph */

MST = MinimumSpanningTree(G)
/* Take Cheapest Materialization As Root */
V i

min = min(MM(i, i)) ∀ 1 ≤ i ≤ N
Λ = V i

min

/* Traverse MST and Add Deltas from Root */
foreach Pair of Nodes (V i, V j) ∈ MST from root V i

min do
Λ = Λ⊕∆i,j

/* store the versions as given by best
layout */

store Λ

Algorithm 1: Algorithm for finding the minimum storage
layout.

If there is a materialized version that is cheaper than some
delta, then the above algorithm might fail. In particular, materi-
alizing more than one version might result in a more compact
layout than the one given by the above minimum spanning
tree of deltas. Specifically, a more compact representation of
the versions could actually be a minimum spanning forest with
more than one materialization.

We generalize our algorithm to deal with this situation.
We first run the above algorithm to find the most compact
representation. Then, we continue with an examination of
each version that might be stored more compactly through
materialization. If there exists a delta on the path from that
version to the root of the tree that is more expensive than the
materialization, then it is advantageous to split the graph by
materializing that version instead of considering it as a delta.
The complete algorithm is given in Appendix B.

D. Workload-Aware Layouts

In certain situations, scientists have some a priori knowledge
about the workload used to query the versions, either because
they have some specific algorithm or repeated processing in
mind (e.g., always comparing the last ten versions) or because
they have a sample historical workload at their disposal. Below,
we describe algorithms to determine interesting layouts that
take advantage of this workload knowledge.

Knowledge about the workload allows us to minimize the
total I/O, measured in terms of the number of disk operations
(i.e., reads and writes), rather than simply minimizing the
number of bytes on disk as above. Because chunks read from
disk in SciDB are relatively large (i.e., several megabytes),
disk seeks are amortized so that we can count use the number
of chunks accessed as a proxy for total I/O cost. This further
suggests that chunks that are frequently queried should be
stored compactly on disk in order to minimize the total number
of bytes read when executing queries.

To model the cost of a query q (which can either represent a
snapshot or a range query), we first determine the set of versions
VΛ(q) that have to be retrieved to answer q; this set is composed
of the union of all versions directly accessed by the query,
plus all further versions that have to be retrieved in order to
reconstruct the accessed versions (corresponding to all versions
that can be reached by following edges from the set of accessed
versions in the materialization graph). The cost of a query q
can then be expressed as CostΛ(q) ∼

∑
V i∈VΛ(q) SizeΛ(Vi)

(where Size() returns the size in KB of the corresponding
version). Considering a workload Q composed of frequent
queries along with their respective weights (i.e., frequencies) w,
the optimal layout minimizing I/O operations for the workload
is:

ΛQ = argmin
Λ

 ∑
qj∈Q

wj ∗ CostΛ(qj)

 .

We ignore caching effects above for simplicity, and since they
are often negligible in our context for very large arrays or
complex workloads.

Layouts yielding low I/O costs will typically materialize
versions that are frequently accessed and hence won’t be
optimal in terms of storage, so we can’t simply use the
algorithms described above. Instead, we need to: 1) find all
spanning trees (or forests if we consider the algorithm from
Appendix B) derived from the Materialization Matrix – in our
case, the number of possible spanning trees for a complete
undirected graph derived from a Materialization Matrix is given
by Cayley’s formula [5] and is exponential with the number of
versions n; 2) consider all possible ways of materializing each
tree (second part of Algorithm 1), and 3) compute for each
query and each valid layout the set of versions VΛ that have
to be retrieved from disk – this operation is complex, since
each layout might lead to a different set of versions to retrieve
for a given query.

As an alternative, we describe an efficient heuristic algorithm
to determine layouts yielding low I/O costs below. For a
workload composed of isolated snapshots and range queries,



one can consider each query independently and construct the
I/O optimal layout by determining the space-optimal layout for
each range/snapshot in isolation (for snapshots, the solution
is straightforward and boils down to materializing all queried
versions) in order to minimize the total cost expressed above.
For overlapping queries, things are more complex. Given two
queries retrieving two overlapping lists of versions V 1 and V 2,
one has to enumerate all potential layouts as described above
on V 1∪V 2 to find the I/O optimal layout. In practice, however,
only four layouts are interesting in this case: i) a layout where
all V 1 \V 2, V 2 \V 1 and V 1∩V 2 are stored most compactly
for workloads where both V 1 and V 2 are frequently accessed
ii) a layout storing both V 1 and V 2\V 1 in their most compact
forms for workloads where V 1 is accessed more frequently,
iii) same as i) with V 1 and V 2 inverted for workloads where
V 2 is accessed more frequently, and finally iv) a layout where
V 1∪V 2 is stored more compactly—which might be interesting
for settings where both V 1 and V 2 are frequently accessed
and where materializations are very expensive. This divide and
conquer algorithm can be generalized for N overlapping queries
delineating M segments, by considering the most compact
representation of each segment initially, and by combining
adjacent segments iteratively.

E. Handling New Versions

When a new version is added, we do no want to immediately
re-encode all previous versions. The simplest option is to
update the materialization matrix, and use it to compute the
best encoding of the new version in terms of previous versions.
Periodically we may wish to recompute the optimal version tree
as a background re-organization step. As a more sophisticated
update heuristic, we can accumulate a batch of K new versions,
and compute the optimal encoding of them together (in terms
only of the other versions in the batch) using the algorithms
described above. This batch will have one or more materialized
arrays in it. If we wish to avoid storing this materialized
array, we can compare the cost of encoding it in terms of
the materialized arrays in other (previously inserted) batches.
In practice, however, we have found that as long as K is
relatively large (say 10–100), it is sufficient to simply keep these
batches separate. This also has the effect of constraining the
materialization matrix size and improving query performance
by avoiding very long delta chains.

Finally, it is important to point out that in many practical
contexts, the workload is heavily biased towards the latest
version of the array (e.g., for scientists who only query the
current version of a given array, but who still want to maintain
its history on disk for traceability purposes.) In that case, the
optimal algorithm is actually simpler: the newest version is
always materialized since it is heavily queried. All the other
versions are then stored in the most compact way possible,
either by using the spanning-tree algorithm described above,
or by iteratively inspecting each version and deciding whether
delta-ing it against the new version would yield a more compact
representation than the current one.

V. PERFORMANCE EVALUATION

In this section, we evaluate the array system and version
materialization algorithms described in the previous sections
on a number of data sets. The objective of this section is
to understand how our versioning system compares to other,
more general-purpose systems like Subversion (SVN) and Git,
to measure its overall compression and query performance,
and to understand when our optimal materialization algorithm
approach outperforms a simple linear delta chain. Our ex-
periments are run on a single-node prototype; as noted in the
introduction, in the real SciDB deployment each of many nodes
will store versions of the pieces of very large arrays assigned
to them.

Fig. 4. Three consecutive arrays from the NOAA weather data, measuring
Specific Humidity on March 1, 2010. Measurements are scaled to an 8-bit
grayscale color space for display. Note that the images are very similar, but
not quite identical; for example, many of the sharp edges in the images have
scattered single-pixel variations.

We experimented with four data sets. The first data set is
a a dense collection of 1,365 approximately 1 MB weather
satellite images captured in 15 minute intervals from the US
National Oceanic and Atmospheric Administration1 (NOAA).
We downloaded data from their “RTMA” data set, which
contains sensor data measuring a variety of conditions that
govern the weather, such as wind speed, surface pressure, or
humidity, for a grid of location covering the continental United
States. Each type of measurement was stored as floating-point
numbers, in its own versioned matrix. We took data captured
on August 30 and 31 2010 and sampled 15 minutes, for a total
of 1,365 matrices. Sample data from this data set is shown in
Figure 4.

The second data set is a collection of sparse arrays taken
from the Open Mind Common Sense ConceptNet2 network at
MIT. This network is a highly sparse square matrix storing
degrees of relationships between various “concepts”. Only the
latest ConceptNet data is accessed regularly, but their server
internally keeps snapshots for backups; the benchmark data
consisted of all weekly snapshots from 2008. Each version is
about 1,000,000 by 1,000,000 large with around 430,000 data
points (represented as 32-bit integers).

The third data set consists of a collection of 16 large (1
GB) dense array from Open Street Maps3 (OSM)—a free and
editable collection of maps. We selected tiles from the region
overlooking Boston at zoom level 15 (from GPS coordinates
[-72.06, 41.76] to [-70.74, 42.70]). We selected 16 consecutive
versions for our experiments, one per week for the last 16
week of 2009.

1http://www.noaa.gov/
2http://csc.media.mit.edu/conceptnet
3http://www.openstreetmap.org/



The fourth data set, finally, is a dense, periodic data set.
It was taken from the Switch Panorama archive4. We used
every 80th view taken from Zürich’s observatory for one week,
ranging from February 14 through February 20, 2011. The
observatory recorded and published 2,003 views within that
timeframe. We selected these data sets to exercise different
aspects of the system; e.g., dense (NOAA and OSM) vs.
sparse storage (Open Mind), and finding non-trivial delta
materialization strategies (Switch Panorama). The OSM data
generally differs less between consecutive versions (and is thus
more amenable to delta compression) than the NOAA data,
because the street map evolves less quickly than weather does.

Our results were obtained on a Intel Xeon quad-core (Intel
E7310) running at 1.6 GHz, with 8 GB of Ram and a 7200RPM
SATA drive running Ubuntu Lucid. Our prototype is written in
a mix of Python 2.6 with the delta and compression libraries
coded in C (note that SciDB itself is entirely coded in C, so
we are in the process of porting all of our code to C.)

A. Delta Encoding and Compression

In our first experiment, we compare the algorithms we devel-
oped for delta encoding two versions as well as the compression
methods we implemented, as described in Section III.

Delta Experiments: We begin with our delta algorithms.
The algorithms differ in how they attempt to reduce the size
of array deltas. They all begin with an array representing the
arithmetic cellwise difference between two arrays to be delta
encoded. The “dense” method reduces the number of bytes
used to store the array as much as possible without losing data,
under the assumption that each difference value will tend to be
small. The “sparse” method is a no-op for sparse arrays; for
dense arrays, it converts the difference array into a sparse array,
under the assumption that relatively few differences will have
nonzero values. The “hybrid” method calculates an optimal
threshold value and splits the delta array into two arrays, one
(sparse or dense) array of large values and one (dense) array
of small values, as described in Section III-B.3. The MPEG-
2-like matcher is built on top of hybrid compression, but the
target array is broken up into 16x16 chunks and each chunk is
compared to every possible region in a 16-cell radius around
its origin, in case the image has shifted in one direction.

We ran these algorithms on the first 10 versions of the
NOAA data set. This data set contains multiple arrays at each
version, so there were a total of 88 array objects. The results
are shown in Table I. We also experimented with other data
sets and found similar results.

For this data, delta compression slows down data access. This
is largely because of the computational costs of regenerating
the original arrays based on the corresponding two deltas. With
the uncompressed array, the raw data is read directly from
disk into memory, but with each of the other formats, it is
processed and copied several times in memory.

The MPEG-2-like matcher is very expensive as compared
to the hybrid algorithm. Its cost is roughly proportional to

4http://cam.switch.ch/cgi-bin/pano2.pl

TABLE I
PERFORMANCE OF SELECTED DIFFERENCING ALGORITHMS

Delta Algorithm Import Time Size Query Time
Uncompressed 4.31 s 253MB 2.75 s
Dense 8.99 s 168MB 3.41 s
Sparse 21.15 s 191MB 3.21 s
Hybrid 15.16 s 142MB 2.81 s
MPEG-2-like Matcher 9598.10 s 138MB 39.60 s
BSDiff [6] 343.80 s 133MB 3.59 s

TABLE II
COMPRESSION ALGORITHM PERFORMANCE ON DELTA ARRAYS

Compression Size Query Time
Hybrid Delta only 133M 3.53s
Lempel-Ziv [7] 94M 4.01s
Run-Length Encoding 133M 3.32s
PNG compression 116M 5.93s
JPEG 2000 compression 118M 20.23s

the number of comparisons it is doing: It is considering all
arrays within a region of radius 16 around the initial location.
This means 16× 16 = 256 times as many comparisons, for a
2-dimensional array.

Of the remaining implementations, the hybrid implementa-
tion yields the smallest data size and the best query performance.
The improved query performance is most likely caused by the
smaller data size: Less time is spent waiting on data to be read
from disk, and the required CPU time isn’t hugely greater than
that of either of the other techniques.

The standalone BSDiff [6] arbitrary-binary-differencing
algorithm had the smallest data size overall. However, the
algorithm is CPU-intensive, particularly for creating differences,
so it had runtimes much longer than those of most of the matrix-
based algorithms.

Compression experiments: We compared various com-
pression mechanisms to compress the deltas after they were
computed. The results for the NOAA data are shown in Table II.
As before, we found similar results with other data sets.

The Lempel-Ziv (LZ) algorithm [7] compresses by accumu-
lating a dictionary of known patterns. Run-length simply stores
a list of tuples of the form (value, # of repetitions), to eliminate
repeated values. “PNG” and “JPEG 2000” compression are
image-compression formats; PNG uses LZ with pre-filtering,
and JPEG 2000 uses wavelets. PNG in particular makes heavy
use of a variety of tunable heuristics; the particular compression
implementation and set of constants used here were those of
the Python Imaging Library.

As a comparison, compressing the original array using LZ
alone, without first computing deltas, requires 124 MB. Using
RLE alone requires 240 MB.

PNG, JPEG 2000 compression, and LZ compression all
decreased the data size somewhat. Of those algorithms, LZ had
both the smallest resulting data size and the fastest query time
of the compression methods, so it is clearly the best overall.

B. Query Performance

In our next experiment, we tested several different versions
of our storage manager on the OpenStreetMaps, the NOAA, and



TABLE III
OPEN STREET MAPS, 10 MB CHUNKS, SNAPSHOT QUERY.

1 Array Select 1 Array Subselect
Method Bytes Read Time Bytes Read Time
Chunks + Deltas 1.53 GB 42.63 s 30.20 MB 0.96 s
Chunks 1.00 GB 27.38 s 30.20 MB 1.06 s
Chunks + Deltas + LZ 0.13 GB 18.63 s 2.90 MB 0.61 s
Uncompressed 1.00 GB 192.0 s 1.0 GB 19.65 s

TABLE IV
OPEN STREET MAPS, 10 MB CHUNKS, RANGE QUERY

16 Array Select 16 Array Subselect
Method Bytes Read Time Bytes Read Time
Chunks + Deltas 2.00 GB 249.80 s 42.50 MB 6.86 s
Chunks 15.00 GB 451.01 s 450.00 MB 14.17 s
Chunks + Deltas + LZ 1.89 GB 335.22 s 39.50 MB 10.32 s
Uncompressed 15.00 GB 289.16 s 15.00 GB 276.18 s

the ConceptNet data sets. We begin with our OpenStreetMaps
data.

OpenStreetMaps: We start with experiments looking at
the effectiveness of chunking on the OpenStreetMap data set,
when running queries that select an entire version, several
versions, and a small portion of one or several versions. We
experimented with various chunk sizes and in the end decided
to use 10 MB for all experiments, since it gave good results for
most settings. OpenStreetMaps is a good test for this because
consecutive versions are quite similar, with just a few changes
in the road segments between versions, and so we expected
delta compression to work well.

Table III gives the results for snapshot queries that retrieve
data from the latest versions only. Two different types of
queries are run: full-queries returning the entire version, and
subqueries returning only a few cells of a version (i.e.,
reading only one chunk, approximately 10MB uncompressed).
Here, we can see that chunking with delta encoding and LZ
compression is generally the best approach, accessing both the
least data from disk and providing the lowest query time. In
particular, chunking makes subselect operations very fast, and
LZ substantially reduces data sizes.

Table IV shows the results for range queries that select
16 consecutive versions. Here, LZ leads to the smallest data
sets and the least data read, but decompression time for the
large arrays in this case turns out to be substantial, causing
the uncompressed Chunks + Deltas approach to work better.
This is because the large delta chains in this data set do not
compress particularly well with LZ.

These results suggest that it might be interesting to adaptively
enable LZ compression based on the data set size and the
anticipated compression ratios; we leave this to future work.

NOAA and ConceptNet Data: We also experimented with
more complex query workloads on the NOAA and ConceptNet
(CNet) data, to get a sense of the performance of our approach
on other data sets. Table V gives the results for five different
workloads: i) Head, where the most recent version is selected
with 90% probability, and another single random version is
selected with 10% probability (this is repeated 10 times) ii)
Random, where a random single version is selected (this is
repeated 30 times) iii) Range, where with 10% probability, a
random single matrix is selected and with 90% probability,

a random range with a standard deviation of 10 is selected
(this is repeated 30 times) iv) Mixed, where a query is chosen
from the three previous query types with equal probability
(this is repeated 15 times) and finally v) Update, where a
random modification is made (this is repeated 5 times, each
time for a different version chosen uniformly at random). We
experimented with arrays compressed using hybrid deltas and
Lempel-Ziv compression (H+LZ), with just hybrid deltas (H),
and with no compression.

These results show several different effects. First, our delta
algorithms, even without LZ, achieve very high compression
ratios (3::1 on NOAA, and 35::1 on CNet.) CNet compresses
so well because the data is very sparse. Second, in general,
compressing the data slows down performance. This is different
than in the OSM data because individual versions are small here,
and so the reduction in I/O time is not particularly significant,
whereas the CPU overhead of decompression is costly (this is
particularly true in our Python implementation which makes
several in memory copies of arrays when decompressing them.)
Third, the performance of the system on compressed sparse
data (CNet) is not particularly good, with large overheads
incurred when manipulating the data; we believe that this is
due to our choice of Python for generating the final result
arrays—manipulating and expanding sparse lists is slow.

TABLE V
TESTS ON NOAA AND CONCEPTNET

Data Comp. Size Head Rand. Range Up. Mix.
NOAA H+LZ 2.3 GB 11.5 s 16.8 s 17.4 s 2.3 s 104.9 s

H 2.8 GB 0.3 s 14.8 s 12.9 s 1.0 s 43.3 s
None 8.2 GB 0.2 s 2.3 s 5.6 s 0.4 s 30.5 s

CNet H+LZ 11 MB 6.9 s 80.7 s 70.1 s 0.2 s 17.6 s
H 21 MB 4.8 s 57.0 s 44.5 s 0.2 s 12.6 s
None 728 MB 0.4 s 2.2 s 3.3 s 0.2 s 1.8 s

C. Comparison to Other Versioning Systems

In this experiment, we compare our system against two
widely used general-purpose versioning systems, SVN and
GIT. For both SVN and GIT, we mapped each matrix to a
versioned file, and committed each version in sequence order.
To ensure optimal disk usage, we ran svnadmin pack after
loading all data into the SVN repository. For GIT, we used git
repack to compress the data.

We ran our algorithm on the OSM data (which consists of
large arrays), and the NOAA data (which consists of smaller
arrays). For the OSM data, we looked at queries for the contents
of a single whole array, and at a sub-select of just one 10 MB
chunk. Results for the OSM data are shown in Table VI. For
this data, Git ran out of memory on our test machine. Observe
that SVN is substantially slower at loading data, provides less
compression (8x), and does not efficiently support sub-selects
(because the stored data is not compressed), running about
1.5x slower for whole array reads and 45x slower for single
chunk selects. For whole array queries SVN is also somewhat
slower, likely because it does not effectively compress (delta)
this data.



TABLE VI
SVN AND GIT PERFORMANCE ON OSM DATA

Method Import Time Data Size Array Select Subselect

Uncompressed 574.5 s 16.0 GB 192.0 s 19.65 s
Hybrid+LZ 2,340.4 s 2.01 GB 18.63 s 0.61 s
SVN 8,070.0 s 16.0 GB 29.2 s 28.6 s
Git – – – –

TABLE VII
SVN AND GIT PERFORMANCE ON NOAA DATA

Method Import Time Data Size 1 Array Select

Uncompressed 4.31 s 253M 2.75 s
Hybrid+LZ 13.1 s 90M 5.47 s
SVN 47.0 s 111M 7.97 s
Git 100.5 s 147M 3.70 s

Results for the NOAA data are shown in Table VII. Here we
did not look at array subselects, because each version is only
about 1 MB so fits into a single chunk. In this case, Git was
successfully able to load the data, although it took much longer
than the other systems. For this small data, uncompressed
access was the most efficient, because decompression costs on
these data sets proved to be relatively high. Hybrid Deltas+LZ,
however, yielded the smallest overall data set, and much better
load times than SVN or Git.

D. Materialization Experiments
In our final set of experiments, we look at the performance

of our materialization algorithm described in Section IV. We
compared its performance to a simple linear chain of deltas
differenced backwards in time from the most recently added
version.

First, we tested our optimal delta algorithm on the Switch
dataset, which exhibits some interesting periodicity as adjacent
versions (video frames) are very different, but the same scene
does occasionally re-occur. Here, our algorithm detects this
recurring pattern in the data and computes complex deltas
between non-consecutive versions. Our optimal delta algorithm
(using hybrid deltas + LZ) compresses the data down to 9.7
MB, while the linear delta-chain algorithm yields a compressed
size of 15 MB.

We also tested the performance of the algorithm on a variety
of synthetic data sets. These data sets have identical arrays that
re-occur every n versions. E.g., for n = 2, there are three arrays
that occur in the pattern A1, A2, A3, A1, A2, A3 . . . selected
so that each of the n arrays doesn’t difference well against
the other n − 1 arrays. Here, we had 40 arrays, each 8 MB
(total size 320 MB with linear deltas); the optimal algorithm
for n = 2 used 17 MB and for n = 3 used 21 MB, finding
the correct encoding in both cases.

Loading the delta chain for 40 arrays took 132 s in the
optimal case, and 15 s in the linear chain case; most of this
overhead is the time to generate the n2 materialization matrix.
Although this is a significant slow down, the load times are
still reasonable (about 3s per array), and should be faster when
re-implemented in C.

We also confirmed that on a data set where a linear chain is
optimal (because consecutive versions are quite similar), our
optimal algorithm produces a linear delta chain.

Finally, we ran a series of experiments to test our workload-
aware algorithms (see Section IV-D). We ran experiments on
our weather data set considering workloads with overlapping
range queries (i.e., sets of range queries retrieving 10 images
each and overlapping by four versions exactly). The resulting
space optimal layouts consider longer delta-chains than the I/O
optimal layouts. However, the I/O optimal layout proved to be
more efficient when executing the queries. Our system took on
average 1.51s to resolve queries on the space optimal layout
(results were averaged over 30 runs), while it took only 1.10s
on average on the I/O optimal layout, which corresponds to a
speedup of 27% in this particular case.

VI. RELATED WORK

In this section, we describe other version control and
differencing algorithms.

Version Control Systems: Versioning has a long history in
computer science. Naive versioning techniques include forward
and backward delta encoding and the use of multiversion B-
trees. These techniques have been implemented in various
legacy systems including XDFS, Sprite LFS or CVFS [8].

The design of our versioning system is modeled after
conventional version-control software such as Subversion and
Git. In particular, the concepts of a no-update model and of
differencing stored objects against each other for more efficient
storage have both been explored extensively by developers of
conventional version-control software.

Git in particular is often cited as being faster and more disk-
efficient than other similar version-control systems. Significant
amounts have been written about its data model [9]: Git stores
a version tree and a delta tree, but the two are managed by
different software layers and need not relate to each other at all.
In order to build an efficient delta tree, Git considers a variety
of file characteristics, such as file size and type, in addition
to files’ relationship in the version tree. It then sorts files by
similarity, and differences each file with several of its nearest
neighbors to try to find the optimal match. Our approach, in
contrast, uses a materialization matrix to efficiently find the
best versions to compare against, yielding better theoretical
guarantees and better performance in practice than Git, at least
on the arrays we used.

Git also ensures that its differences will be read quickly by
storing consecutive differences in the same file on disk. This
way, if several consecutive differences must be read, they will
likely be stored consecutively on disk, eliminating the need for
additional disk seeks. Additionally, if a client requests these
differences over the network, it will receive several differences
(one files’ worth) at once, thereby cutting down on the number
of required network round-trips. We included a similar co-
location optimization in SciDB, although we found it did not
improve performance significantly.

Image and Video Encoding: Considerable work has been
done in the areas of lossy and lossless video encoding, to
enable the storage of sequences of 2-dimensional matrices
using a minimum of storage space, and while minimizing the



time needed to select an arbitrary matrix from the middle of
a sequence. In particular, the HuffYUV lossless codec uses
the idea of storing a frame as an approximation plus a small
error delta, and the MPEG-1 Part 2 lossy codec selectively
materializes arrays in the midst of streams of deltas to improve
access times for range selections starting in the middle of the
MPEG video stream [10]. These ideas are similar to our idea
of materializing some versions in a delta chain, although they
do not include an optimal version search algorithm like ours,
instead just materializing frames at regular intervals.

Delta encoding is also a widely used technique in video and
image compression, with many variants in the literature. For
example, video compression codecs like MPEG-1 perform
several different types of delta encoding both within and
between frames; in this sense they are similar to our encoding
techniques [11].

We recently discovered that Gergel et al. [12] suggested the
use of a spanning tree to encode sets of images a few years
ago. However, their model and algorithms are considerably
simpler that the ones we developed for our system, since they
only consider a single, undirected spanning tree representation
(i.e., none of the algorithms described in IV can be captured
by their simplistic framework).

Another significant difference between video and image
compression techniques and the SciDB versioning systems is
that existing techniques support a fixed number of dimensions.
Video compression stores a three-dimensional matrix (two
dimensions per image and one in time); image compression
stores a two-dimensional matrix. Additionally, common imple-
mentations of these algorithms tend to assume that this data uses
8-bit unsigned integers for cell values, because 8-bit grayscale
(or 8 bits per color channel, with color images) is a common
standard for consumer graphics. Some implementations of
some of these algorithms support 16-bit unsigned integers; few
if any support 32-bit or larger integers, or any other attribute
formats.

Versioning and Compression in DBMSs Versioning is similar
to features in existing database systems. For example, support
for “time travel” is present in many DBMSs, beginning with
Postgres [13]. Oracle also includes a feature called “Flash
Back”5 that allows users to run queries as of some time in the
past.

Flashback also allows users to create “Flashback Data
Archives” that are essentially named versions of tables.
Snapshot or backup features like this are present in most
databases, and it is common for production database systems
to be kept under version control as well. The difference between
these tools and our storage manager is that they are not
optimized for efficiently encoding versioned array data, as
our prototype storage manager is.

Compression has also been considered for databases be-
fore [14], [15], [16], [17], [18], but typically the goal is to
minimize the size and/or access time of a single relation, rather
than the time to access a series of relations as in our case.

5http://download.oracle.com/docs/cd/B28359 01/
appdev.111/b28424/adfns flashback.htm

VII. CONCLUSIONS

In this paper, we described a prototype versioned storage
system we have built for the SciDB scientific database
system. Key ideas include efficient, chunk-based storage and
compression, and efficient algorithms for determining how
to delta-encode a series of versions in terms of each other to
minimize storage space or I/O costs. We presented experimental
results on a range of real-world imagery and array data, showing
that our algorithms are able to dramatically reduce disk space
while still providing good query performance. We are currently
integrating these ideas into the SciDB system, and adding
support to the SciDB declarative query language to provide
access to versions. Our code will be available in the next
release of SciDB.

ACKNOWLEDGEMENTS

This work was supported by NSF grants IIS/III-1111371
and SI2-1047955.

REFERENCES

[1] M. Stonebraker, C. Bear, U. Cetintemel, M. Cherniack, S. Harizopoulos,
J. Lifter, J. Rodgers, and S. Zdonik, “One size fits all? part 2:
Benchmarking studies,” 2007.

[2] E. Soroush, M. Balazinska, and D. Wang, “Arraystore: A storage manager
for complex parallel array processing,” pp. 253–264, 2011.

[3] P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov,
E. Soroush, P. Velikhov, D. L. Wang, M. Balazinska, J. Becla, D. DeWitt,
B. Heath, D. Maier, S. Madden, J. Patel, M. Stonebraker, and S. Zdonik,
“A demonstration of SciDB: a science-oriented DBMS,” VLDB, vol. 2,
no. 2, pp. 1534–1537, 2009.

[4] D. R. Karger, P. N. Klein, and R. E. Tarjan, “A randomized linear-time
algorithm to find minimum spanning trees,” J. ACM, vol. 42, no. 2, pp.
321–328, 1995.

[5] A. Cayley, “A theorem on trees,” Quart. J. Math, vol. 23, pp. 376–378,
1889.

[6] C. Percival, “Naive differences of executable code,” 2003, unpublished
paper.

[7] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE TRANSACTIONS ON INFORMATION THEORY,
vol. 23, no. 3, pp. 337–343, 1977.

[8] N. Zhu, “Data versioning systems,” Stony Brook University, Tech. Rep.,
2003.

[9] S. Chacon, Git Community Book. http://book.git-scm.com/: the Git
SCM community, 2010, ch. 1.

[10] Y. Lin, M. S. Kankanhalli, and T. seng Chua, “T.-s.,: Temporal multi-
resolution analysis for video segmentation,” in In ACM Multimedia
Conference, 1999, pp. 494–505.

[11] International Standards Organization (ISO), “Coding of moving pic-
tures and audio,” Web Site, July 2005, http://mpeg.chiariglione.org/
technologies/mpeg-1/mp01-vid/index.htm.

[12] B. Gergel, H. Cheng, C. Nielsen, and X. Li, “A unified framework for
image set compression.” in IPCV, 2006, pp. 417–423.

[13] M. Stonebraker and G. Kemnitz, “The POSTGRES Next-Generation
Database Management System,” Communications of the ACM, vol. 34,
no. 10, pp. 78–92, 1991.

[14] D. J. Abadi, S. R. Madden, and M. Ferreira, “Integrating compression
and execution in column-oriented database systems,” in SIGMOD, 2006,
pp. 671–682.

[15] Z. Chen, J. Gehrke, and F. Korn, “Query optimization in compressed
database systems,” in ACM SIGMOD, 2001.

[16] G.Graefe and L.Shapiro, “Data compression and database performance,”
In ACM/IEEE-CS Symp. On Applied Computing pages 22 -27, April
1991.

[17] M. A. Roth and S. J. V. Horn, “Database compression,” SIGMOD Rec.,
vol. 22, no. 3, pp. 31–39, 1993.

[18] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte, “The
implementation and performance of compressed databases,” SIGMOD
Rec., vol. 29, no. 3, pp. 55–67, 2000.



APPENDIX

A. SciDB Versioning Examples
In this section, we illustrate how we are integrating our

versioning system with the SciDB query language, AQL,
through several language examples. Suppose we create
a 3x3 SciDB array using the AQL command CREATE
UPDATEABLE ARRAY:

CREATE UPDATABLE ARRAY Example
( A::INTEGER ) [ I=0:2, J=0:2 ];

CREATE UPDATEABLE ARRAY can create an array that
contains multiple attributes (for example, ( A::INTEGER,
B::DOUBLE )), as well as arbitrarily many dimensions
(for example, [I=0:2, J=0:2, K=1:15, L=0:360]).
SciDB stores the newly-loaded data as one version of the array,
as can be seen with the VERSIONS command:

VERSIONS(Example);
[(’Example@1’)]

Data is loaded into this array from disk via the LOAD command:

LOAD Example FROM ’array_file.dat’;

Additional versions can subsequently be loaded:

LOAD Example FROM ’array_new_version.dat’;
LOAD Example FROM ’array_another_new_version.dat’;
VERSIONS(Example)
[(’Example@1’),(’Example@2’),(’Example@3’)]

Versions can then be retrieved by name and ID number,
using the SELECT primitive; Support for selecting versions
by conditionals or arbitrary labels is under development. For
example, assuming that Example@3 was added on January 5,
2011 (and no other version was added on that date), it can be
selected by date:

SELECT * FROM Example@’1-5-2011’;
[
[(3),(6),(9)]
[(12),(15),(18)]
[(21),(24),(27)]
]

In some cases, it may be useful to select more than one version
at a time. To support this case, a special form is introduced:

SELECT * FROM Example@*;
[
[(1),(2),(3)]
[(4),(5),(6)]
[(7),(8),(9)]
][
[(2),(4),(6)]
[(8),(10),(12)]
[(14),(16),(18)]
][
[(3),(6),(9)]
[(12),(15),(18)]
[(21),(24),(27)]
]

In this case, “Example@*” takes the two-dimensional “Ex-
ample” array, and returns a three-dimensional array with all
versions of “Example” lined up on the third axis. This form

can be used with SciDB’s SUBSAMPLE operator to allow the
selection of a range of versions:

SELECT * FROM SUBSAMPLE
(Example@*, 0, 1, 1, 2, 2, 3);
[
[(8),(10)]
[(14),(16)]
][
[(12),(15)]
[(21),(24)]
]

This example selects coordinates 0 to 1 along the X axis, 1 to
2 along the Y axis, and 2 to 3 in the time dimension, returning
a 2x2x2 array. “Example@*” is a first-class array object, so
all other SciDB operators will work properly with it.

Arrays can also be branched. A branch is essentially a
duplicate of an existing array, that can be updated separately.
Branches are performed as follows:

BRANCH(Example@2 NewBranch);
LOAD NewBranch FROM ’other_version.dat’;
LOAD NewBranch FROM ’another_version.dat’;

Note that branches are formed off of a particular version
of an existing array, not necessarily the most recent version,
but they create a new array with a new name. This provides a
means of adding data to a past version of an array.

B. Minimum Spanning Forest
We give below the algorithm for finding the minimum storage

forest when materializing multiple versions may be beneficial.

/* Find Space Optimal Layout With One
Materialized Version */

run Algorithm 1
/* Take Cheapest Materialization As Root */
V i

min = min(MM(i, i)) ∀ 1 ≤ i ≤ N
Λ = V i

min

roots⊕ V i
min

/* Traverse MST and Add Deltas from Root */
foreach Pair of Nodes (V i, V j) ∈ MST from root V i

min do
Λ = Λ⊕∆i,j

/* Consider Splitting the Graph by
Materializing other Versions */

foreach version V i|∃MM(j, k) < MM(i, i) do
∆diff = 0
foreach version V l on the path between V i and roots do

/* Find the Best Delta to Replace */
if Size(∆l) > MM(i, i) AND Size(∆l) > ∆diff

then
∆diff = Size(∆l)
VToReplace = Vl

if ∆diff > 0 then
/* Split Graph and Add a New Root */
Λ = Λ	∆i

Λ = Λ⊕ V l

roots⊕ V l

store Λ

Algorithm 2: Minimum Spanning Forest


